首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
吴国雄  尉艺  刘辉 《气象学报》2000,58(6):641-652
通过数值模拟和理论分析 ,文中指出在强东亚季风期间不仅在欧亚大陆和北印度洋出现强大的反气旋环流异常 ,而且通过海气相互作用在北太平洋西部和西北部形成异常气旋式流场 ;在其东南部产生异常反气旋式流场。在这种流场异常的驱动下赤道西太平洋西风加强 ,海面升高 ,海表温度上升 ,赤道中东印度洋和东太平洋东风加强 ,海面降低 ,海表温度下降。证明由于海表温度异常及海表温度变化趋势存在积分关系 ,因此持续的强东亚冬季风所强迫的沿赤道海表温度变化趋势的上述分布的强讯号可以在海洋中存在近一年之久 ,为尔后赤道太平洋 ENSO事件的可能发展提供初始条件 ,也为跨季度气候预测提供前期讯号  相似文献   

2.
张恩才  杨修群 《气象科学》1996,16(3):206-214
本文利用1970至1989年共20年的逐月平均的太平着区的表面风应力和海表温度距平的分析资料,检验了以前设计的热带太平洋和热带大气距平模式的模拟性能,通过使用两组风应力异常场即观测场和热带大气模式对观测海温响应所得的模拟场,重点分析了热带太平洋距平模式对风应力异常的响应特征,结果表明,本文海洋距平模式完全有能力再现ENSO循环折际变化性及其水平结构,且赤道中太平洋区域的低频风应力异常对于ENSO事  相似文献   

3.
用向量场奇异值分解方法分析了赤道太平洋区域风应力场与海表温度场年际异常的相关联系。结果表明,最主要的一对奇异向量与ENSO循环关系密切,其主要特征为赤道中、东太平洋风应力向赤道的异常辐合(辐散)与该区的SST异常升高(降低)准同步变化。对70和80年代的4次 El Ni?o事件中标准化风应力异常场的分析表明,它们均表现出赤道中、东太平洋的辐合。这一结果可能比用信风张弛描述ENSO循环中的环流异常更合理和更具代表性。  相似文献   

4.
Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.  相似文献   

5.
To what extent is tropical variability forced from the North Pacific through ocean pathways relative to locally generated variability and variability forced through the atmosphere? To address this question, in this study we use an anomaly-coupled model, consisting of a global, atmospheric general circulation model and a 4½-layer, reduced-gravity, Pacific-Ocean model. Three solutions are obtained; with coupling over the entire basin (CNT), with coupling confined to the tropics and wind stress and heat fluxes in the North and South Pacific specified by climatology (TP), and with coupling confined to the Tropics and wind stress and heat fluxes in the North Pacific specified by output from CNT (NPF). It is found that there are two distinct signals forced in the North Pacific that can impact the tropics through ocean pathways. These two signals are forced by wind stress and surface heat flux anomalies in the subtropical North Pacific. The first signal is relatively fast, impacts tropical variability less than a year after forcing, is triggered from November to March, and propagates as a first-mode baroclinic Rossby wave. The second signal is only triggered during springtime when buoyancy forcing can effectively generate higher-order baroclinic modes through subduction anomalies into the permanent thermocline, and it reaches the equator 4–5 years after forcing. The slow signal is found to initiate tropical variability more efficiently than the fast signal with one standard deviation in subtropical zonal wind stress forcing tropical SST anomalies centered on the equator at 135°W of approximately 0.5°C. Allowing extratropically forced tropical variability is found to shift primarily 2-year ENSO variability in a tropics-alone simulation to a more realistic range of 2–6 years.  相似文献   

6.
This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.  相似文献   

7.
1991~1994年El Niño的异常特征的诊断研究   总被引:3,自引:1,他引:2  
张勤  丁一汇  周琴芳 《气象学报》1998,56(5):573-583
1991~1994年热带中东太平洋海温持续4a多出现正距平。Niño3指数一直为正值。在此正距平背景下,产生了两次振荡和3次ElNiño暖期。在此期间赤道东太平洋海温在±5°纬度范围内发生了两次负距平的变化,形成了一个狭窄的温度梯度很大的“冷核”,而赤道外的中纬度海洋则持续维持两个正海温距平。这一时期海表温度资料EOF分析的结果进一步表明,第一特征向量的空间分布实际上反映了上述冷核特征。1991~1994年的ENSO事件主要是低频分量发生了较大异常,赤道低层纬向风和高层西风在前期减弱(1991-01-1992-05),后期加强(1992-06-1994-011).无论是海温还是风场的低频分量都表现出一次ENSO循环的特征。因此作者认为,虽然Niño3指数等在这4a多期间均为正值,但是大气和海洋耦合系统的低频变化部分只发生了一次完整的ENSO循环过程。1991年至1992年上半年对应于ElNiño暖位相,1992年下半年至1994年底对应于LaNina冷位相。但是这个冷位相没有能够得到充分发展,只出现两次极狭窄的冷核。冷位相的明显“夭折”,而代之以出现两次较弱的增暖,可能与季节内尺度的大气强迫与低频变化部分的相互作用有关。  相似文献   

8.
 The mechanisms responsible for the seasonal cycle in the tropical central and eastern Pacific sea surface temperature (SST) are investigated using a coupled general circulation model. We find that the annual westward propagation of SST anomalies along the equator is explained by a two-stage process. The first stage sets the phase of the variation at the eastern boundary. The strengthening of the local Hadley Circulation in boreal summer leads to a strengthening of the northward winds that blow across the equator. These stronger winds drive enhanced evaporation and entrainment cooling of the oceanic mixed layer. The resulting change in SST is greatest in the east because the mixed layer is at its shallowest there. As the east Pacific SST cools the zonal SST gradient in the central Pacific becomes more negative. This development signals the onset of the second stage in the seasonal variation of equatorial SST. In response to the anomalous SST gradient the local westward wind stress increases. This increase drives cooling of the oceanic mixed layer in which no single mechanism dominates: enhanced evaporation, wind-driven entrainment, and westward advection all contribute. We discuss the role that equatorial upwelling plays in modulating mixed layer depth and hence the entrainment cooling, and we highlight the importance of seasonal variations in mixed layer depth. In sum these processes act to propagate the SST anomaly westward. Received: 22 February 1999 / Accepted: 20 March 2000  相似文献   

9.
Low frequency characteristics of tropical Pacific wind stress anomalies in observation and simulations; from the CZ simple atmospheric model and COLA R15 AGCM are analyzed. The results show that ENSO event may be a multi-scale process, that is, ENSO time scale has the period longer than three yean; biennial oscillation and annual variability Dynamical characteristics are involved in the evolution process of wind stress anomaly with ENSO time scale: 1) the development and eastward movement of a cyclonic anomaly circulation in subtropical northwestern Pacific and weakening of Southern Oscillation result in the eastward propagation of westerly anomaly along the equator, there?fore, interactions between flows in subtropics and in tropics play an important role in the evolution of wind stress anomaly with ENSO time scale; 2) easterly and westerly anomalies with ENSO time scale are one kind of propagating wave, which differs from Barnett’s (1991). It is interesting that the evolution of observed and simulated wind stress anomalies with biennial time scale bears a strong resemble to that with ENSO time scale although their period it dif?ferent. Observed annual variability it weak during 1979-1981 and intensified after 1981, especially it reaches to max?imum during 1982-1984, and the spatial structure of the first mode is the ENSO-like pattern.  相似文献   

10.
 The predictability of atmospheric responses to global sea surface temperature (SST) anomalies is evaluated using ensemble simulations of two general circulation models (GCMs): the GENESIS version 1.5 (GEN) and the ECMWF cycle 36 (ECM). The integrations incorporate observed SST variations but start from different initial land and atmospheric states. Five GEN 1980–1992 and six ECM 1980–1988 realizations are compared with observations to distinguish predictable SST forced climate signals from internal variability. To facilitate the study, correlation analysis and significance evaluation techniques are developed on the basis of time series permutations. It is found that the annual mean global area with realistic signals is variable dependent and ranges from 3 to 20% in GEN and 6 to 28% in ECM. More than 95% of these signal areas occur between 35 °S–35 °N. Due to the existence of model biases, robust responses, which are independent of initial condition, are identified over broader areas. Both GCMs demonstrate that the sensitivity to initial conditions decreases and the predictability of SST forced responses increases, in order, from 850 hPa zonal wind, outgoing longwave radiation, 200 hPa zonal wind, sea-level pressure to 500 hPa height. The predictable signals are concentrated in the tropical and subtropical Pacific Ocean and are identified with typical El Ni?o/ Southern Oscillation phenomena that occur in response to SST and diabatic heating anomalies over the equatorial central Pacific. ECM is less sensitive to initial conditions and better predicts SST forced climate changes. This results from (1) a more realistic basic climatology, especially of the upper-level wind circulation, that produces more realistic interactions between the mean flow, stationary waves and tropical forcing; (2) a more vigorous hydrologic cycle that amplifies the tropical forcing signals, which can exceed internal variability and be more efficiently transported from the forcing region. Differences between the models and observations are identified. For GEN during El Ni?o, the convection does not carry energy to a sufficiently high altitude, while the spread of the tropospheric warming along the equator is slower and the anomaly magnitude smaller than observed. This impacts model ability to simulate realistic responses over Eurasia and the Indian Ocean. Similar biases exist in the ECM responses. In addition, the relationships between upper and lower tropospheric wind responses to SST forcing are not well reproduced by either model. The identification of these model biases leads to the conclusion that improvements in convective heat and momentum transport parametrizations and basic climate simulations could substantially increase predictive skill. Received: 25 April 1996 / Accepted: 9 December 1996  相似文献   

11.
印度洋对ENSO事件的响应:观测与模拟   总被引:11,自引:3,他引:8  
观测事实显示,在El Ni(n~)o期间,伴随着赤道中东太平洋表层海温(SST)的升高,热带印度洋SST出现正距平.作者利用海气耦合模式模拟了印度洋对ENSO事件的上述响应,并进而讨论了其物理机制.所用模式为法国国家科研中心Pierre-Simon-Laplace 全球环境科学联合实验室(IPSL)发展的全球海气耦合模式.该模式成功地控制了气候漂移,能够合理再现印度洋的基本气候态.观测中与ENSO相关的热带印度洋SST变化,表现为全海盆一致的正距平,并且这种变化要滞后赤道中东太平洋SST变化大约一个季度,意味着它主要是对东太平洋SST强迫的一种遥响应,模式结果也支持这一机制,尽管模式中的南方涛动现象被夸大了,使得模拟的与ENSO相关联的SST正距平的位置南移,阿拉伯海和孟加拉湾被负距平(而不是正距平)所控制.研究表明,东太平洋主要通过大气桥影响潜热释放来影响印度洋SST变化.赤道东太平洋El Ni(n~)o事件的发展,导致印度洋上空风场异常自东而西传播;伴随着风场的变化,潜热发生相应变化,并最终导致SST异常的发生.非洲东海岸受索马里急流控制的海域,其SST的变化不能简单地利用热通量的变化来解释.证据显示,印度洋的增暖是ENSO事件发生的结果而不是其前期信号.  相似文献   

12.
基于美国哥伦比亚大学Lamont—Doherty地球观象台LDEO(Lamont—DohertyEarth Observatory)海表温度资料和NCEP/NCAR再分析风场资料,分析了1997/1998年El Nino3期间西太平洋暖池海表温度和西风距平的时间演变特征,同时也分析了东太平洋暖池海表温度和北风距平的时间演变特征。结果表明,1997/1998年El Nino3事件期间,西太平洋暖池海表温度变化及异常西风和东太平洋暖池海表温度变化及异常北风都与Nino3指数变化密切相关。将东、西太平洋暖池及异常北风、西风一并结合起来考虑,进一步研究了1997/1998年El Nino3事件发生、发展的可能机制:异常西风驱动西太平洋暖池东端暖水向东伸展直接有利于赤道东太平洋海表温度增加;异常西风激发东传的暖Kelvin波对东太平洋的冷上升流有抑制作用,从而有利于赤道东太平洋海表温度增加;东传的异常西风可以通过埃克曼漂流效应将赤道两侧的海表暖水向赤道辐合从而加强了赤道附近的下沉流,也有利于赤道东太平洋赤道附近海表温度增加。几乎与此同时,北风距平通过产生北风吹流将东太平洋暖池暖水由北向南输送至赤道附近直接导致Nino3区海表温度增加。上述增温因素的叠加作用共同导致了1997/1998年El Nino事件迅速发生、异常强大。  相似文献   

13.
The impact of the warm SST bias in the Southeast Pacific (SEP) on the quality of seasonal and interannual variability and ENSO prediction in a coupled GCM is investigated. The reduction of this bias is achieved by means of empirical heat flux correction that is constant in time. It leads to a wide range of changes in the tropical Pacific climate including enhanced southeast trades, well-defined dry zone in the SEP, better simulation of the South Pacific Convergence Zone and stronger cross-equatorial asymmetry of the mean state in the eastern Pacific. As a result of the mean climate correction, significant improvements in the simulation of the seasonal cycle of the oceanic and atmospheric states are also observed both at the equator and basin-wide. Due to more realistic simulation of the seasonal evolution of the cold tongue, tropical convection and surface winds in the corrected version of the model, phase-lock of ENSO to the annual cycle looses its strong semi-annual component and becomes quite similar to the observed, although the amplitude of ENSO is reduced. Zonal wind stress response to the SST anomalies in the central-eastern Pacific also becomes more realistic. ENSO retrospective forecast experiments conducted with the directly coupled and the flux-corrected versions of the model demonstrate that deficiencies in the seasonal evolution of the cold tongue/Inter-Tropical Convergence Zone complex (that were largely due to the SEP bias in this model) and the related errors in the ENSO phase-lock to the annual cycle can seriously degrade ENSO prediction. By reducing these errors, ENSO predictive skill in the coupled model was substantially enhanced.  相似文献   

14.
一个改进的混合型海气耦合模式:ENSO模拟   总被引:1,自引:0,他引:1  
通过在中国科学院大气物理研究所热带太平洋环流模式与一个统计大气模式所建立的混合型海气耦合模式中引入次表层上卷海温非局地参数化方案, 对比分析了次表层上卷海温对耦合模式模拟结果的影响, 表明在引入次表层上卷海温非局地参数化方案前耦合模式模拟的SSTA最大变率中心位于日界线附近赤道南北狭窄范围内, 而在赤道东太平洋及南美沿岸一带变率过低, 周期呈准2年振荡。改进后, 耦合模式模拟结果的分布不论在东西方向亦或南北方向与观测更为相近, 振荡周期为4年左右, 而且还能模拟出观测中ENSO振荡的季节依赖性特征。进一步分析改进的耦合模式中海气耦合特征, 表明 “延迟振子” 理论、 “西太平洋振子” 理论、 “充电-放电振子” 理论及 “平流-反射” 理论所揭示的一些规律在该模式中都能被不同程度地描述出来, 这说明在实际的ENSO循环过程中, 可能有多种机制在同时起作用。  相似文献   

15.
Spatial and temporal structures of interannual-to-decadal variability in the tropical Pacific Ocean are investigated using results from a global atmosphere–ocean coupled general circulation model. The model produces quite realistic mean state characteristics, despite a sea surface temperature cold bias and a thermocline that is shallower than observations in the western Pacific. The periodicity and spatial patterns of the modelled El Niño Southern Oscillations (ENSO) compare well with those observed over the last 100 years, although the quasi-biennial timescale is dominant. Lag-regression analysis between the mean zonal wind stress and the 20°C isotherm depth suggests that the recently proposed recharge-oscillator paradigm is operating in the model. Decadal thermocline variability is characterized by enhanced variance over the western tropical South Pacific (~7°S). The associated subsurface temperature variability is primarily due to adiabatic displacements of the thermocline as a whole, arising from Ekman pumping anomalies located in the central Pacific, south of the equator. Related wind anomalies appear to be caused by SST anomalies in the eastern equatorial Pacific. This quasi-decadal variability has a timescale between 8 years and 20 years. The relationship between this decadal tropical mode and the low-frequency modulation of ENSO variance is also discussed. Results question the commonly accepted hypothesis that the low-frequency modulation of ENSO is due to decadal changes of the mean state characteristics.  相似文献   

16.
Abstract

The relationships between monthly anomalies of sea surface temperature (SST) and monthly anomalies of several surface wind parameters are examined using ten years of data from the mid‐latitude North Pacific Ocean. The wind parameters involve both u3 * and curl τ, where u* is the atmospheric friction velocity and τ the surface stress. These quantities are calculated from surface wind components analysed on synoptic (6‐hourly) maps. In order to examine the effect of synoptic disturbances, the time series of surface wind components at each grid point is high‐pass filtered (passing periods less than 10 days) and the above wind parameters are calculated from both filtered and unfiltered wind components.

Two statistically significant relationships are found between monthly anomalies of SST and those of the various wind parameters. The first is a large coherent negative correlation between monthly anomalies of u3 * calculated from the high‐pass filtered wind components and month‐to‐month changes in the SST anomalies in the Central Pacific. This relationship is attributed to the production of turbulent vertical mixing in the ocean by synoptic disturbances in the atmosphere. The second relationship is a large positive correlation between curl τ calculated from the unfiltered wind components and SST anomaly changes in the Eastern Pacific. This relationship, which is opposite to that expected from Ekman pumping, is attributed to a negative association between the wind stress curl and the meridional advection of heat by the eastern boundary current system. It is shown that these atmospheric forcing mechanisms explain up to 10 per cent of the variance of monthly SST anomalies in a large part of the mid‐latitude North Pacific Ocean. This amount is in addition to, but certainly less than, that which can be explained by anomalous horizontal advection through statistical relationships with sea‐level pressure anomalies (Davis, 1976).  相似文献   

17.
The 1960-1991 monthly mean FSU (Florida State University)wind stress data aredecomposed into a vortical and a divergent component with each of which to force the model oceanin the context of a two-layer tropical Pacific model.Evidence suggests that for the seasonalvariation the ocean forcing does not produce a realistic cold tongue using either of the componentsand the tongue will not be effectively improved in its intensity and pattern even if the componentsare doubled or halved:the utilization of climatic mean wind stress(no decomposition is done of thewind stress)that contains its seasonal variation will lead to a realistic SST distribution on which isimposed,separately,the interannual anomalies of each of the components so as to get the SSTApattern:under the action of the interannual anomaly of the vortical(divergent)component therearises qnite intense SSTA oscillation marked by noticeable ENSO periods(feeble SSTA withhigher oscillation frequency for obscure ENSO periods),thereby illustrating that the roles of thetwo components differ from each other in the genesis of SST variation on a seasonal and aninterannual basis such that a realistic cold tongue pattern follows under the joint effects on themodel ocean of the two components of wind stress while rational E1 Nino/La Nina phenomenaresult under the forcing of an anomalous wind stress vortical component.Moreover,the divergentcomponent is innegligible in generating a mean climatic condition of the ocean sector but of lessimportance compared to the vortical component in ENSO development.  相似文献   

18.
The 1960-1991 monthly mean FSU (Florida State University)wind stress data are decomposed into a vortical and a divergent component with each of which to force the model ocean in the context of a two-layer tropical Pacific model.Evidence suggests that for the seasonal variation the ocean forcing does not produce a realistic cold tongue using either of the components and the tongue will not be effectively improved in its intensity and pattern even if the components are doubled or halved:the utilization of climatic mean wind stress(no decomposition is done of the wind stress)that contains its seasonal variation will lead to a realistic SST distribution on which is imposed,separately,the interannual anomalies of each of the components so as to get the SSTA pattern:under the action of the interannual anomaly of the vortical(divergent)component there arises qnite intense SSTA oscillation marked by noticeable ENSO periods(feeble SSTA with higher oscillation frequency for obscure ENSO periods),thereby illustrating that the roles of the two components differ from each other in the genesis of SST variation on a seasonal and an interannual basis such that a realistic cold tongue pattern follows under the joint effects on the model ocean of the two components of wind stress while rational E1 Nino/La Nina phenomena result under the forcing of an anomalous wind stress vortical component.Moreover,the divergent component is innegligible in generating a mean climatic condition of the ocean sector but of less importance compared to the vortical component in ENSO development.  相似文献   

19.
利用NOAA海表温度和NCEP/NCAR大气环流等全球再分析资料,讨论了2015/2016年超强El Nio事件局地海气过程的演变特征,并与1982/1983和1997/1998年两次强El Nio事件做了对比分析。结果表明,2015/2016年El Nio在峰值强度、持续时间、累计海温距平等指标上都略强于前两次El Nio,可视为有完整气象观测纪录以来的最强事件;与前两次事件相比,2015/2016年El Nio海温异常中心位置明显偏西,热带东太平洋海温相对较冷而中太平洋更暖,由于热带对流对海温的非线性响应,赤道东太平洋降水相对较弱,中太平洋则显著偏多,这在El Nio当年12月至次年4月尤为明显;此外,在前两次El Nio的成熟期至衰减期,中太平洋大气响应都存在明显的南移特征,西风异常和对流中心都从赤道南移到了5°S以南。而2015/2016年中太平洋大气响应一直位于赤道附近,南移特征相对较弱,ENSO和年循环相互作用的组合模态相比前两次较弱,西北太平洋反气旋的强度也弱于前两次。这主要是由于2015年冬季至2016年春季,热带太平洋暖海温异常位置偏西,中太平洋海温异常明显强于前两次,叠加气候平均态海温之后,赤道南北两侧海温都高于对流阈值,对流旺盛,这大大削弱了大气响应的经向移动和ENSO组合模态的强度。  相似文献   

20.
On the predictability of decadal changes in the North Pacific   总被引:2,自引:0,他引:2  
 The predictability of decadal changes in the North Pacific is investigated with an ocean general circulation model forced by simplified and realistic atmospheric conditions. First, the model is forced by a spatially fixed wind stress anomaly pattern characteristic for decadal North Pacific climate variations. The time evolution of the wind stress anomaly is chosen to be sinusoidal, with a period of 20 years. In this experiment different physical processes are found to be important for the decadal variations: baroclinic Rossby waves dominate the response. They move westward and lead to an adjustment of the subtropical and subpolar gyre circulations in such a way that anomalous temperatures in the central North Pacific develop as a delayed response to the preceding wind stress anomalies. This delayed response provides not only a negative feedback but also bears the potential for long-term predictions of upper ocean temperature changes in the central North Pacific. It is shown by additional experiments that once these Rossby waves have been excited, decadal changes of the upper ocean temperatures in the central North Pacific evolve without any further anomalous atmospheric forcing. In the second part, the model is forced by surface heat flux and wind stress observations for the period 1949–1993. It is shown that the same physical processes which were found to be important in the simplified experiments also govern the evolution of the upper ocean in this more realistic simulation. The 1976/77 cooling can be mainly attributed to anomalously strong horizontal advection due to the delayed response to persistent wind stress curl anomalies in the early 1970s rather than local anomalous atmospheric forcing. This decadal change could have been predicted some years in advance. The subsequent warming in the late 1980s, however, cannot be mainly explained by advection. In this case, local anomalous atmospheric forcing needs to be considered. Received: 6 July 1998 / Accepted: 16 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号