首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,随着风暴流和风暴岩的新理论、新概念的不断引入,在分析沉积环境、沉积成矿作用时,不断提出了许多新思路,也不断地冲击和修正以往的传统认识,作者于1986年随同成都地矿所寒武系磷矿专题组对滇东一带包括昆阳梅树村、海口、鸣矣河、晋宁王家湾、二街、八街、安宁白登、江川清水沟、宜良大滴水、寻甸先锋等矿区的磷矿进行了详细的研究,在下寒武统中谊村段及其相当的地层中发现了多层磷质风暴沉积物。本文拟概略介绍磷质风暴沉积物的标志、特征、剖面结构并初步探讨磷矿富集与风暴事件关系的沉积演化模式。  相似文献   

2.
Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank   总被引:1,自引:0,他引:1  
The open-ocean carbonate slope north of Little Bahama Bank consists of a relatively steep (4°) upper slope between water depths of 200 and 900 m, and a more gentle (1–2°) lower slope between depths of 900 and 1300+ m. The upper slope is dissected by numerous, small, submarine canyons (50–150 m in relief) that act as a line source for the downslope transport of coarse-grained carbonate debris. The lower slope is devoid of any well-defined canyons but does contain numerous, small (1–5 m) hummocks of uncertain origin and numerous, larger (5–40 m), patchily distributed, ahermatypic coral mounds. Sediments along the upper slope have prograded seaward during the Cenozoic as a slope-front-fill seismic facies of fine-grained peri-platform ooze. Surface sediments show lateral gradation of both grain size and carbonate mineralogy, with the fine fraction derived largely from the adjacent shallow-water platform. Near-surface sedimentary facies along the upper slope display a gradual downslope decrease in the degree of submarine cementation from well-lithified hardgrounds to patchily cemented nodular ooze to unlithified peri-platform ooze, controlled by lateral variations in diagenetic potential and/or winnowing by bottom currents. Submarine cementation stabilizes the upper part of the slope, allowing upbuilding of the platform margin, and controls the distribution of submarine slides, as well as the headward extent of submarine canyons. Where unlithified, sediments are heavily bioturbated and are locally undergoing dolomitization. Upper slope sediments are also ‘conditioned’eustatically, resulting in vertical, cyclic sequences of diagenetically unstable (aragonite and magnesian calcite-rich) and stable (calcite-rich) carbonates that may explain the well-bedded nature of ancient peri-platform ooze sequences. Lower slope sediments have prograded seaward during the Cenozoic as a chaotic-fill seismic facies of coarse-grained carbonate turbidites and debris flow deposits with subordinate amounts of peri-platform ooze. Coarse clasts are ‘internally’derived from fine-grained upper slope sediments via incipient cementation, submarine sliding and the generation of sediment gravity flows. Gravity flows bypass the upper slope via a multitude of canyons and are deposited along the lower slope as a wedge-shaped apron of debris, parallel to the adjacent shelf edge, consisting of a complex spatial arrangement of localized turbidites and debris flow deposits. A proximal apron facies of thick, mud-supported debris flow deposits plus thick, coarse-grained, Ta turbidites, grades seaward into a distal apron facies of thinner, grain-supported debris flow deposits and thinner, finer grained Ta-b turbidites with increasing proportions of peri-platform ooze. Both the geomorphology and sedimentary facies relationships of the carbonate apron north of Little Bahama Bank differ significantly from the classic submarine fan model. As such, a carbonate apron model offers an alternative to the fan model for palaeoenvironmental analysis of ancient, open-ocean carbonate slope sequences.  相似文献   

3.
本文在总结前人对浊流沉积研究的基础上,分析前人对浊流与浊积岩、浊流沉积与浊流相模式的对应关系之间的认识,并对鲍马序列进行重新审视。在海底扇研究过程中,鲍马序列已经不能充分反映浊流沉积的全过程。鲍马序列所反应的沉积模式其实是由碎屑流、浊流、底流等多种形式流体组合和改造后的结果,海底扇沉积模式不能笼统归结为浊流沉积作用的结果。在完善重力流、底流等沉积作用的同时,建立一个与沉积作用相互联系的深海沉积系统,以对深海研究提供更好地指导和预测。  相似文献   

4.
Sedimentation on the open-coast tidal flats of south-western Korea is controlled by seasonal variation in the intensity of onshore-directed winds and waves. As a result, an environmental oscillation takes place between tide-dominated conditions in summer and wave-dominated conditions in winter. In summer, thick muddy deposits, including sporadic storm deposits, accumulate in response to low wave energy, weak currents, and intense solar insolation that promotes consolidation of the mud at low tide. Bioturbation is minimal because of rapid sedimentation and soft substrate. During the autumn, the summer mud deposits experience erosion due to increasingly strong onshore winds and waves, until only small mud patches and mud pebbles remain. The concentration of ebb runoff between the mud patches produces small, ephemeral tidal creeks. In winter, storm waves occur frequently (ca 10 days a month) and dominate sedimentation in the intertidal zone, producing extensive wave-generated parallel lamination and short-wavelength (0·3–2 m) hummocky cross-stratification. The prevalence of strong onshore winds decreases in spring, allowing longer and more frequent intervals of calm weather, during which time muddy sediments are deposited by tidal processes. Over the long term, winter storm waves dominate sedimentation and the preserved deposits consist of amalgamated storm beds that resemble those generally associated with shorefaces. This raises the question of how many ancient ‘shorefaces’ are, in fact, open-coast tidal flats.  相似文献   

5.
研究区雾迷山组的层状藻叠层白云岩中存在一种属原地风暴成因的砾屑透镜体?砾屑体的底部为略下切的侵蚀面,顶为上凸形?砾屑呈放射状或叠瓦状排列,无磨圆作用?其形成过程是:在风暴初期,风暴浪对海底沉积物冲击?掀起?破碎,而后迅速原地堆积而成?风暴衰减后,正常沉积顺应砾屑体的顶面形态?  相似文献   

6.
川西北早志留世陆源碎屑──碳酸盐混积缓坡   总被引:10,自引:6,他引:10  
研究区位于扬子地块西北缘,由一套巨厚的页岩、泥岩层夹生物礁及透镜状和不规则层状风暴生屑灰岩、瘤状灰岩组成。根据区内特征的岩石类型及其组合、分布和相应的化石生态,作者认为本区兰多维列期至早温洛克期时为一典型的陆源碎屑--碳酸盐混积均斜缓坡,并且从浅到深划分为滨岸、浅缓坡、深缓坡及盆地等亚环境。滨岸区位于潮间带,以潮坪碳酸盐岩为代表;浅缓坡位于浪基面至风暴浪基面之间,岩性组合为A、B类风暴岩,A、B类瘤状灰岩、生物礁灰岩及粘结岩;深缓坡位于风暴浪基面至最大风暴浪基面之间,岩性以D、E类风暴岩、C类瘤状灰岩及泥页岩组合为特征;盆地处于最大风暴浪基面之下,为黑色泥页岩沉积。结合早志留世时全球冰川作用,文中讨论了海平面变化的原因及对环境的影响。  相似文献   

7.
Sediment ripples are caused by systematically-spaced transverse roller vortex systems in a moving fluid undergoing shear. With greater shear, these transverse rollers change over into longitudinal (helicoidal) vortices. This is the basic cause for the change from so-called ‘lower flow regime’ conditions to ‘upper flow regime’ conditions. All characteristics of these two regimes (sediment transport rate, bed form, sedimentary structures) are logically explained by attributing them to change in type of vortex system. For currents depositing sediments, there are three orders of magnitude of vortices, each order beginning with transverse rollers, passing through festoon to longitudinal rollers. A chaos zone (antidunes) ensues, followed by resumption of transverse rollers that are five to ten times as large as those in the previous order. Features of river sediments, marine sands, turbidites, desert sand dunes, sky, and stars are satisfactorily explained by this model.  相似文献   

8.
现代滨岸风暴沉积--以舟山普陀岛、朱家尖岛为例   总被引:5,自引:1,他引:5  
本文以舟山现代滨岸为例,重点阐述了在8114号和8310号两次强台风作用期间,水动力发生的剧烈变化以及对应的沉积物堆积情况。进而从沉积物粒度变化、沉积构造组合、生物特征和沉积物垂向层序诸方面,探讨了滨岸风暴沙滩的沉积特征,并指出它与浅海风暴沉积的区别。总结了风暴砾滩的沉积特征,并指出绝大多数滨岸砾滩是风暴作用的结果。研究现代风暴沉积目的是为了找到更多的古代风暴沉积,文后介绍了已找到的古代风暴沉积的实例。  相似文献   

9.
The late Quaternary development of part of the lower continental rise off Western Sahara has been determined from an investigation of short (< 2 m) gravity cores collected from a deep-sea channel, the interchannel areas and an abyssal hill, between 30 and 33°N. Stratigraphic analysis is based on systematic variations in abundances of particular coccolith species and pelagic sediment types, referenced to the oxygen isotope time-scale. During the last 73 000 years deposition in the channel has included volcaniclastic sand/silt turbidites and minor marl turbidites as well as pelagic sediments. The interchannel area has fewer turbidites, and the sands present were probably deposited from turbidity currents which spilt over the channel sides. The last‘event’ to give rise to sands in the channel and interchannel area occurred about 45 000 years ago. Although the channel has been inactive as an area of turbidity current deposition for the last 20 000 years, sands were deposited elsewhere on the lower rise, indicating that turbidity current transport routes have varied in time. Turbidity current deposition on the abyssal plain and low-lying continental rise appears to be related to distinct sliding events involving transport of material from various sources. Thin marl turbidites are interbedded with pelagic sediments in the area of sediment drape. There is a strong correlation between these and the thick marl turbidites on the abyssal plain, suggesting that the same turbidity current‘events’, occurring about once every 25 000 years, gave rise to both sets of deposits. The thinner units probably represent deposition from the outer parts or tails of the large turbidity flows. The turbidites occur at glacial/interglacial transitions, suggesting that the slides that created them were triggered by mechanisms related to climatic change. Several volcaniclastic sand/silt units within the channel and in interchannel areas occupy mid-stage stratigraphic positions, perhaps indicating a different triggering mechanism for slides around volcanic islands. A debris flow deposit (debrite), between 30°N, 21°W and 31°N, 24°W, is related to the Saharan Sediment Slide, a major mass movement feature on the continental slope over 1000 km to the southeast. Stratigraphic correlations indicate that this slide produced a large turbidity current as well as a debris flow.  相似文献   

10.
ABSTRACT
Stacked cross-sets, up to 2.5 m thick, produced by sand wave migration and meniscate trace fossils produced by Echinocardium cordatum , both considered in the literature as typical of shallow-water marine depositional settings, commonly occur in the bathyal Plio-Pleistocene deposits of Monte Torre (Calabria, southern Italy).
The Plio-Pleistocene sediments form two coarsening-upward depositional sequences, separated by an unconformity and by a palaeobathymetric gap of at least 300 m. The lower sequence passes upwards from hemipelagic marls and thin-bedded turbidites to thick-bedded sandy turbidites, then to sand wave deposits alternated with sandy turbidites, and finally to base-of-slope megabreccias. Facies characteristics and relationships, and the occurrence of deep-sea faunal associations, indicate deposition in the bathyal zone. The facies of the upper sequence reflect a fan-delta environment, no deeper than a few tens of metres.
The depositional setting of the lower sequence, where the sand wave deposits and meniscate trace fossils occur, appears to have been a tectonically controlled seaway, connecting the Tyrrhenian and Ionian Seas. This seaway became progressively narrower with time, evolving into a strait. The overall coarsening-upward trend reflects the upward transition from a low to a high-energy environment, possibly caused by the tectonic narrowing of the seaway. Deposition and erosion from high-concentration turbidity currents and from tidal bottom currents were important processes. Periods of tectonic activity, producing first the uplift of the seaway margins and culminating with the uplift of the strait sequence itself, are marked by-scattered rockfall deposits.
The strait setting, causing the development of powerful, oxygenated bottom currents, produced optimal conditions in the bathyal zone for the colonization of sandy bottoms by a single infaunal r -selected species, Echinocardium sp.  相似文献   

11.
薛武强  李波  颜佳新  申欢欢 《沉积学报》2012,30(6):1010-1020
黔南罗甸沫阳剖面中二叠世茅口组以海相碳酸盐为主,下部地层中发育风暴岩,露头特征明显,主要以介壳灰岩为识别标志。风暴沉积构造包括底面侵蚀构造、截切构造、波痕层理、递变层理、块状层理等。风暴沉积主要包括一个底面构造A和B、C、D、E等四个沉积单元:A.侵蚀底面,代表风暴流对海底沉积物的作用;B.介壳灰岩层,代表风暴浪、风暴涡流沉积;C.粒序层,代表风暴衰减期重力分异沉积或风暴浊流沉积;D.块状层,代表风暴快速悬浮沉积;E.波痕层理段,代表风暴衰减后期沉积。它们共组成4种风暴沉积序列,分别代表不同深度的风暴沉积,反映了不同的风暴沉积作用和风暴流的类型。沫阳地区风暴沉积的沉积特征表明,该区风暴沉积主要发育于风暴浪基面之上的内陆棚沉积环境,风暴强度大,为近源风暴岩。仅个别风暴沉积发育于风暴浪基面之下的外陆棚沉积环境,为风暴引起的浊流沉积,为远源风暴岩。风暴岩类型的正确识别,对确定该区沉积相与深入认识扬子碳酸盐台地南部边缘沉积演化提供参考依据。  相似文献   

12.
Onshore tsunami deposits may consist of inflow and backflow deposits. Grain sizes can range from clay to boulders of several metres in diameter. Grain‐size distributions reflect the mode of deposition and may be used to explore the hydrodynamic conditions of transport. The absence of unique sedimentary features identifying tsunami deposits makes it difficult in some cases to distinguish inflow from backflow deposits. On Isla Mocha off central Chile, the 27 February 2010 tsunami left behind inflow and backflow deposits of highly variable character. Tsunami inflow entrained sands, gravels and boulders in the upper shoreface, beach, and along coastal terraces. Boulders of up to 12 t were transported up to 300 m inland and 13 m above sea‐level. Thin veneers of coarse sand were found up to the maximum runup at 600 m inland and 19 m above sea‐level. Backflow re‐mobilized most of the sands and gravels deposited during inflow. The orientation of erosional structures indicates that significant volumes of sediment were entrained also during backflow. A major feature of the backflow deposits are widespread prograding fans of coarse sediment developed downcurrent of terrace steps. Fan sediments are mostly structureless but include cross‐bedding, imbrication and ripples, indicating deposition from bedload traction currents. The sediments are poorly sorted, grain sizes range between medium to coarse sand to gravel and pebbles. An assessment of the backflow transport conditions of this mixed material suggests that bedload transport at Rouse numbers >2·5 was achieved by supercritical flows, whereas deposition occurred when currents had decelerated sufficiently on the low‐gradient lower coastal plain. The sedimentary record of the February 2010 tsunami at Isla Mocha consists of backflow deposits to more than 90%. Due to the lack of sedimentary structures, many previous studies of modern tsunami sediments found that most of the detritus was deposited during inflow. This study demonstrates that an uncritical use of this assumption may lead to erroneous interpretations of palaeotsunami magnitudes and sedimentary processes if unknowingly applied to backflow deposits.  相似文献   

13.
Sandy shelf sediments are important elements of clastic sedimentary systems because of their wide distribution in the geological record and their significance as hydrocarbon reservoirs. Although many studies have investigated shelf sediments influenced by waves or tidal currents, little is known about shelf sediments influenced by oceanic currents, particularly their lithofacies characteristics and stratigraphic evolution. This study investigated the stratigraphic evolution of shelf sediments off the Kujukuri strandplain facing the Pacific Ocean, which is influenced by the strong Kuroshio Current. Sediment cores were obtained from six locations on the Kujukuri shelf (34 to 124 m water depth) using a vibrocorer. The dominant lithofacies is mud-free sand with low-angle cross-lamination associated with alternating beds of finer and coarser sand with cross-lamination. These display depositional processes influenced by storm waves and the Kuroshio Current, respectively. This finding is consistent with the previously presented modern and historical observations of the Kuroshio Current and estimates of the storm-wave base. Radiocarbon dates show that the sediment succession formed during the last transgressive and highstand stages after 13·1 ka. The depositional processes during the stages represent a transition from storm waves with abundant sediment supply to both storm waves and the Kuroshio Current with sediment starvation mainly due to its trapping in the strandplain. Comparison to other Holocene–Modern shelf systems suggests that the sandy shelf successions are strongly influenced by oceanic currents under conditions of limited riverine input and open coastal geometry. The resultant sand-dominated succession is characterized by reversal of the proximal to distal grain-size trend compared to the fining for most other recognized wave/storm-dominated shelf successions. This is because of seaward increase in the influence of the Kuroshio Current. Thus, shelf deposits are naturally complex, and these may be further complicated by the additional influence of oceanic currents above the usual wave-dominated and tide-dominated end members.  相似文献   

14.
赵霞飞 《地质科学》1980,15(1):50-64
碎屑沉积的粒度研究,已有七十余年历史。近二十年来,无论分析方法及资料解释,都有长足进步,因而已经成为岩石定量研究和环境(相)推断方面的重要手段。  相似文献   

15.
The most extensive Jurassic marine transgression in North America reached its maximum limits during the Oxfordian Age. At this time, siliciclastic sediments were being brought into the North American seaway from an uplifted zone to the west. Within this setting, complexes of sand ridges and coquinoid sands layers were deposited. Coquinoid sandstones appear to fill erosional scours and were interpreted as channel fills. Re-evaluation of these features in the light of recently discovered attributes of modern shelf sediments and processes has produced a revised model of coquinoid sand deposition in this setting. Coquinoid sandstones which fill ‘channel-like’ scours in the Oxfordian (Upper Jurassic) rocks of central Wyoming and south-central Montana, appear to have formed through the migration of sand waves across the crests of inner shelf sand ridges during periods of storm and tidal flow. Erosion in the zone of flow reattachment in the troughs between sand waves resulted in the development of shell lags. Migration of these scour zones as the sand waves advanced resulted in the deposition of sheet-like coquinoid sandstone bodies. Sand waves crossing the ridge crest tended to migrate more slowly and to be overstepped by later sand waves. Sand wave troughs thus buried have channel-like geometries with apparent epsilon bedding.  相似文献   

16.
This study focuses on storm deposits in the Muschelkalk facies of the Betic Cordillera (southern Spain) and interprets their deposition mechanisms. Three types of storm deposit are distinguished: (i) pot/gutter casts; (ii) tempestite beds; and (iii) storm‐winnowed deposits. Each deposit provides information about the carbonate platform environment in which it was deposited. The tempestite models proposed are: (i) the bypass‐zone tempestite model, occurring in a muddy ramp at the epicontinental basin margin. This model is characterized by potholes and gutters that form in a shoreline bypass‐zone during storms; (ii) the gradient‐current tempestite model in which frequent tempestite beds are related to storm gradient currents. Thickness and grain size decrease towards the deep distal ramp; and (iii) the winnowed deposit tempestite model whereby storm deposits are winnowed and deposited in the same environment with only short lateral transport having occurred. This model evokes more restricted and shallower conditions, lagoons or inland seas. The distribution of all these deposits in the stratigraphic sections studied corroborate the eustatic third‐order cycle identified, although the different features of the storm deposits and their positions in each section indicate a subsidence varying in time and space. In the transgressive stage, the margins of the epicontinental basin were a well‐developed ramp with potholes and gutters. In contrast, during the high sea‐level stage, storm deposits generated tempestite beds or storm‐winnowed deposits in the different areas. The epicontinental carbonate platform with ramp edges evolved into a complex depositional system of coastal and shallow‐marine environments with lagoons and restricted inland seas. Thus, the epicontinental platform underwent substantial change from the Late Anisian to the Late Ladinian and this is reflected in its storm deposits.  相似文献   

17.
The shore‐normal transport of fine‐grained sediments by shelf turbidity currents has been the focus of intense debate over the last 20 years. Many have argued that turbidity currents are unlikely to be a major depositional agent on the shelf. However, sedimentological, architectural, stratigraphic and palaeogeographic data from the Campanian Aberdeen Member, Book Cliffs, eastern Utah suggests otherwise and clearly demonstrates that storm‐generated and river flood‐generated underflows can transport a significant volume of fine‐grained sediments across the shelf. These across‐shelf flowing turbidity currents cut large subaqueous channel complexes up to 7 m deep, tens of kilometres basinward of their time‐equivalent shoreface. The shelf channels were filled with organic‐rich siltstones, mudstones and very fine‐ to fine‐grained Bouma‐like sandstone beds, including wave‐modified turbidites, hyperpycnites and classical turbidites. Deposition was above storm wave base. Palaeocurrent data reveal an overwhelmingly dominant across‐shelf (east–south‐east), offshore‐directed transport trend. Tectonic activity and/or concomitant palaeogeographic reorganization of the basin may favour the generation of these turbidite‐rich shelf deposits by altering the relative balance of wave versus fluvial energy. Increased erosion and sediment supply rates, because of tectonic uplift of the hinterland, may have increased the probability of fluvial dominance along the coastline and, hence, the possibility of submarine channelization in front of the river mouths. Additionally, the coastline may have become more sheltered from direct wave energy, thus allowing the fluvial processes to dominate. Seasonal increases in rainfall and storm activity may also favour the generation of across‐shelf underflows. On wave‐dominated shorelines, isolated shelf channels and lobes are most likely to be found down‐dip of fluvial‐feeder systems in relatively high sediment supply settings. These features are also most likely to occur in systems tracts that straddle a sequence boundary, especially those which are tectonically generated, as these would enhance the potential for altering basin morphology and, hence, the balance of fluvial and wave energy. Isolated shelf channels are recognized in older and younger strata in the Book Cliffs region, implying that wave‐supported gravity flows were a recurrent phenomena in the Campanian of Utah. It is probable that isolated shelf bodies are preserved in other stratigraphic intervals in the Cretaceous Western Interior of North America, and other basins worldwide, and are currently being overlooked or misidentified. Shoreface‐to‐shelf facies models should be revised to incorporate turbidite‐rich shelf deposits in some shelf settings.  相似文献   

18.
青岛灵山岛下白垩统湖泊风暴沉积与风暴作用   总被引:1,自引:0,他引:1  
灵山岛背来石剖面发育了非常典型的湖泊风暴岩和风暴作用。非常典型的丘、洼状构造发育在火山岩底部的砂页岩中。丘状构造呈典型的丘状,规模不一,小者高数厘米,宽数十厘米;大者高2. 4m,宽12. 48m;具有典型的二元结构:底部为灰色或浅灰色的砂砾岩或砂岩;顶部为深灰色 黑色泥岩、页岩或薄层砂岩互层。砂砾岩分选磨圆均很差,砾石主要为片麻岩,直径多在数毫米到3~4cm,呈悬浮式胶结。砾岩底部为凹凸不平的侵蚀面,砾岩向丘状构造两翼变薄甚至尖灭,与下部侵蚀面呈典型的角度交切。丘状构造的上部的细粒层有四个要素:①上凸形态;②丘状交错层理;③下细上粗的二元结构;④底部具侵蚀面。洼状构造也具有典型的洼状,规模也不一,小者高数厘米,宽十余厘米;大者高2. 4m,宽18. 70m,具有下细上粗的(反)二元结构,但底部多为深灰 灰黑色、甚至黑色的泥岩、页岩或夹薄层砂岩,上部多为砂岩、砂砾岩或砾岩。完整的洼状构造也有四个要素:①下凹形态;②或有洼状交错层理;③下细上粗的(反)二元结构;④底部具侵蚀面。丘状构造与洼状构造在空间上相邻共生,但不是同时形成的,一个连续的完整序列是丘状构造形成在先,洼状构造形成在后,其间由一个粒度较细的薄层分隔开(风暴最高水位时的“静”水沉积)。基于实验和丘洼构造参数计算了风暴浪的相关参数。  相似文献   

19.
A remarkable suite of shallow-water, gravity-flow deposits are found within very thinly-bedded siltstones and storm-generated sandstones of member 2 of the Chapel Island Formation in southeast Newfoundland. Medium to thick siltstone beds, termed unifites, range from non-graded and structureless (Type 1) to slightly graded with poorly developed lamination (Type 2) to well graded with lamination similar to that described for fine-grained turbidites (Type 3). Unifite beds record deposition from a continuum of flow types from liquefied flows (Type 1) to turbidity currents (Type 3). Calculations of time for pore-fluid pressure dissipation support the feasibility of such transitions. Raft-bearing beds consist of siltstone with large blocks or‘rafts’ of thinly bedded strata derived from the underlying and adjacent substrate. Characteristics suggest deposition from debris flows of variable strength. Estimates of debris strength and depositional slope are calculated for a pebbly mudstone bed using measurable and assumed parameters. An assumed density of 2.0 g cm-1 and a compaction estimate of 50% gives a strength estimate of 79.7 dyn cm-2 and a depositional slope estimate of 0.77°. The lithologies and sedimentary structures in member 2 indicate an overall grain-size distribution susceptible to liquefaction. Inferred high sediment accumulation rates created underconsolidated sediments (metastable packing). Types of sediment failure included in situ liquefaction (‘disturbed bedding’), sliding and slumping. Raft-bearing debrites resulted from sliding and incorporation of water. Locally, hummocky cross-stratified sandstone directly overlies slide deposits and raft-bearing beds, linking sediment failure to the cyclical wave loading associated with large storms. The gravity flows of the Chapel Island Formation closely resemble those described from the surfaces of modern, mud-rich, marine deltas. Details of deltaic gravity-flow deposition from this and other outcrop studies further our understanding of modern deposits by adding a third dimension to studies primarily carried out with side-scan sonar.  相似文献   

20.
Uppermost Jurassic limestones of the South‐East Basin (France) are organized into four facies associations that were deposited in four distinct zones: (1) peritidal lagoonal limestones; (2) bioclastic and reefal limestones; (3) pelagic lime mudstones; (4) lime mudstones/calcarenites/coarse breccias. Calcarenite deposits of zone 4 exhibit sedimentary structures that are diagnostic of deposition under wave‐induced combined flow. In subzone 4a, both vertical and lateral transitions from lime mudstone/calcarenite to breccia indicate in situ brecciation under wave‐cyclic loading. Breccias were produced by heterogeneous liquefaction of material previously deposited on the sea floor. Deposits in subzone 4a record relatively long periods (>400 kyr) of sedimentation below wave base, alternating with periods of deposition under wave‐induced currents and periods of in situ deformation. In this zone, storm waves were attenuated by wave–sediment interaction, and wave energy was absorbed by the deformation of soft sediment. With reference to present‐day wave attenuation, water depths in this zone ranged between 50 and 80 m. Landwards of the attenuation zone, in zone 3, storm waves were reduced to fair‐weather wave heights. Storm wave base was not horizontal and became shallower landwards. As a consequence, water depth and wave energy were not linearly related. On a small area of the seaward edge of subzone 4a, cobbles were removed by traction currents and redeposited in subzone 4b. There, they formed a 100‐m‐thick wedge, which prograded over 3 km and was built up by the stacking of 5‐ to 20‐m‐thick cross‐stratified sets of coarse breccia. This wedge records the transport and redeposition of cobbles by a high‐velocity unidirectional component of a combined flow. The increase in flow velocity in a restricted area is proposed to result from flow concentration in a channel‐like structure of the downwelling in the gulf formed by the basin. In more distal subzone 4c, the hydrodynamic effect of wave‐induced currents was quasi‐permanent, and brecciation by wave–sediment interaction occurred only episodically. This indicates that, seawards of the attenuation zone, hydrodynamic storm wave base was deeper than mechanical storm wave base. Uppermost Jurassic carbonates were deposited and soft‐sediment deformed on a hurricane‐dominated ramp of very gentle slope and characterized by a zone of storm wave degeneration, located seawards of a zone of sedimentation below wave base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号