首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Channel geometry, flow and sedimentation in a meander bend of the River South Esk were studied from bankfull stages (January–February) to low water stages (May) in 1974. Bed topography varied little over the study period, showing a typical pool and ripple geometry. Variation of mean depth and velocity with discharge differed from section to section around the bend, due primarily to locally varying flow resistance with stage. The flow pattern for all stages was dominated by a single spiral over the point bar, with a development zone at the bend entrance. Deviation of bed shear stress from the mean flow direction was in general accord with theory, especially for high stages. The use of a uniform longitudinal water surface slope in the calculation of bed shear stress is not justified because of a complicated water surface topography, also such calculated shear may not represent effective bed shear on grains, as it accounts also for energy losses associated with secondary flows. Dunes covered much of the bar at high stages, with increasing proportions of ripples, sand ribbons and lower phase plane beds at low stages. Local flow resistance generally decreases from dunes, diminished and ripple-backed dunes, ripples, sand ribbons to plane beds, and bed forms are predicted quite well by the stream power-grain size scheme. Mean size, sorting and skewness of sediment over the bed changes little with stage. In general, size decreases, sorting improves and skewness changes from positive to negative from the talweg to the inner bank, and in the downstream direction. Allen's (1970a, b) force balance equation for moving bed load particles is supported for bankfull stage, with some reservations, and textural characteristics are explained by progressive sorting in the direction of sediment transport. Large-scale trough cross stratification (with some flat bedding) formed at high stage by dunes (and lower phase plane beds) dominates the point bar sediments. Alternations of fine-medium sand (often cross-laminated) and vegetation-rich layers result from periodic deposition on the grassed upper bar surface. Fining upwards sequences produced by lateral channel migration are modified by a coarsening upward subsequence in the upstream bar region where spiral flow is developing from the bend upstream.  相似文献   

2.
A survey of flows was conducted at a river confluence with coarse bed material. Bridges were installed on both tributaries, at the confluence and farther downstream on the receiving stream. At these stations, flow velocities were measured over a dense grid for seven conditions ranging from very low flows to the bankfull stage. Hydraulic geometry relationships established at all four stations revealed that flow is accelerated through the confluence as stage rises. At bankfull discharge, average velocity is 1.6 times higher at the confluence than on either tributary. Flow acceleration occurs at and above intermediate flow stages and is concentrated at the centre of a linear pool located at the confluence. The development of a zone of high shear stress is also associated with the cell of high flow velocity. Flow acceleration is dissipated at the exit of the pool where water surges over boulder ribs. The acceleration is not related to the development of flow separation zones as observed by Best and Reid (1984) for wide junction angles, nor is it explained by the reduction of the friction exerted by the banks. Acceleration is associated with the plan geometry of the confluence, with the lateral slopes which permit water to converge, and with a reduction in grain roughness at the confluence. Owing to the curvature of the tributary and to the acute angle of entry, relative power losses through the confluence decrease with increasing stages.  相似文献   

3.
Along the lower reaches of the Waipaoa River, New Zealand, cross‐section survey data indicate there was a 23 per cent decrease in bankfull width and a 22 per cent reduction in channel cross‐section area between 1948 and 2000, as the channel responded to increased inputs of fine (suspended) sediment following deforestation of the headwaters in late C19 and early C20. We determined the bankfull discharge within a ~39 km long reach by routing known discharges through the one‐dimensional MIKE 11 flow model. The model runs suggest that the bankfull discharge varies between ~800 and ~2300 m3 s?1 and that the average recurrence interval is 4 ± 2 years on the annual maximum series; by contrast, the effective flow (360 m3 s?1) is equaled or exceeded three times a year. The variability in bankfull discharge arises because the banks tend to be lower in places where flood flows are constricted than in reaches where overbank flow is dispersed over a wide area, and because scour has counteracted aggradation in some locations. There is no downstream variation in Shields stress, or in relative shear stress, within the study reach. Bankfull shear stress is, on average, five times greater than the shear stress required to initiate motion. At the effective discharge it is more than twice the threshold value. The effective discharge probably has more relevance than the bankfull discharge to the overall picture of sediment movement in the lower reaches of the Waipaoa River but, because width is constrained by the stability and resistance of the bank material to erosion during high flows that also scour the bed, the overall channel geometry is likely determined by discharges at or near bankfull. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Analysis of data for the White and Wabash Rivers suggests means of determining discharge at the natural bankfull stage, despite the effects of artificial embanking and clearance of channels. Bankfull discharge, and discharge at mean annual flood, undergo an orderly downstream increase in percentage duration of flow.  相似文献   

5.
三峡工程运行后,坝下游河道发生持续冲刷。本文研究了长江中游(955 km)不同河段沿程演变差异及其原因。总体而言,河床形态调整幅度自上而下减弱,这是因为在河床持续冲刷过程中,水流含沙量沿程恢复,故越往下游冲刷相对缓慢。平面形态方面,长江中游岸线崩退及洲滩变形的强度均呈沿程减弱趋势,且在荆江河段最为显著。断面形态方面,河床冲深幅度在宜枝下段>荆江河段>宜枝上段>城汉河段>汉湖河段。理论上距离三峡工程最近的河段冲刷应最为剧烈,但由于宜枝上段床沙粗化显著,限制了冲刷的进一步发展。过流能力方面,宜枝河段由于距洞庭湖较远,并未受到入汇顶托作用,故其平滩流量的调整基本由进口水沙条件控制,并随着河床冲深下切而增大;对于荆江、城汉和汉湖河段,河床冲刷虽显著,但支流或湖泊的入汇顶托对平滩流量产生的影响大于前者,故平滩流量总体随上下游水位差同步波动。  相似文献   

6.
Levee effects upon flood levels: an empirical assessment   总被引:1,自引:0,他引:1  
This study used stream gauge records to assess the impact of levees on flood levels, providing an empirical test of theoretical and model predictions of the effects on local flood response. Focusing upon a study area in Illinois and Iowa for which levee records were available, we identified 203 gauges with ≥ 50 years hydrological record, including 15 gauges where a levee was constructed during the period of record. At these sites, step‐change analysis utilizing regression residuals tested levee‐related stage changes and levels of significance and quantified the magnitudes of stage changes. Despite large differences in stream sizes, levee alignments, and degree of floodplain constriction, the post‐levee rating‐curve adjustments showed consistent signatures. For all the study sites, stages for below bankfull (non‐flood) conditions were unaffected by levee construction. For above bankfull (flood) conditions, stages at sites downstream of their associated levees also were statistically indistinguishable before versus after levee construction. However, at all sites upstream of levees or within leveed reaches, stages increased for above bankfull conditions. These increases were abrupt, statistically significant, and generally large in magnitude – ranging up to 2.3 m (Wabash River at Mt. Carmel, IL). Stage increases began when discharge increased above bankfull flow and generally increased in magnitude with discharge until the associated levee(s) were overtopped. Detailed site assessments and supplementary data available from some sites helped document the dominant mechanisms by which levees can increase flood levels. Levee construction reduces the area of the floodplain open to storage of flood waters and reduces the width of the floodplain open to conveyance of flood flow. Floodplain conveyance often is underestimated or ignored, but Acoustic Doppler Current Profiler (ADCP) measurements analysed here confirm previous studies that up to 70% or more of the total discharge during large floods (~3% chance flood) can move over the floodplain. Upstream of levees and levee‐related floodplain constriction, backwater effects reduce flow velocities relative to pre‐levee conditions and, thus, increase stages for a given discharge. The empirical results here confirm a variety of theoretical predictions of levee effects but suggest that many one‐dimensional model‐based predictions of levee‐related stage changes may underestimate actual levee impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a study on the characteristics of multiple time scales of bankfull discharge and its delayed response to changes of flow conditions using continuous wavelet analysis for data from selected hydrological stations in the Yellow River basin. Results showed that bankfull discharge series had one or two dominant time scales. For example, the Huayuankou station in the lower reach of the Yellow River had two dominant time scales of 19-20 years and 545 years. The dominant time scales of the bankfull discharge series were generally consistent with the dominant time scales of water discharge and sediment concentration series, indicating that the channel morphology inherits the characteristics of the hydrological system in terms of multiple time scales. In addition, the wavelet coefficients of the bankfull discharge series had a phase difference in relation to those of the sediment concentration series, with a delay time that varied from 3 to 16 years at different sites. This delay time or relaxation time is a result of the delayed response of bankfull discharge to flow conditions, which was significant for channel adjustments in response to changes of flow conditions. The findings of the multiple time scales and the delayed response are of importance for further study of channel morphology of fluvial systems.  相似文献   

8.
Rapids in river canyons are frequently found at sites where debris fans constrict flow along the channel. Whereas some fans may have persisted in the same location with unchanging geometry for centuries to millennia, others have changed in response to flow conditions imposed by successive floods. Such a change in boundary conditions may alter local flow hydraulics. This paper utilizes two-dimensional flow modelling to compare flood hydraulics along two alternative versions of an idealized reach of a river canyon: one with uniform width, gradient and cross-section, and a second perturbed by a prominent debris fan along the valley wall. The flow pattern along the reach with the fan is far more complex than the pattern along the uniform reach. Maximum velocity along the debris-fan reach is up to 50 per cent higher than along the uniform reach, maximum bed shear stress is up to three or four times higher, and an area of supercritical flow is predicted extending from the nose of the fan into the zone of flow expansion immediately downstream. Comparison of model output along longitudinal profiles of the two reaches indicates that the backwater effect of the fan extends several valley widths upstream. Predicted flows based on the same stage are as much as 190 to 230 per cent greater along the uniform reach than along the debris-fan reach. Reconstruction of palaeoflood discharge based on remnant flood marks in the vicinity of the fan would be sensitive to assumptions about boundary conditions that existed in the past; this effect relaxes over a longitudinal distance of several hundred metres. Furthermore there are significant cross-stream gradients that change slope and direction several times in the vicinity of the fan, calling into question the utility of one-dimensional step-backwater hydraulic models for predicting high-water marks in areas of complex valley morphology.  相似文献   

9.
Tian Zhou  Ted Endreny 《水文研究》2012,26(22):3378-3392
River restoration projects have installed j‐hook deflectors along the outer bank of meander bends to reduce hydraulic erosion, and in this study we use a computational fluid dynamics (CFD) model to document how these deflectors initiate changes in meander hydrodynamics. We validated the CFD with streamwise and cross‐channel bankfull velocities from a 193° meander bend flume (inlet at 0°) with a fixed point bar and pool equilibrium bed but no j‐hooks, and then used the CFD to simulate changes to flow initiated by bank‐attached boulder j‐hooks (1st attached at 70°, then a 2nd at 160°). At bankfull and half bankfull flow the j‐hooks flattened transverse water surface slopes, formed backwater pools upstream of the boulders, and steepened longitudinal water slopes across the boulders and in the conveyance region off the mid‐channel boulder tip. Streamwise velocity and mass transport jets upstream of the j‐hooks were stilled, mid‐channel jets were initiated in the conveyance region, eddies with a cross‐channel axis formed below boulders, and eddies with a vertical axis were shed into wake zones downstream of the point bar and outer bank boulders. At half bankfull depth conveyance region flow cut toward the outer bank downstream of the j‐hook boulders and the secondary circulation cells were reshaped. At bankfull depth the j‐hook at 160° was needed to redirect bank‐impinging flow sent by the upstream j‐hook. The hooked boulder tip of both j‐hooks funneled surface flow into mid‐channel plunging jets, which reversed the secondary circulation cells and initiated 1 to 3 counter rotating cells through the entire meander. The main outer bank collision zone centered at 50° without the j‐hook was moved by the j‐hook to within and just beyond the 70° j‐hook boulder region, which displaced other mass transport zones downstream. J‐hooks re‐organized water surface slopes, streamwise and cross‐channel velocities, and mass transport patterns, to move shear stress from the outer bank and into the conveyance and mid‐channel zones at bankfull flow. At half bankfull flows a patch of high shear re‐attached to the outer bank below the downstream j‐hook. J‐hook geometry and placement within natural meanders can be analyzed with CFD models to help restoration teams reach design goals and understand hydraulic impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Past research investigated the surpassing of mean velocity at riffle cross sections by that at pool cross sections for flows up to bankfull, termed ‘velocity reversals’, to understand one mechanism by which riffle–pool relief is maintained. This study reenvisioned the classic velocity reversal by documenting stage‐dependent changes to the locations of peak velocity without cross sections. Instead, the dynamics of peak velocity patches were considered for flows spanning 0.2 to 22 times bankfull discharge through the use of a high‐resolution DEM and two‐dimensional hydrodynamic modelling. A remarkable diversity in peak velocity patch behaviour was found across discharges, including gradual expansion and shifting as well as abrupt disappearance and emergence relative to the low‐flow patch locations. These behaviours blended together to varying degrees to produce many reversals in peak velocity across morphological units, but it took substantially higher than bankfull discharge for peak velocities to move from riffles and chutes to fast glides and pools. The discharges at which reversals occurred among morphological units were significantly higher for the valley‐confined reach than for the anastomosing reach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Delayed response means that channels cannot achieve a new equilibrium state immediately following disruption;the channel requires a response time or relaxation time to reach equilibrium.It follows that the morphological state of fluvial system represents the cumulative effects of all previous disturbances and environmental conditions.A unique feature of the delayed response model for bankfull discharge is that the model is capable of representing the cumulative effects of all previous flow conditions when applied to predict the path/trajectories of bankfull discharge in response to altered flow regimes.In this paper,the delayed response model was modified by readjusting the weight for the initial boundary conditions and introducing a variableβwith respect to time.The modified model was then applied to the bankfull discharge calculations for three selected river reaches of the Yellow River,with each reach having different geomorphic settings and constraints. Results indicated that the modified model can predict accurately the bankfull discharge variation in response to changes in flow discharge and sediment load conditions that have been dramatically altered in the past.Results also demonstrated the strong dependence of current bankfull discharge on the previous years’ flow conditions,with the relaxation time varied from 2 to 14 years,meaning that the bankfull discharge was not only affected by the flow discharge and sediment load in the current year,but also by those in previous 1 to 13 years.Furthermore,the relaxation time of bankfull discharge adjustment was inversely proportional to the long-term average suspended sediment concentrations,and this may be explained by fact that high sediment concentrations may have a high potential to perform geomorphic work and there is more sediment readily available to shape the channel boundary and geometry.  相似文献   

13.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

14.
15.
The transport of wood in rivers during floods is an important process that underlies differences in habitat and morphology between water courses and regions. Quantitative data are needed to properly address management objectives and balance wood budgets. In this study we use a streamside video camera to detect wood passage and measure quasi‐instantaneous rates of wood transport in the Ain River, France. The objectives are to verify the procedure, describe the relation between wood transport and discharge, and construct and validate a wood budget for the reach upstream of the camera. Verification of the procedure includes tests of detection frequency, wood velocity, and piece size. A log base two transformation is proposed to classify wood by piece length. It was found that a wood transport threshold occurs at approximately two thirds of the bankfull discharge. Wood transport follows a positive linear relation with discharge up to the bankfull discharge but is both more variable and less sensitive to discharge when the floodplain is inundated. Transport rates are approximately four times higher on the rising limb of the hydrograph than on the falling limb. Wood transport estimates from a three‐stage rating curve are two to 10 times higher than those from a wood budget using local and aerial surveys of upstream dynamics. Future work should address uncertainties related to wood diameter measurements, sampling length and frequency, and antecedent floods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper analyses the processes and mechanisms of a three‐stage channel adjustment over a cycle of the Yellow River mouth channel extension based on data comprising hydrologic measurements and channel geometric surveys. Rapid siltation in the mouth channel takes place in the young stage when the channel is being built by deposits and in the old stage when the channel cannot further adjust itself to keep sediment transport in equilibrium. It is disclosed that the bankfull width–depth ratio, bed material size and slope decrease in the young and mature stages but do not change in the old stage. The reduction of bankfull width–depth ratio and bed material size during the young and mature stages is found to be able to offset the effect of the slope reduction on sediment transport due to continuous mouth progradation. They reach their limits in old stage, and a constant slope is kept by unceasing sediment accumulation. The grain size composition of incoming sediment and the fining mechanism are responsible for the occurrence of lower limit of bed material size. The reason for the existence of a limit of bankfull cross‐sectional shape is that the large flows can fully transport the sediment load they are carrying, and siltation in the channel in the old stage takes place mainly in the low flows. It is suggested that the bankfull discharge plays an important role in shaping the channel but that the entire channel form is the product of both the large and low flows plus the effects of interaction between them. Channel pattern change shows a process from a braided pattern in the young stage to a straight pattern in the mature and old stages, and the straight channel becomes gradually sinuous. The occurrence and transformation of the channel patterns are supported by two planform predictors, but are also facilitated by some other conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Dominant discharge may be defined as that discharge which transports most bed sediment in a stream that is close to steady-state conditions. The concept is examined in relation to two single thread gravel-bedded streams. One stream is alluvial and free to adjust its geometry whilst in the other, channel capacity and form are partially constrained by cohesive till-banks and a heavily compacted bed. The total quantity of bedload and its calibre were measured for every flood over a six year period, so that the relationship between the grain-size of bedload and the most effective discharge could be examined in the context of thresholds for channel change. The dominant discharge concept was applicable to the alluvial stream in that the bankfull value is an effective discharge for maintaining channel capacity. The concept applied less well to the ‘non-alluvial’ stream. Although in both streams the bankfull value was exceeded for less than 0.34 per cent of the time, overbank flows are important in instigating channel change. It is only during overbank flows that the largest bed material is entrained in quantity. For within-channel flows a threshold separates flows which winnow fine matrix from those which entrain the finer bed gravels. This threshold occurred at 60 per cent bankfull. It was concluded that the dominant discharge concept can be applied to streams close to steady-state which are alluvial, competent, and free to adjust their boundaries. An important proviso is that two channel-stability domains can be recognized. These domains represent channel maintenance and channel adjustment and are defined by intrinsic thresholds in the bed material entrainment function.  相似文献   

18.
We consider the evolution of the hydraulic geometry of sand-bed meandering rivers. We study the difference between the timescale of longitudinal river profile adjustment and that of channel width and depth adjustment. We also study the effect of hydrological regime alteration on the evolution of bankfull channel geometry. To achieve this, a previously developed model for the spatiotemporal co-evolution of bankfull channel characteristics, including bankfull discharge, bankfull width, bankfull depth and down-channel bed slope, is used. In our modelling framework, flow variability is considered in terms of a specified flow duration curve. Taking advantage of this unique feature, we identify the flow range responsible for long-term bankfull channel change within the specified flow duration curve. That is, the relative importance of extremely high short-duration flows compared to moderately high longer duration flows is examined. The Minnesota River, MN, USA, an actively meandering sand-bed stream, is selected for a case study. The longitudinal profile of the study reach has been in adjustment toward equilibrium since the end of the last glaciation, while its bankfull cross-section is rapidly widening due to hydrological regime change in the last several decades. We use the model to demonstrate that the timescale for longitudinal channel profile adjustment is much greater than the timescale for cross-sectional profile adjustment due to a lateral channel shift. We also show that hydrological regime shift is responsible for the recent rapid widening of the Minnesota River. Our analysis suggests that increases in the 5–25% exceedance flows play a more significant role in recent bankfull channel enlargement of the Minnesota River than increase in either the 0.1% exceedance flow or the 90% exceedance flow. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
《国际泥沙研究》2023,38(5):662-672
The evaluation of the trend of flood stage changes in alluvial rivers downstream of dams is important for flood management. However, the flood stage associated with a given discharge generally is nonstationary in river reaches with multiple tributaries. This is not only because of the dam-induced shifting in the cross-sectional area and/or channel roughness but also because of the backwater induced by high flows from the tributaries. To determine the total trend of the flood stage and quantify the separate contributions of hydrological and geomorphic effects, the current study proposed a framework approach consisting of hydrological analysis and multiscenario numerical modeling. By this means, the trend in the flood stage could be distinguished from the stage oscillation driven by varying factors, including extreme hydrologic events. The effects of chronic changes, including channel incision and flow resistance increase, also were quantitatively separated. This framework was applied to the Chenglingji–Datong (CD) reach downstream of the Three Gorges Dam (TGD) in the Yangtze River, China. The results indicated that the effect of the roughness increase counterbalanced the effect of channel incision when the flow discharge was beyond the bankfull level. The backwater effect induced by tributary inflow was the major cause of the flood stage rise in recent years. The method presented in the current study provides a useful tool for managers and engineers to obtain better insight into the driving mechanisms of flood stage changes in river reaches that are downstream of dams. These findings indicate that the flood stage may not decline or may even occasionally increase, although the cross-sectional area was enlarged by channel incision. Special attention should be given to the flood risk situation in the study reach after the TGD began operation.  相似文献   

20.
The links between flood frequency and rates of channel migration are poorly defined in the ephemeral rivers typical of arid regions. Exploring these links in desert fluvial landscapes would augment our understanding of watershed biogeochemistry and river morphogenesis on early Earth (i.e. prior to the greening of landmasses). Accordingly, we analyse the Mojave River (California), one of the largest watercourses in the Great Basin of the western United States. We integrate discharge records with channel-migration rates derived from dynamic time-warping analysis and chronologically calibrated subsidence rates, thereby constraining the river's formative conditions. Our results reveal a slight downstream decrease in bankfull discharge on the Mojave River, rather than the downstream increase typically exhibited by perennial streams. Yet, the number of days per year during which the channel experiences bankfull or higher stages is roughly maintained along the river's length. Analysis of historical peak flood records suggests that the incidence of channel-formative events responds to modulation in watershed runoff due to the precipitation in the river's headwaters over decades to centuries. Our integrated analysis finally suggests that, while maintaining hydraulic geometries that are fully comparable with many other rivers worldwide, ephemeral desert rivers akin to the Mojave are capable of generating a surprisingly wide range of depositional geometries in the stratigraphic record. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号