首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary A general circulation model is used to study the response of the atmosphere to an idealised sea surface temperature (SST) anomaly pattern (warm throughout the southern midlatitudes, cool in the tropics) in the South Indian Ocean region. The anomaly imposed on monthly SST climatology captures the essence of patterns observed in the South Indian Ocean during both ENSO events and multidecadal epochs, and facilitates diagnosis of the model response. A previous study with this anomaly imposed in the model examined differences in the response between that on the seasonal scale (favours enhancement of the original SST anomaly) and that on the decadal scale (favours damping of the anomaly). The current study extends that work firstly by comparing the response on the intraseasonal, seasonal and interannual scales, and secondly, by assessing the changes in the circulation and rainfall over the adjoining African landmass.It is found that the atmospheric response is favourable for enhancement of the original SST anomaly on scales up to, and including, annual. However, as the scale becomes interannual (i.e., 15–21 months after imposition of the anomaly), the model response suggests that damping of the original SST anomaly becomes likely. Compared to the shorter scale response, the perturbation pressure and wind distribution on the interannual scale is shifted poleward, and is more reminiscent of the decadal response. Winds are now stronger over the warm anomaly in the southern midlatitudes suggesting enhanced surface fluxes, upper ocean mixing, and consequently, a damping of the anomaly.Examination of the circulation and rainfall patterns indicates that there are significant anomalies over large parts of southern Africa during the spring, summer and autumn seasons for both short (intraseasonal to interannual) and decadal scales. It appears that rainfall anomalies are associated with changes in the advection of moist tropical air from the Indian Ocean and its related convergence over southern Africa. Over eastern equatorial Africa, the austral autumn season (the main wet season) showed rainfall increases on all time scales, while parts of central to eastern subtropical southern Africa were dry. The signals during summer were more varied. Spring showed generally dry conditions over the eastern half of southern Africa on both short and decadal time scales, with wet areas confined to the west. In all cases, the magnitude of the rainfall anomalies accumulated over a 90 day season were of the order of 90–180 mm, and therefore represent a significant fraction of the annual total of many areas. It appears that relatively modest SST anomalies in the South Indian Ocean can lead to sizeable rainfall anomalies in the model. Although precipitation in general circulation models tends to be less accurately simulated than many other variables, the model results, together with previous observational work, emphasize the need for ongoing monitoring of SST in this region.With 14 Figures  相似文献   

2.
主要讨论了西太平洋暖池热力状况年际变化相联系的10-25天季内振荡的特征。在西太平洋暖池处于“暖”夏季和“冷”夏季两种状态时,10-25天季内振荡呈现出明显差异,在所讨论的亚洲-太平洋大部分区域,“暖”夏季时对流活动的10-25天季内变化和“冷”夏季时对流活动的10-25天季内变化表现出显的反相关关系,表明对流活动的年际变化与季内变化的相互作用。当西太平洋暖池上空对流活动的10-25天季内振荡处于最强和最弱阶段时,低层大气表现为Gill型环流响应,即气旋式(反气旋式)环流出现在最强(最弱)对流活动的西北,这种对流和环流关系在西太平洋暖池出于“暖”夏季和“冷”夏季两种状态时均成立。而当西太平洋暖池上空对流活动的10-25天季内振荡处于除此以外其他阶段时,就看不到Gill型环流响应。  相似文献   

3.
薛峰  段欣妤  苏同华 《大气科学》2018,42(6):1407-1420
本文对比分析了1998年和2016年这两个强El Ni?o衰减年东亚夏季风的季节内变化。结果表明,在6~7月期间,由于热带印度洋海温偏高、对流偏强,造成西太平洋暖池对流偏弱,西太平洋副热带高压(副高)偏西偏强,长江流域降水偏多,华南偏少,东亚夏季风异常具有典型的El Ni?o衰减年特征。但两年的8月份有很大差异,虽然1998年8月与6~7月相似,但2016年8月份则完全不同。受乌拉尔地区异常反气旋的影响,源自西伯利亚东部的北风异常穿越东亚并直抵暖池地区,造成副高分裂并减弱东退,同时激发暖池对流发展,而对流的发展则进一步促使副高减弱。因此,2016年8月东亚夏季风异常与1998年8月相反,中国北方夏季降水异常也呈现很大差异。另外,1998年热带大西洋偏暖,并通过热带环流变化影响到东亚夏季风异常,其强迫作用与热带印度洋类似。而2016年大西洋海温异常较弱,对东亚夏季风影响也较弱。因此,El Ni?o对东亚夏季风的影响不仅与其强度有关,还与El Ni?o衰减之后造成的印度洋和大西洋海温异常有关。本文的分析结果表明,即使在强El Ni?o衰减年夏季,由于El Ni?o之间的个性差异以及其他因子的影响,东亚夏季风季节内变化仍然能呈现出显著差异,特别是在8月份。因此,在预测东亚夏季风异常时,宜将6~7月和8月分别考虑。此外,为进一步提高东亚夏季风预测水平,除传统的季度预测外,还需要进一步加强季节内尺度的预测。  相似文献   

4.
利用1951~2020年中国观测站气温资料、NCEP/NCAR再分析资料和统计方法,分析了不同年代际时间尺度背景下我国冬季气温的季节内变化特征及相联系的大气环流异常。结果表明,1986年前、后为两个年代际时间尺度阶段,各阶段内前冬(12月)与后冬(1~2月)气温异常反位相年的比例均高于同位相年。1986年之前,季节内的优势空间模态为前冬全国冷(暖)转为后冬南方暖(冷)的可能性大,即南方地区季节内变率大;而1986年之后的优势空间模态为前冬北方冷(暖)转为后冬全国明显暖(冷)的可能性大,即北方地区季节内变率大。冬季气温的季节内变化显著受到冬季风系统关键环流季节内变化的影响。对应优势模态的正异常年份,1986年之前,欧亚中高纬地区对流层环流异常信号从前冬到后冬显著性减弱,其中西北太平洋地区对流层中高层的环流调整更明显,副热带高度场增强,热带东风急流北扩,前冬到后冬的环流调整有利于前冬全国大范围偏冷而后冬我国南方地区气温升高,造成南方地区季节内反位相变率增大。1986年之后,欧亚高中低纬地区的环流异常从前冬到后冬显著性增强,欧亚中高纬度环流发生较大调整,而低纬度的环流变化不大,北方地区前冬冷到后冬全国明显转暖,造成北方地区季节内反位相变率大。即副热带环流和中高纬度环流分别在两个年代际尺度阶段南方和北方的冬季气温季节内变率中起到主导作用。  相似文献   

5.
The purpose of this paper is to evaluate the tropical Pacific wind stress anomalies produccd on monthly to interannual time scales by the complex general circulation model (GCM) of the center for Ocean Land Atmosphere Interactions (C.O.L.A.) at low (R15) resolutions. The model is integraed using observed sea surface temperature (SST) for ten years 1979 through 1988. The model simulates generally realistic wind stress anomaly (WSA). The model-generated data set of WSA was used to force the Zebiax Cane ocean model (ZCOM) for ten years. The modeled (SST) anomalies were compared to the observed SST anomalies. The ZCOM simulation shows realistic 1982/83 and 1986/87 warm episodes along the equator, but could produce less realistic 1984/85 and 1988/89 cold episodes along the equator due to lack of wind stress forcing in the mean model. Time series of the NINO3 index (measuring the SST anomaly in the mid-eastern Pacific) is realistic for the ZCOM simulation.  相似文献   

6.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

7.
Summer Sahel-ENSO teleconnection and decadal time scale SST variations   总被引:5,自引:0,他引:5  
The correlation between Sahel rainfall and El Niño–Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years. We propose that the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale sea surface temperature (SST) background. The main modes of SST variability have been extracted through a principal component analysis with Varimax rotation. The correlations between a July-September Sahel rainfall index and these SST modes have been computed on a 20-year running window between 1945 and 1993. The correlations with the interannual ENSO-SST mode are negative, not significant in the 1960s during the transition period from the wet climate phasis to the long-running drought in the Sahel, but then were significant since 1976. During the former period, the correlations between the Sahel rainfall index and the other SST modes (expressing mostly on quasi and multi-decadal scales) are the highest, in particular correlations with the tropical Atlantic “dipole”. Correlations between Sahel and Guinea Coast rainfall are also significantly negative. After 1970, the Sahel-Guinea Coast rainfall correlations are no longer significant, and the ENSO-SST mode becomes the only one significantly correlated with Sahel rainfall, especially due to the impact of warm events. The partial correlations between the ENSO-SST mode and the Sahel rainfall index, when the influence of the other SST modes are eliminated, are significant over all the 20-year running periods between 1945 and 1993, suggesting that this summer teleconnection could be modulated by the decadal scale SST background. The NCEP/NCAR reanalyses reproduce accurately the interannual variability of the atmospheric circulation after 1968. In particular a regional West African Monsoon Index (WAMI), combining wind speed anomalies at 925 and 200?hPa, is highly correlated with the July-September Sahel rainfall index. A warm ENSO event is associated both with an eastward mean sea level pressure gradient between the eastern tropical Pacific and the tropical Atlantic and with a northward pressure gradient along the western coast of West Africa. This pattern leads to enhanced trade winds over the tropical Atlantic and to weaker moisture advection over West Africa, consistent with a weaker monsoon system strength and a weaker Southern Hemisphere Hadley circulation. The NCEP/NCAR reanalyses do not reproduce accurately the decadal variability of the atmospheric circulation over West Africa because of artifical biases. Therefore the impact of the decadal scale pattern of the atmospheric circulation has been investigated with atmospheric general circulation model (AGCM) sensitivity experiments, by forcing the ARPEGE-Climat model with different combinations of an El Niño-like SST pattern with the pattern of the main mode of decadal scale SST variability where the hightest weights are located in the Pacific and Indian basins. AGCM outputs show that the decadal scale SST variations weakly affect Sahel rainfall variability but that they do induce an indirect effect on Sahel rainfall by enhancing the impact of the warm ENSO phases after 1980, through an increase in the fill-in of the monsoon trough and a moisture advection deficit over West Africa.  相似文献   

8.
Most of the annual rainfall over India occurs during the Southwest (June?CSeptember) and Northeast (October?CDecember) monsoon periods. In March 2008, however, Southern peninsular India and Sri Lanka received the largest rainfall anomaly on record since 1979, with amplitude comparable to summer-monsoon interannual anomalies. This anomalous rainfall appeared to be modulated at intraseasonal timescale by the Madden Julian Oscillation, and was synchronous with a decaying La Ni?a event in the Pacific Ocean. Was this a coincidence or indicative of a teleconnection pattern? In this paper, we explore factors controlling rainfall over southern India and Sri Lanka between January and April, i.e. outside of the southwest and northeast monsoons. This period accounts for 20% of annual precipitation over Sri Lanka and 10% over the southern Indian states of Kerala and Tamil Nadu. Interannual variability is strong (about 40% of the January?CApril climatology). Intraseasonal rainfall anomalies over southern India and Sri Lanka are significantly associated with equatorial eastward propagation, characteristic of the Madden Julian Oscillation. At the interannual timescale, we find a clear connection with El Ni?o-Southern Oscillation (ENSO); with El Ni?os being associated with decreased rainfall (correlation of ?0.46 significant at the 98% level). There is also a significant link with local SST anomalies over the Indian Ocean, and in particular with the inter-hemispheric sea surface temperature (SST) gradient over the Indian Ocean (with colder SST south of the equator being conducive to more rainfall, correlation of 0.55 significant at the 99% level). La Ni?as/cold SSTs south of the equator tend to have a larger impact than El Ni?os. We discuss two possible mechanisms that could explain these statistical relationships: (1) subsidence over southern India remotely forced by Pacific SST anomalies; (2) impact of ENSO-forced regional Indian Ocean SST anomalies on convection. However, the length of the observational record does not allow distinguishing between these two mechanisms in a statistically significant manner.  相似文献   

9.
基于1979-2016年ERA-Interim再分析资料和CAM5.3模式,研究了2016年和1998年北大西洋海温异常对中国夏季降水以及大尺度环流的可能影响及其机制。结果表明,这两年前夏(6-7月)长江中下游及其以南地区降水均异常偏多,但1998年降水异常较2016年更为显著。后夏(8月),2016年长江以南地区降水异常偏多,长江-黄河流域降水异常偏少,而1998年降水异常分布与之相反。2016年和1998年夏季中国东部降水异常的差异与西北太平洋对流层低层异常反气旋以及欧亚中高纬度环流变化的共同作用直接相关。敏感性数值试验的结果表明,北大西洋海温异常的显著差异是导致2016年和1998年夏季中国东部降水以及大尺度环流异常存在明显差异的重要原因之一。一方面,北大西洋海温异常可以通过改变欧亚中高纬度环流进而对中国夏季降水产生影响。1998年北大西洋海温异常自热带至副极地呈类似"+ - +"型分布,这种海温异常型能够在前夏欧亚中高纬度地区激发出双阻型的环流异常响应。2016年北大西洋海温异常自热带至副极地呈相对弱的"- + -"型分布,欧亚中高纬度环流异常响应总体偏弱。另一方面,北大西洋海温异常还可以通过影响热带纬向环流进而对西北太平洋对流层低层异常反气旋起调制作用。1998年北大西洋海温异常对夏季西北太平洋异常反气旋起增强作用,这与热带印度洋-太平洋海温的强迫作用相协调。然而,2016年北大西洋海温异常则有利于西北太平洋异常反气旋的减弱,这与热带印度洋-太平洋海温的强迫作用相反。因此,在这3个大洋的协同作用下,2016年和1998年前夏西北太平洋异常反气旋均偏强,但前者的振幅弱于后者。在后夏,1998年西北太平洋对流层低层仍受异常反气旋控制,2016年则为异常气旋控制。   相似文献   

10.
Summary The Southwestern Cape (SWC) region of South Africa is characterized by winter rainfall mainly via cold fronts and by substantial interannual variability. Evidence is presented that interannual variability in SWC winter rainfall is related to sea-surface temperature (SST) and sea-ice anomalies in the central South Atlantic and adjoining Southern Ocean and to large scale ocean–atmosphere interaction in this region. During wet winters, the jet is strengthened just upstream of the SWC and significant cyclonic anomalies extend from the SW Atlantic over the region. SST tends to be anomalously warm (cool) in the SW Atlantic and SE Atlantic (central South Atlantic) and sea-ice extent increased in the central South Atlantic sector of the Southern Ocean. These patterns favor increased cyclogenesis upstream, a more northward track of midlatitude depressions, local intensification near the SWC and enhanced rainfall. Roughly the reverse patterns occur during dry winters. Some preliminary results from atmospheric GCM experiments are presented which help support these findings. Received November 9, 2001 Revised December 28, 2001  相似文献   

11.
利用1961—2017年中国地面观测站日降水资料、全球大气多要素和海表温度月资料,分析华南区域持续性强降水过程的气候特征,诊断并比较与华南前汛期、后汛期区域持续性强降水年际变化相关的大气环流和海表温度异常特征。结果表明,3—12月华南都可能出现持续性强降水过程,其中汛期4—9月的占了94.4%。伴随着区域持续性强降水的年际变化,华南本地垂直上升运动显著异常是前汛期和后汛期的共同点,但前汛期、后汛期在华南及周边环流异常、水汽输送来源以及海温异常分布等方面都存在一定差异。在前汛期华南区域持续性强降水偏重年,赤道西太平洋区域海温偏低,由于大气罗斯贝波响应使西太平洋副热带高压偏强,热带西太平洋向华南区域水汽输送加强,从而有利于区域持续性强降水偏重。后汛期华南区域持续性强降水偏重年的海温异常分布是赤道中东太平洋区域正异常、东印度洋至西太平洋暖池区负异常,海温异常通过西北太平洋副热带高压、南海热带季风强度、水汽输送和垂直环流等多方面,导致后汛期区域持续性强降水偏重。   相似文献   

12.
The interannual variations of rainfall over southwest China (SWC) during spring and its relationship with sea surface temperature anomalies (SSTAs) in the Pacific are analyzed, based on monthly mean precipitation data from 26 stations in SWC between 1961 and 2010, NCEP/NCAR re-analysis data, and Hadley global SST data. Sensitivity tests are conducted to assess the response of precipitation in SWC to SSTAs over two key oceanic domains, using the global atmospheric circulation model ECHAM5. The interannual variation of rainfall over SWC in spring is very significant. There are strong negative (positive) correlation coefficients between the anomalous precipitation over SWC and SSTAs over the equatorial central Pacific (the mid-latitude Pacific) during spring. Numerical simulations show that local rainfall in the northwest of the equatorial central Pacific is suppressed, and a subtropical anticyclone circulation anomaly is produced, while a cyclonic circulation anomaly in the mid-latitude western Pacific occurs, when the equatorial Pacific SSTAs are in a cold phase in spring. Anomalous northerly winds appear in the northeastern part of SWC in the lower troposphere. Precipitation increases over the Maritime Continent of the western equatorial Pacific, while a cyclonic circulation anomaly appears in the northwest of the western equatorial Pacific. A trough over the Bay of Bengal enhances the southerly flow in the south of SWC. The trough also enhances the transport of moisture to SWC. The warm moisture intersects with anomalous cold air over the northeast of SWC, and so precipitation increases during spring. On the interannual time scale, the impacts of the mid-latitude Pacific SSTAs on rainfall in SWC during spring are not significant, because the mid-latitude Pacific SSTAs are affected by the equatorial central Pacific SSTAs; that is, the mid-latitude Pacific SSTAs are a feedback to the circulation anomaly caused by the equatorial central Pacific SSTAs.  相似文献   

13.
 This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120 °W–60 °W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968–1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30 °N–20 °S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20–30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north–south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa. Received: 14 April 1998 / Accepted: 24 December 1998  相似文献   

14.
Summary Climatic patterns associated with extreme modes of summer rainfall over southern Africa are investigated using composite techniques. Differences between the wet summers of the mid-1970s and the dry summers of the early 1980s are highlighted. In dry summers both the Southern Oscillation Index (SOI) and Quasi-Biennial Oscillation (QBO) are negatively biased. Composite difference fields of outgoing longwave radiation (OLR), sea surface temperature (SST), and upper and lower tropospheric wind are analysed. The OLR difference field indicates the widespread nature of convective variations with a consistent sign in the domain 15–33° S, 0–40° E. An area of opposing sign is conspicuous over the southwest Indian Ocean and represents a dipole, whereby wet summers over southern Africa coincide with dry summers over the adjacent ocean. This dipole behaviour is an expression of the primary mode of interannual climatic variability in the region. SST composite differences are negative over a wide portion of the central equatorial Indian Ocean and SE Atlantic, and positive to the south of Africa where the Agulhas Current flows. Wind composites reveal distinctive circulation differences in the extreme summers considered. In the tropical zone off the east coast of Africa difference vectors indicate upper westerly and lower easterly circulation anomalies, and distinguish a pathway for moist Indian Ocean air. A deep anticyclonic gyre is located over the region of positive SST differences in the sub-tropics to the SE of Africa. The identification of climatic patterns in extreme summers offers some useful guidelines in seasonal forecasts.With 6 Figures  相似文献   

15.
利用50年的Reynolds月平均海表温度资料和NCEP/NCAR全球大气再分析资料,分析了热带印度洋春季海温异常对南海夏季风强度变化的影响。结果表明:1)热带印度洋春季海表温度距平(SSTA)的模态主要是全区一致型(USBM)和热带南印度洋偶极型(SIODM),USBM模态既有年际时间尺度的变化特征,又有年际以上时间尺度的变化特征,既包含有对冬季ENSO信号响应的变化特征,又有独立于ENSO的变化特征;SIODM模态主要表现为独立于ENSO的年际时间尺度变化。2)USBM模态与南海夏季风强度变化呈显著负相关关系,且二者都是对冬季ENSO信号的响应,USBM模态的年际变化不能独立于ENSO信号影响南海夏季风的强度变化。3)经(1~8年)带通滤波及去除ENSO信号的热带印度洋春季SSTA的SIODM型分布是影响南海夏季风强度变化的主要模态,表现为热带东南印度洋为负(正)、其他海区为正(负)时,南海夏季风强度增强(减弱),大气环流对热带东南印度洋SSTA热力作用的响应是造成这一关系的直接原因,SIODM型的SSTA分布与南海夏季风年际异常关系在热带印度洋长期变化趋势的暖位相期显著,在长期变化趋势的冷位相期不显著。  相似文献   

16.
我国南方盛夏气温主模态特征及其与海温异常的联系   总被引:1,自引:0,他引:1  
袁媛  丁婷  高辉  李维京 《大气科学》2018,42(6):1245-1262
利用NCEP/NCAR大气环流资料、HadISST海温数据以及中国160站气温数据等,通过EOF分解、线性相关等统计方法,分析了我国南方盛夏气温异常的主导模态及其所对应的关键环流系统和可能的海洋外强迫信号。结果表明:我国南方盛夏气温偏高有两种不同的分布模态,一是以江淮地区为中心的江淮型高温,二是以江南和华南为中心的江南型高温,导致这两种高温型发生的环流影响系统和海温外强迫因子均有显著差异。影响江淮型高温的关键环流系统是高低空正压结构的高度场正距平和偏弱的东亚副热带西风急流。而影响这两个关键环流系统的海洋外强迫因子包括热带印度洋至东太平洋的"-+-"海温异常分布型及北大西洋中纬度的暖海温异常。2016年盛夏江淮型高温的大气环流和海温异常均表现出典型江淮型高温年的特征,更好的证明了统计分析的结论。而江南型高温的关键环流系统主要是加强西伸的西太平洋副热带高压。其海洋外强迫因子包括前冬赤道中东太平洋的暖海温异常和春季-盛夏热带印度洋全区一致型暖海温异常,其中热带印度洋海温的影响更为持续和显著。  相似文献   

17.
基于低阶大气环流谱模式,本文设计了太平洋及印度洋4个不同海域的海表温度异常试验,去研究大气环流及降水对热带海表温度异常强迫作用的“同时”性响应。结果表明尽管暖性的海表温度异常均激发出低空辐合及高空辐散,但在不同海域所激发的异常流场却差异甚大。不过降水异常均发生在海表温度异常区及其毗邻处。它在对称的SSTA区的分布一般是非对称的。对水汽收支的分解分析表明,海表温度异常区异常降水的大小主要由异常的低空辐合决定,而异常降水的分布形态则由异常的水汽平流过程所决定。由于异常的低空辐合及异常的水汽平流过程主要发生在海表温度异常区及毗邻处,因此,降水对热带海表温度异常的响应基本L是一种邻域响应。它发生在气候平均低空气流沿海表温度异常的下风方向,或在海表温度异常所激发的低空异常气流沿气候平均海温降低的方向。  相似文献   

18.
A numerical modelling study is presented focusing on the effects of mesoscale sea-surface temperature (SST) variability on surface fluxes and the marine atmospheric boundary-layer structure. A basic scenario is examined having two regions of SST anomaly with alternating warm/cold or cold/warm water regions. Conditions upstream from the anomaly region have SST values equal to the ambient atmosphere temperature, creating an upstream neutrally stratified boundary layer. Downstream from the anomaly region the SST is also set to the ambient atmosphere value. When the warm anomaly is upstream from the cold anomaly, the downstream boundary layer exhibits a more complex structure because of convective forcing and mixed layer deepening upstream from the cold anomaly. An internal boundary layer forms over the cold anomaly in this case, generating two distinct layers over the downstream region. When the cold anomaly is upstream from the warm anomaly, mixing over the warm anomaly quickly destroys the shallow cold layer, yielding a more uniform downstream boundary-layer vertical structure compared with the warm-to- cold case. Analysis of the momentum budget indicates that turbulent momentum flux divergence dominates the velocity field tendency, with pressure forcing accounting for only about 20% of the changes in momentum. Parameterization of surface fluxes and boundary-layer structure at these scales would be very difficult because of their dependence on subgrid-scale SST spatial order. Simulations of similar flow over smaller scale fronts (<5 km) suggest that small-scale SST variability might be parameterized in mesoscale models by relating the effective heat flux to the strength of the SST variance.  相似文献   

19.
Analysis of 149 raingauge series (1946–1988) shows a weak positive correlation between late summer rainfalls (January–March) in tropical southern Africa and the Southern Oscillation Index (SOI). The correlation coefficients have been unstable since World War II. They were close to zero before 1970 and significant thereafter. Before 1970, southern African late summer rainfalls were more specifically correlated with regional patterns of sea surface temperature (SST), mainly over the southwestern Indian Ocean. After 1970, teleconnections with near global SST anomaly patterns, i.e. over the central Pacific and Indian oceans, dominate the regional connections. The increase in the sensitivity of the southern African rainfall to the global SO-related circulation anomalies is simultaneous with the correlation between SOI and more extensive SST anomalies, particularly over the southern Indian Ocean. This feature is part of longer term (decadal), global SST variability, as inferred from statistical analyses. Numerical experiments, using the Météo-France general circulation model ARPEGE-Climat, are performed to test the impact of the observed SST warming in the southern Indian and extratropical oceans during El Niño Southern Oscillation (ENSO) events on southern African rainfall. Simulated results show that ENSO events, which occurred in the relatively cold background of the pre-1970 period in the southern oceans, had a little effect on southern Africa climatic conditions and atmospheric circulation. By contrast, more recent ENSO events, with warmer SST over the southern oceans, lead to a climatic bipolar pattern between continental southern African and the western Indian Ocean, which is characterized by reduced (enhanced) deep convection and rainfall over the subcontinent (the western Indian Ocean). A weaker subtropical high-pressure belt in the southwestern Indian Ocean is also simulated, along with a reduced penetration of the moist southern Indian Ocean trade winds over the southern African plateau. These results are consistent with the strong droughts observed over all southern Africa during ENSO events since 1970.  相似文献   

20.
Intraseasonal variability in the eastern Pacific warm pool in summer is studied, using a regional ocean?Catmosphere model, a linear baroclinic model (LBM), and satellite observations. The atmospheric component of the model is forced by lateral boundary conditions from reanalysis data. The aim is to quantify the importance to atmospheric deep convection of local air?Csea coupling. In particular, the effect of sea surface temperature (SST) anomalies on surface heat fluxes is examined. Intraseasonal (20?C90?day) east Pacific warm-pool zonal wind and outgoing longwave radiation (OLR) variability in the regional coupled model are correlated at 0.8 and 0.6 with observations, respectively, significant at the 99% confidence level. The strength of the intraseasonal variability in the coupled model, as measured by the variance of outgoing longwave radiation, is close in magnitude to that observed, but with a maximum located about 10° further west. East Pacific warm pool intraseasonal convection and winds agree in phase with those from observations, suggesting that remote forcing at the boundaries associated with the Madden?CJulian oscillation determines the phase of intraseasonal convection in the east Pacific warm pool. When the ocean model component is replaced by weekly reanalysis SST in an atmosphere-only experiment, there is a slight improvement in the location of the highest OLR variance. Further sensitivity experiments with the regional atmosphere-only model in which intraseasonal SST variability is removed indicate that convective variability has only a weak dependence on the SST variability, but a stronger dependence on the climatological mean SST distribution. A scaling analysis confirms that wind speed anomalies give a much larger contribution to the intraseasonal evaporation signal than SST anomalies, in both model and observations. A LBM is used to show that local feedbacks would serve to amplify intraseasonal convection and the large-scale circulation. Further, Hovm?ller diagrams reveal that whereas a significant dynamic intraseasonal signal enters the model domain from the west, the strong deep convection mostly arises within the domain. Taken together, the regional and linear model results suggest that in this region remote forcing and local convection?Ccirculation feedbacks are both important to the intraseasonal variability, but ocean?Catmosphere coupling has only a small effect. Possible mechanisms of remote forcing are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号