首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To simplify the consideration of the soil-structure interaction (SSI) effects, a single degree-of-freedom (SDOF) replacement oscillator has been successfully utilized to represent an SSI system with SDOF structural model. In the present paper, this approximation is first extended to an equivalent fixed-base model with modified system parameters. Based on this generalization, a methodology is then proposed to determine the equivalent fixed-base models of a general multi degree-of-freedom SSI system using simple system identification techniques in the frequency domain. Various fixed-base models are formulated and their accuracy is compared for a five-story shear building resting on soft soil. It is shown that the actual SSI system can be accurately represented with an appropriate fixed-base model.  相似文献   

2.
This study investigates the effect of soil–structure interaction (SSI) on the response of base-isolated buildings. The equations of motion are formulated in the frequency domain, assuming frequency-independent soil stiffness and damping constants. An equivalent fixed-base system is developed that accounts for soil compliance and damping characteristics of the base-isolated building. Closed-form expressions are derived, followed by a thorough parametric study involving the pertinent system parameters. For preliminary design, the methodology can serve as a means to assess effective use of base isolation on building structures accounting for SSI. This study concludes that the effects of SSI are more pronounced on the modal properties of the system, especially for the case of squat and stiff base-isolated structures.  相似文献   

3.
In this study, attempts are made to investigate the effects of inertial soil–structure interaction (SSI) on damping coefficients subjected to pulse-like near-fault ground motions. To this end, a suit of 91 pulse-like near-fault ground motions is adopted. The soil and superstructure are idealized employing cone model and single-degree-of-freedom (SDOF) oscillator, respectively. The results demonstrate that soil flexibility reduces and amplifies the damping coefficients for structural viscous damping levels higher and lower than 5%, respectively. The coefficients reach one for both acceleration and displacement responses in cases of dominant SSI effects. The effect of structure dimensions on damping confidents are found insignificant. Moreover, damping coefficients of displacement responses are higher than those of acceleration responses for both fixed-base and flexible-base systems. Evaluation of damping correction factor introduced by FEMA 440 shows its inefficiency to predict acceleration response of soil–structure systems under pulse-like near-fault ground motions. Soil flexibility makes the damping correction factor of moderate earthquakes more pronounced and a distinctive peak value is reported for cases with dominant SSI effects.  相似文献   

4.
This paper is devoted to investigate the effects of near‐fault ground motions on the seismic responses of nonlinear MDOF structures considering soil‐structure interaction (SSI). Attempts are made to take into account the effects of different frequency‐content components of near‐fault records including pulse‐type (PT) and high‐frequency (HF) components via adopting an ensemble of 54 near‐fault ground motions. A deep sensitivity analysis is implemented based on the main parameters of the soil‐structure system. The soil is simulated based on the Cone model concept, and the superstructure is idealized as a nonlinear shear building. The results elucidate that SSI has approximately increasing and mitigating effects on structural responses to the PT and HF components, respectively. Also, a threshold period exists above which the HF component governs the structural responses. As the fundamental period of the structure becomes shorter and structural target ductility reduces, the contribution of the HF component to the structural responses increases, elaborately. Soil flexibility makes the threshold period increase, and the effect of the PT component becomes more significant than the HF one. In the case of soil‐structure system, slenderizing the structure also increases this threshold period and causes the PT component to be dominant. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, a novel and enhanced soil–structure model is developed adopting the direct analysis method using FLAC 2D software to simulate the complex dynamic soil–structure interaction and treat the behaviour of both soil and structure with equal rigour simultaneously. To have a better judgment on the inelastic structural response, three types of mid-rise moment resisting building frames, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600 m/s, representing soil classes Ce, De and Ee, according to Australian Standards. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil–structure interaction) and (ii) flexible-base (considering soil–structure interaction). The results of the analyses in terms of structural displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that considering dynamic soil–structure interaction effects in seismic design of moment resisting building frames resting on soil classes De and Ee is essential.  相似文献   

6.
In this study, it is intended to determine the effects of soil–structure interaction (SSI) and spatially varying ground motion on the dynamic characteristics of cable-stayed bridges. For this purpose, ground motion time histories are simulated for spatially varying ground motions, depending on its components of incoherence, wave-passage and site-response effects. The substructure method, which partitions the total soil–structure system into the structural system and the soil system, is used to treat the soil–structure interaction problem. To emphasize the relative importance of the spatial variability effects of earthquake ground motion, bridge responses are determined for the fixed base bridge model, which neglects the soil–structure interaction (no SSI) and for the bridge model including the soil–structure interaction (SSI). This parametric study concerning the relative importance of the soil–structure interaction and spatially varying ground motion shows that these effects should be considered in the dynamic analyses of cable-stayed bridges.  相似文献   

7.
To simplify the analysis of soil–structure interaction systems, various fixed-base models have recently been proposed by the author to efficiently represent the SSI system and have been shown to have good accuracy. However, the modified mass and damping matrices of these models do not hold the properties of symmetry and orthogonality. Difficulties may consequently be induced for these models in applying conventional computer codes to carry out dynamic analysis. In the present paper, this problem is further explored to establish a fixed-base model possessing classical normal modes. Formulated in the modal space, this fixed-base model is constructed through applying an iteration algorithm to incorporate the Gram–Schmidt orthogonalization process. The convergent real orthogonal mode vectors, natural frequencies, and modal damping ratios are directly determined for this model. It is demonstrated with a numerical example that this new fixed-base model retains excellent accuracy. Accordingly, the complicated SSI systems can be directly analyzed using conventional computer codes for structural dynamics with the fixed-base model developed in this study.  相似文献   

8.
In this paper, the effects of pulse period associated with near‐field ground motions on the seismic demands of soil–MDOF structure systems are investigated by using mathematical pulse models. Three non‐dimensional parameters are employed as the crucial parameters, which govern the responses of soil–structure systems: (1) non‐dimensional frequency as the structure‐to‐soil stiffness ratio; (2) aspect ratio of the superstructure; and (3) structural target ductility ratio. The soil beneath the superstructure is simulated on the basis of the Cone model concept. The superstructure is modeled as a nonlinear shear building. Interstory drift ratio is selected as the main engineering demand parameter for soil–structure systems. It is demonstrated that the contribution of higher modes to the response of soil–structure system depends on the pulse‐to‐interacting system period ratio instead of pulse‐to‐fixed‐base structure period ratio. Furthermore, results of the MDOF superstructures demonstrate that increasing structural target ductility ratio results in the first‐mode domination for both fixed‐base structure and soil–structure system. Additionally, increasing non‐dimensional frequency and aspect ratio of the superstructure respectively decrease and increase the structural responses. Moreover, comparison of the equivalent soil–SDOF structure system and the soil–MDOF structure system elucidates that higher‐mode effects are more significant, when soil–structure interaction is taken into account. In general, the effects of fling step and forward directivity pulses on activating higher modes of the superstructure are more sever in soil–structure systems, and in addition, the influences of forward directivity pulses are more considerable than fling step ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper analyzes the soil–structure interaction (SSI) effect on vibration control effectiveness of active tendon systems for an irregular building, modeled as a torsionally coupled (TC) structure, subjected to base excitations such as those induced by earthquakes. An H direct output feedback control algorithm through minimizing the entropy, a performance index measuring the trade-off between H optimality and H2 optimality, is implemented to reduce the seismic responses of TC structures. The control forces are calculated directly from the multiplication of the output measurements by a pre-calculated frequency-independent and time-invariant feedback gain matrix, which is obtained based on a fixed-base model. Numerical simulation results show that the required numbers of sensors, controllers and their installation locations depend highly on the degree of floor eccentricity. For a large two-way eccentric building, a one-way active tendon system placed in one of two frames farthest away from the center of resistance (C.R.) can reduce both translational and torsional responses. The SSI effect is governed by the slenderness ratio of superstructure and by the stiffness ratio of soil to superstructure. When the SSI effect is significant, the proposed control system can still reduce the structural responses, however, with less effectiveness than that of the assumed fixed-base model. Therefore, the TC and SSI effects should be considered in the design of active control devices, especially for high-rise buildings located on soft site.  相似文献   

10.
An innovative approximate method is presented to consider the plan asymmetry, nonlinear structural behaviour and soil-structure interaction (SSI) effects simultaneously. The proposed method so-called Flexible base 2DMPA (F2MPA) is an extension of 2 degrees of freedom modal pushover analysis (2DMPA) approach to consider foundation flexibility in seismic response analysis of plan asymmetric structures which itself were developed based on Uncoupled Modal Response History Analysis method for inelastic fixed-base asymmetric structures. In F2MPA for each mode shape using 2DMPA procedure, the elastic and inelastic properties of 2DOF modal systems corresponding to the fixed-base structure are initially derived. Then in each time step, displacements and inelastic restoring forces of the superstructure are computed from modal equations of the flexibly-supported structure. In each time step, the nonlinear secant stiffness matrix corresponding to the n-th MDOF modal equations of soil-structure system is updated using the corresponding modal 2DOF system of fixed-base structure. To update the transformed modal stiffness matrix of the SSI system, this matrix is partitioned and it is assumed that the non-linear variation of the superstructure can be estimated from the variation of modal stiffness matrix of the fixed-base structure. Accuracy of the proposed method was verified on an 8-story asymmetric-plan building under different seismic excitations. The results obtained from F2MPA method were compared with those obtained by nonlinear response history analysis of the asymmetric soil-structure system as a reference response. It was shown that the proposed approach could predict the results of the nonlinear time history analysis with a good accuracy. The main advantage of F2MPA is that this method is much less time-consuming and useful for the practical aims such as massive analysis of a nonlinear structure under different records with multiple intensity levels.  相似文献   

11.
The investigation reported in this paper studies the effects of soil–structure interaction (SSI) on the seismic response and damage of building–foundation systems. A simple structural model is used for conducting a parametric study using a typical record obtained in the soft soil area of Mexico City during the 1985 earthquake. Peak response parameters chosen for this study were the roof displacement relative to the base and the hysteretic energy dissipated by the simple structural model. A damage parameter is also evaluated for investigating the SSI effects on the seismic damage of buildings. The results indicate that in most cases of inelastic response, SSI effects can be evaluated considering the rigid‐base case and the SSI period. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Performance based design of structure requires a reasonably accurate prediction of displacement or ductility demand. Generally, displacement demand of structure is estimated assuming fixity at base and considering base motion in one direction. In reality, ground motions occur in two orthogonal directions simultaneously resulting in bidirectional interaction in inelastic range, and soil–structure interaction (SSI) may change structural response too. Present study is an attempt to develop insight on the influence of bi-directional interaction and soil–pile raft–structure interaction for predicting the inelastic response of soil–pile raft–structure system in a more reasonably accurate manner. A recently developed hysteresis model capable to simulate biaxial interaction between deformations in two principal directions of any structural member under two orthogonal components of ground motion has been used. This study primarily shows that a considerable change may occur in inelastic demand of structures due to the combined effect of such phenomena.  相似文献   

13.
A stochastic approach has been formulated for the linear analysis of suspension bridges subjected to earthquake excitations. The transfer functions of various responses have been formulated while including the effects of dynamic Soil–Structure Interaction (SSI) via the use of the fixed-base modes of the structure. The excitation has been characterized by the ‘equivalent stationary’ processes corresponding to the free-field motions at each support and by an assumed coherency function between these motions. The proposed formulation considers the non-stationarity in the structural response due to sudden application of excitation by considering (i) the time-dependent frequency response functions, and (ii) the order statistics formulation for the peak factors in evolutionary response processes. The formulation has been illustrated by analysing the seismic response of the Golden Gate Bridge at San Francisco for two example excitations conforming to USNRC-specified design spectra. The significance of various governing parameters on the dynamic soil–structure interaction effects on the seismic response of suspension bridges has also been studied. It has been found that the contribution of the vertical component of ground motion to the bridge response increases with increasing soil compliance. Also, the extent to which the spatial variation of ground motion affects the bridge response depends on how significant the SSI effects are. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

14.
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings.The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades.However,no investigation has yet been carried out for the case of soil-structure systems.In the present study,through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns,including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils,the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated.The results of this study show that depending on the level of inelasticity,soil flexibility and number of degrees-of-freedoms(DOFs),structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems.It is also found that at high levels of inelasticity,the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.  相似文献   

15.
The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soilstructure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify theSSI effect on the seismic performance ofTMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.  相似文献   

16.
17.
As the Iranian seismic code does not address the soil–structure interaction (SSI) explicitly, the effects of SSI on RC-MRFs are studied using the direct method. Four types of structures on three types of soils, with and without the soil interaction, are modeled and subjected to different earthquake records. The results led to a criterion indicating that considering SSI in seismic design, for buildings higher than three and seven stories on soil with Vs<175 m/s and 175<Vs<375 m/s, respectively, is essential. A simplified procedure has been presented, on the basis that lateral displacement increments could be applied to the fixed-base models using simple factors.  相似文献   

18.
In this study, simplified numerical models are developed to analyze the soil-structure interaction (SSI) effect on frame structures equipped with viscoelastic dampers (VEDs) based on pile group foundation. First, a single degree-of-freedom (SDOF) oscillator is successfully utilized to replace the SDOF energy dissipated structure considering the SSI effect. The equivalent period and damping ratio of the system are obtained through analogical analysis using the frequency transfer function with adoption of the modal strain energy (MSE) technique. A parametric analysis is carried out to study the SSI effect on the performance of VEDs. Then the equilibrium equations of the multi degree-of-freedom (MDOF) structure with VEDs considering SSI effect are established in the frequency domain. Based on the assumption that the superstructure of the coupled system possesses the classical normal mode, the MDOF superstructure is decoupled to a set of individual SDOF systems resting on a rigid foundation with adoption of the MSE technique through formula derivation. Numerical results demonstrate that the proposed methods have the advantage of reducing computational cost, however, retaining the satisfactory accuracy. The numerical method proposed herein can provide a fast evaluation of the efficiency of VEDs considering the SSI effect.  相似文献   

19.
This paper utilizes and expands on existing coupled BEM–FEM (finite element method) methods for the investigation of the effects of soil structure interaction (SSI) on both an un-retrofitted and seismically isolated typical bridge structure. A simple numerical model of the bridge and surrounding soil is formulated and excited by an earthquake excitation. Utilizing Newmark's β FEM solution method along with the closed form B-spline BIRF method, the structural damped period, composite damping ratio, pier relative displacement, and base shear demand are monitored. From these results, the effects of SSI on this structure are identified. Additionally, the importance of the relative rigidity between the soil-foundation system and the bridge structure is also investigated. The results of the studies indicate that the response of the complete structure system considered is affected by the inclusion of SSI effects. Furthermore, the efficiency of the isolation measures designed using fixed base conditions is decreased by considering SSI over a certain relative rigidity range that is quantified using the structure to soil-foundation natural frequency ratio.  相似文献   

20.
Inelastic displacement ratios (IDRs) of nonlinear soil–structure interaction (SSI) systems located at sites with cohesive soils are investigated in this study. To capture the effects of inelastic cyclic behavior of the supporting soil, the Beam on Nonlinear Winkler Foundation (BNWF) model is used. The superstructure is modeled using an inelastic single-degree-of-freedom (SDOF) system model. Nonlinear SSI systems representing various combinations of unconfined compressive strengths and shear wave velocities are considered in the analysis. A set of strong ground motions recorded at sites with soft to stiff soils is used for considering the record-to-record variability of IDRs. It is observed that IDRs for nonlinear SSI systems are sensitive to the strength and the stiffness properties of both the soil and the structure. For the case of SSI systems on the top of cohesive soils, the compressive strength of the soil has a significant impact on the IDRs, which cannot be captured by considering only the shear wave velocity of the soil. Based on the results of nonlinear time-history analysis, a new equation is proposed for estimating the mean and the dispersion of IDRs of SSI systems depending on the characteristic properties of the supporting soil, dimensions of the foundation, and properties of the superstructure. A probabilistic framework is presented for the performance-based seismic design of SSI systems located at sites with cohesive soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号