首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
— The mechanical behaviour of Bentheim sandstone, a homogeneous quartz-rich sandstone with porosity of 22.8%, was investigated by triaxial compression tests conducted on dry samples. At confining pressures up to 35 MPa, the failure mode was characterized by a typical brittle deformation regime, as the samples showed dilatancy and failed by strain softening and brittle faulting. Previous studies have shown that the mechanical behaviour and failure mode of brittle porous granular rocks are governed by the time-dependent growth of microcracks. We analyse this process using the “Pore Crack Model” based on fracture mechanics analysis. It is consistent with the microstructure of porous granular rocks since it considers the growth of axial cracks from cylindrical holes in two dimensions. These cracks grow when their stress intensity factors reach the subcritical crack growth limit. Interaction between neighbouring cracks is introduced by calculating the stress intensity factor as the sum of two terms: a component for an isolated crack and an interaction term computed using the method of successive approximations. It depends on crack length, pore radius, pore density, and applied stresses. The simulation of crack growth from cylindrical holes, associated with a failure criterion based on the coalescence of interacting cracks, is used to compare the theoretical stress at the onset of dilatancy and at macroscopic rupture to the experimental determined values. Our approach gives theoretical results in good agreement with experimental data when microstructural parameters consistent with observations are introduced.  相似文献   

3.
For many years, the study on ductile shearing zones mainly focuses on the strain analysis and the characteristics of microcosmic structure of felsic duc-tile shearing zones in deep layers (8—10 km). Discus-sions on the process of the development of small-type and mini-size ductile shearing zones have been re-ported in recent years[1,2]. 揇uctile deformations in brittle deformation擺3] and 揵rittle deformations in ductile deformation擺4] are rather a familiar phenome-non in nature. Researchin…  相似文献   

4.
An experimental investigation of the cyclic shear behaviour of steel box girders was conducted on one‐quarter scale models, comprising of two specimens with longitudinally unstiffened webs and one specimen with longitudinally stiffened webs. All the specimens exhibited ductile behaviour. The tests evidenced significant increases in the shear strength and energy dissipation capacity regarding the use of thicker webs and the provision of longitudinal web stiffeners. The web stiffeners also enhanced the stable hysteresis behaviour without substantial degradation in the energy dissipation due to pinching. The test results are compared with the shear behaviour simulated by inelastic large deformation analysis incorporated with a sophisticated constitutive model. The hysteresis behaviour, peak cyclic shear stresses, energy dissipation, and deformation shapes of the three specimens are satisfactorily predicted by the analysis. It is verified that the presented analytical method can be used precisely for further investigations of box girders in shear. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The traditional definition of lithospheric strength is derived from the differential stresses required to form brittle and ductile structures at a constant strain rate. This definition is based on dissipative brittle and ductile deformation and does not take into account the ability of the lithosphere to store elastic strain. Here we show the important role of elasticity in controlling the long-term behaviour of the lithosphere. This is particularly evident when describing deformation in a thermodynamic framework, which differentiates between stored (Helmholtz free energy) and dissipative (entropy) energy potentials. In our model calculations we stretch a continental lithosphere with a wide range of crustal thickness (30–60 km) and heat flow (50–80 mW/m2) at a constant velocity. We show that the Helmholtz free energy, which in our simple calculation describes the energy stored elastically, converges for all models within a 25% range, while the dissipated energy varies over an order of magnitude. This variation stems from complex patterns in the local strain distributions of the different models, which together operate to minimize the Helmholtz free energy. This energy minimization is a fundamental material behaviour of the lithosphere, which in our simple case is defined by its elastic properties. We conclude from this result that elasticity (more generally Helmholtz free energy) is an important regulator of the long-term geological strength of the lithosphere.  相似文献   

6.
The subduction of the Indian plate underneath Eurasian plate results not only in deformation and movement of the elastic upper crust, but also flow of the ductile lower crust in the high temperature and high pressure which drags the brittle upper crust to move at the same time. These two actions work together producing the present movement and deformation field in Tibetan plateau. The dynamics progress has been verified by GPS observation data. Therefore, in a two-dimension plain model, only the elastic deformation with the boundary action at the upper crust cannot explain the deformation well, the drag force acted on the base of upper crust by the drag of ductile flow of the lower crust also need to be considered. However, it's hard to figure out the magnitude and direction of the drag force. Thus, we established a two-dimension plain elastic finite element model, with the equivalent-body force approach to simulate the drag force. With the internal GPS observation data of Tibetan plateau as constraint condition, we calculated inversely the drag force of key nodes in the model with trial method, and the other nodes in the model with bilinear interpolation method. Finally, we got the drag forces(nodal forces, unit:N) caused by the difference flow of ductile lower crust dragging the brittle upper crust, which are distributed mainly in the region of 86°~100°E and 26°~32°N, the direction is east and south, and the maximum reaches to 1e8N; in some areas in the western part of the study region at 31°~36°N and 76°~80°E, the direction is west, and the maximum reaches to 1e7N. All these work provides a new thought for further research on long-term dynamic mechanism of surface deformation in Tibetan plateau and its surrounding area.  相似文献   

7.
The geometry of the most recent deformation in Alpine Corsica is discussed in terms of reactivation of thrusts as normal faults and crustal extension, following crustal thickening in late Cretaceous and Eocene time. A cross section interpreted in terms of obduction in previous works is shown here to be a result of ductile and brittle extension in late Oligocene and Early Miocene time. This new interpretation is based on field observations of the brittle and ductile structures and their relations to the metamorphic history in the Tenda-col de Teghime and Centuri regions, as well as additional observations in other parts of Alpine Corsica. The following geological features are observed: (1) The recent deformation was partly achieved during a top-to-the-east ductile shear close to the brittle-ductile transition and was later superimposed by brittle shear indicating a transition in time from ductile to brittle regime. (2) Extensional brittle structures in the Early Miocene Saint Florent limestone and sense of tilt are compatible with the eastward sense of shear observed in the ductile rocks. (3) The movement along major “thrust” contacts is associated with retrograde metamorphism which overprinted the early high-P-low-T paragenesis at less severe P-T conditions. They also bring tectonic units with contrasted metamorphic evolutions into close contacts. (4) There is a regional correlation between retromorphosis and recent deformation since the high-P-low-T paragenesis are better preserved in southern of Alpine Corsica where the recent deformation is less pervasive. (5) Highly non-coaxial deformation is localized along east-dipping shear zones close to brittle normal faults which bounds tilted Miocene basins; in between the geometry is more symmetric and the finite strain therefore more coaxial. (6) Late extensional brittle structures are observed at many sites in the metamorphic rocks. In the present paper we discussed these first-order observations and describe the geometry of crustal extension in Alpine Corsica. We analyze the progressive formation of a crustal-scale tilted block in Cap Corse and propose that the normal faults are localized by asymmetric boudinage of the crust. The asymmetry of this crustal-scale boudinage is controlled by the position of early thrust planes.  相似文献   

8.
Hideki  Mukoyoshi  Tetsuro  Hirono  Hidetoshi  Hara  Kotaro  Sekine  Noriyoshi  Tsuchiya  Arito  Sakaguchi  Wonn  Soh 《Island Arc》2009,18(2):333-351
To understand the characteristics of deformation of an out-of-sequence thrust (OST) and the style of fluid flow along it, we investigated the Nobeoka Tectonic Line, which has been interpreted as a deep OST (7–9 km), in the Shimanto accretionary complex, Southwest Japan. The shear zone in the footwall differs significantly in the along-strike direction not only in thickness, which varied from 100 to 300 m, but also in lithology and mineral vein development. These variations might reflect primarily differences in lithology; that is, the sandstone-dominant shear zone with a large amount of mineral veins precipitated in microcracks is relatively thick, whereas the shale-dominant shear zone with a small amount of veins and with textures indicating highly pressurized pore fluid, is thinner. By comparison with characteristics of a shallow OST (3–5 km), we conclude that the shallow OST has experienced repeated brittle failure with rapid slip and focused fluid flow whereas the deep OST has experienced both brittle and ductile deformation, followed by fluid flow of various styles, depending on the lithology.  相似文献   

9.
On the state of stress in the near-surface of the earth's crust   总被引:1,自引:0,他引:1  
Five models for near-surface crustal stresses induced by gravity and horizontal deformation and the influence of rock property contrasts, rock strength, and stress relaxation on these stresses are presented. Three of the models—the lateral constraint model, the model for crustal stresses caused by horizontal deformation, and the model for the effects of anisotropy—are linearly elastic. The other two models assume that crustal rocks are brittle or viscoelastic in order to account for the effects of rock strength and time on near-surface stresses. It is shown that the lateral constraint model is simply a special case of the combined gravity-and deformation-induced stress field when horizontal strains vanish and that the inclusion of the effect of rock anisotropy in the solution for crustal stresses caused by gravity and horizontal deformation broadens the range for predicted stresses. It is also shown that when stress levels in the crust reach the limits of brittle rock strength, these stresses become independent of strain rates and that stress relaxation in ductile crustal rocks subject to constant horizontal strain rates causes horizontal stresses to become independent of time in the long term.  相似文献   

10.
地壳岩石变形行为的转变及其温压条件   总被引:10,自引:4,他引:6       下载免费PDF全文
周永胜  何昌荣 《地震地质》2000,22(2):167-178
岩石脆延性转化 (brittle ductiletransition)和脆塑性转化 (brittle plastictransition)是不同的概念。脆延性转化指从岩石的局部变形破坏到宏观均匀流动变形的转化 ,它与宏观结构和力学行为的变化相关。脆塑性转化指脆性向晶体塑性变形的转化 ,它与力学行为和微观机制的变化相关。通过地壳中最主要的石英、长石的实验室和野外变形温压条件对比发现 ,达到相同的变形特征 ,在实验室和野外所需温压条件不同。建立变形机制图使解决这一矛盾成为可能。但受实验资料的限制 ,目前几种主要岩石的变形机制图还无法建立。因此 ,通过对实验与自然环境下变形特征及微观机制对比 ,找出两者温压条件的差别 ,就成为将实验研究结果外推解决实际地质问题的有效途径  相似文献   

11.
Electric resistance and emissions of hydrogen and radon isotopes of concrete (which is somewhat similar to fault-zone materials) under increasing uniaxial compression were continuously monitored to check whether they show any pre- and post-failure changes that may correspond to similar changes reported for earthquakes. The results show that all these parameters generally begin to increase when the applied stresses reach 20% to 90% of the corresponding failure stresses, probably due to the occurrence and growth of dilatant microcracks in the specimens. The prefailure changes have different patterns for different specimens, probably because of differences in spatial and temporal distributions of the microcracks. The resistance shows large co-failure increases, and the gas emissions show large post-failure increases. The post-failure increase of radon persists longer and stays at a higher level than that of hydrogen, suggesting a difference in the emission mechanisms for these two kinds of gases. The H2 increase may be mainly due to chemical reaction at the crack surfaces while they are fresh, whereas the Rn increases may be mainly the result of the increased emanation area of such surfaces. The results suggest that monitoring of resistivity and gas emissions may be useful for predicting earthquakes and failures of concrete structures.  相似文献   

12.
13.
It is well established that the upper—cooler—part of the crust is brittle, while deeper zones present ductile behaviour. In some cases, this brittle–ductile transition is a single seismic reflector with an associated reflection coefficient. We first develop a stress–strain relation including the effects of crust anisotropy, seismic attenuation and ductility in which deformation takes place by shear plastic flow. Viscoelastic anisotropy is based on the eigenstrain model and the Zener and Burgers mechanical models are used to model the effects of seismic attenuation, velocity dispersion, and steady-state creep flow, respectively. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. The P- and S-wave velocities decrease as depth and temperature increase due to the geothermal gradient, an effect which is more pronounced for shear waves. We then obtain the reflection and transmission coefficients of a single brittle–ductile interface and of a ductile thin layer. The PP scattering coefficient has a Brewster angle (a sign change) in both cases, and there is substantial PS conversion at intermediate angles. The PP coefficient is sensitive to the layer thickness, unlike the SS coefficient. Thick layers have a well-defined Brewster angle and show higher reflection amplitudes. Finally, we compute synthetic seismograms in a homogeneous medium as a function of temperature.  相似文献   

14.
Cataclasites and mylonites, and the brittle-ductile processes that produce them, were studied at exposures along the northern rim of the Grong culmination, a transverse basement antiform in the central Scandinavian Caledonides. The rock suite studied is composed of gneisses, mylonites, and cataclasites which have a granodioritic composition. The microstructure of the rocks appears to be the result of repeated alternations of brittle faulting (associated with hydrothermal mineral growth) and ductile deformation of the crystallization products. During brittle faulting K-feldspar-chlorite veins are formed, probably by incongruent pressure solution of micas. During plastic deformation of the rocks the mineral association is transformed to white mica and green biotite, according to the reaction. $$5 biotite + 3 white mica + 9 quartz + 4 H_2 O = 8 K - feldspar + 9 chlorite$$ During this reaction plagioclase is overgrown by mica and epidote, and K-feldspar crystals are replaced by albite. The reactions which involve K-feldspars are cyclic: K-feldspar that is generated in cracks tends to be removed by albitization during ductile deformation. It is concluded that the mylonites studied represent a movement zone in the Earth's crust in which seismic and aseismic slip alternated during a large part of the deformation history.  相似文献   

15.
The total rate of rock deformation results from competing deformation processes, including ductile and brittle mechanisms. Particular deformation styles arise from the dominance of certain mechanisms over others at different ambient conditions. Surprisingly, rates of deformation in naturally deformed rocks are found to cluster around two extremes, representing coseismic slip rates or viscous creep rates. Classical rock mechanics is traditionally used to interpret these instabilities. These approaches consider the principle of conservation of energy. We propose to go one step further and introduce a nonlinear far-from-equilibrium thermodynamic approach in which the central and explicit role of entropy controls instabilities. We also show how this quantity might be calculated for complex crustal systems. This approach provides strain-rate partitioning for natural deformation processes occurring at rates in the order of 10-3 to 10-9 s-1. We discuss these processes using examples of landslides and ice quakes or glacial surges. We will then illustrate how the mechanical mechanisms derived from these near-surface processes can be applied to deformation near the base of the seismogenic crust, especially to the phenomenon of slow earthquakes.  相似文献   

16.
The gravitational deformation of volcanoes is largely controlled by ductile layers of substrata. Using numerical finite-element modelling we investigate the role of ductile layer thickness and viscosity on such deformation. To characterise the deformation we introduce two dimensionless ratios; Πa (volcano radius/ductile layer thickness) and Πb (viscosity of ductile substratum/failure strength of volcano). We find that the volcanic edifice spreads laterally when underlain by thin ductile layers (Πa>1), while thicker ductile layers lead to inward flexure (Πa<1). The deformation style is related to the switch from predominantly horizontal to vertical flow in the ductile layer with increasing thickness (increasing Πa). Structures produced by lateral spreading include concentric thrust belts around the volcano base and radial normal faulting in the cone itself. In contrast, flexure on thick ductile substrata leads to concentric normal faults around the base and compression in the cone. In addition, we show that lower viscosities in the ductile layer (low Πb) lead to faster rates of movement, and also affect the deformation style. Considering a thin ductile layer, if viscosity is high compared to the failure strength of the volcano (high Πb) then deformation is coupled and spreading is produced. However, if the viscosity is low (low Πb) substratum is effectively decoupled from the volcano and extrudes from underneath it. In this latter case evidence is likely to be found for basement compression, but corresponding spreading features in the volcano will be absent, as the cone is subject to a compressive stress regime similar to that produced by flexure. At volcanoes where basement extrusion is operating, high volcano stresses and outward substratum movement may combine to produce catastrophic sector collapse. An analysis of deformation features at a volcano can provide information about the type of basement below it, a useful tool for remote sensing and planetary geology. Also, knowledge of substratum geology can be used to predict styles of deformation operating at volcanoes, where features have not yet become well developed, or are obscured.  相似文献   

17.
断裂带中的二相变形与地震成因讨论   总被引:1,自引:0,他引:1       下载免费PDF全文
本文主要以郯庐断裂带现代侵蚀面上五种不同类型的断裂构造和断层岩石为例,论述大断层带中岩石变形的二相性特征,包括机械意义的“韧性相”和“脆性相”应变组分在变形过程中的作用和意义。在此基础上探讨一种可能的地震成因方式  相似文献   

18.
The formation of landslide dams is often induced by earthquakes in mountainous areas.The failure of a landslide dam typically results in catastrophic flash floods or debris flows downstream.Significant attention has been given to the processes and mechanisms involved in the failure of individual landslide dams.However,the processes leading to domino failures of multiple landslide dams remain unclear.In this study,experimental tests were carried out to investigate the domino failure of landslide dams and the consequent enlargement of downstream debris flows.Different blockage conditions were considered,including complete blockage,partial blockage and erodible bed(no blockage).The mean velocity of the flow front was estimated by videos.Total stress transducers(TSTs)and Laser range finders(LRFs) were employed to measure the total stress and the depth of the flow front,respectively.Under a complete blockage pattern,a portion of the debris flow was trapped in front of each retained landslide dam before the latter collapsed completely.This was accompanied by a dramatic decrease in the mean velocity of the flow front.Conversely,under both partial blockage and erodible bed conditions,the mean velocity of the flow front increased gradually downward along the sloping channel.Domino failures of the landslide dams were triggered when a series of dams(complete blockage and partial blockage) were distributed along the flume.However,not all of these domino failures led to enlarged debris flows.The modes of dam failures have significant impacts on the enlargement of debris flows.Therefore,further research is necessary to understand the mechanisms of domino failures of landslide dams and their effects on the enlargement of debris flows.  相似文献   

19.
王宝生  李建国 《地震地质》1989,11(1):125-133
本文讨论了围压高达700MPa的条件下,发生实验变形的长石砂岩和石英砂岩的变形模式和变形机制。完整长石砂岩的脆延过渡带在200—400MPa,完整石英砂岩的脆延过渡带在250—350MPa,长石砂岩在600MPa围压以上出现高压脆化现象;两类切口岩石的稳滑粘滑过渡界限分别是200MPa和150MPa。不同的变形模式主要起因于程度不同的碎裂机制。文中还对矿物成分的影响、脆性行为之延伸等有关问题进行了简要讨论  相似文献   

20.
Instability investigation of cantilevered seacliffs   总被引:1,自引:0,他引:1  
Wave action is a fundamental mechanism in seacliff erosion, whereby wave undercutting creates an unstable cantilevered seacliff profile and can lead to large catastrophic cliff failures, thus threatening coastal infrastructure. This study investigated the instability of two such failures that occurred in Solana Beach, California, by combining terrestrial LIDAR scanning, cantilever beam theory and finite element analysis. Each landslide was detected by evaluating the surface change between subsequent high resolution digital terrain models derived from terrestrial LIDAR data. The dimensions of failed cantilever masses were determined using the surface change measurements and then incorporated into failure stress analysis. Superimposing stress distributions computed from elastic cantilever beam theory and finite element modeling provided a method to back‐calculate the maximum developed tensile and shear stresses along each failure plane. The results of the stress superposition revealed that the bending stresses caused by the cantilevered load contributed the majority of stress leading to collapse. Both shear and tensile failure modes were investigated as potential cliff failure mechanisms by using a comparison of the back‐calculated failure stresses to material strengths found in laboratory testing. Based on the results of this research, the tensile strength of the cliff material was exceeded at both locations, thus causing the cliffs to collapse in tension. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号