首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A statistically-based low-level cloud parameterization scheme is introduced, modified, and applied in the Flexible coupled General Circulation Model (FGCM-0). It is found that the low-level cloud scheme makes improved simulations of low-level cloud fractions and net surface shortwave radiation fluxes in the subtropical eastern oceans off western coasts in the model. Accompanying the improvement in the net surface shortwave radiation fluxes, the simulated distribution of SSTs is more reasonably asymmetrical about the equator in the tropical eastern Pacific, which suppresses, to some extent, the development of the double ITCZ in the model. Warm SST biases in the ITCZ north of the equator are more realistically reduced, too. But the equatorial cold tongue is strengthened and extends further westward, which reduces the precipitation rate in the western equatorial Pacific but increases it in the ITCZ north of the equator in the far eastern Pacific. It is demonstrated that the low-level cloud-radiation feedback would enhance the cooperative feedback between the equatorial cold tongue and the ITCZ. Based on surface layer heat budget analyses, it is demonstrated that the reduction of SSTs is attributed to both the thermodynamic cooling process modified by the increase of cloud fractions and the oceanic dynamical cooling processes associated with the strengthened surface wind in the eastern equatorial Pacific, but it is mainly attributed to oceanic dynamical cooling processes associated with the strengthening of surface wind in the central and western equatorial Pacific.  相似文献   

2.
The mean state and the seasonal cycle in the tropical Pacific are studied, using a new coupled tropical ocean-global atmosphere model. The atmospheric component is a general circulation model and the oceanic component is a two and a half layer model of the tropical Pacific. The coupling is based on delocalized physics: the spatial resolution of the physics of the atmospheric component is the same as the spatial resolution of the oceanic model. No flux corrections are applied. A 31 year experiment has been made with the climatological observed sea surface temperature outside the area of coupling. We observe a quick drift of the model which, after three years, reaches a warm mean state. The temperature bias varies geographically between 1?°C and 2?°C, but, in spite of this default, the eastern part of the basin remains colder than the west. This contrast is shown to be dependent on the shoaling of the thermocline east of 160°W. There is a significant seasonal cycle with an amplitude and phase of the seasonal variations which are well reproduced with respect to many other models. It is shown that interactions between the ocean and the atmosphere in the central and eastern Pacific are sufficient to explain the gross features of its evolution. In July, easterlies intensify in the Southern Hemisphere and lead to a strong upwelling and an enhanced evaporation in the eastern part of the basin. This induces a cooling throughout the area. The cooling reaches a first maximum in October in the easternmost part of the basin, then propagates westward along the equator with a decreasing amplitude. In January it is reinforced in the central part of the basin because of a divergence of the current, which is too strong. The mechanisms found here emphasize the role of the upwelling in maintaining the equatorial Pacific climate, and are in agreement with those found in other simplified coupled models.  相似文献   

3.
The sensitivity of tropical Atlantic climate to upper ocean mixing is investigated using an ocean-only model and a coupled ocean–atmosphere model. The upper ocean thermal structure and associated atmospheric circulation prove to be strongly related to the strength of upper ocean mixing. Using the heat balance in the mixed layer it is shown that an excessively cold equatorial cold tongue can be attributed to entrainment flux at the base of the oceanic mixed layer, that is too large. Enhanced entrainment efficiency acts to deepen the mixed layer and causes strong reduction in the upper ocean divergence in the central equatorial Atlantic. As a result, the simulated sea surface temperature, thermocline structure, and upwelling velocities are close to the observed estimates. In the coupled model, the seasonal migration of the Intertropical Convergence Zone (ITCZ) reduces when the entrainment efficiency in the oceanic mixed layer is enhanced. The precipitation rates decrease in the equatorial region and increase along 10°N, resulting in a more realistic Atlantic Marine ITCZ. The reduced meridional surface temperature gradient in the eastern tropical Atlantic prohibits the development of convective precipitation in the southeastern part of the tropical Atlantic. Also, the simulation of tropical Atlantic variability as expressed in the meridional gradient mode and the eastern cold tongue mode improves when the entrainment efficiency is enhanced.  相似文献   

4.
—Upper ocean thermal data and surface marine observations are used to describe the three-dimensional, basinwide co-evolution of interannual variability in the tropical Pacific climate system. The phase propagation behavior differs greatly from atmosphere to ocean, and from equatorial to off-equatorial and from sea surface to subsurface depths in the ocean. Variations in surface zonal winds and sea surface temperatures (SSTs) exhibit a standing pattern without obvious zonal phase propagation. A nonequilibrium ocean response at subsurface depths is evident, characterized by coherent zonal and meridional propagating anomalies around the tropical North Pacific: eastward on the equator but westward off the equator. Depending on geographic location, there are clear phase relations among various anomaly fields. Surface zonal winds and SSTs in the equatorial region fluctuate approximately in-phase in time, but have phase differences in space. Along the equator, zonal mean thermocline depth (or heat content) anomalies are in nonequilibrium with the zonal wind stress forcing. Variations in SSTs are not in equilibrium either with subsurface thermocline changes in the central and western equatorial Pacific, with the former lagging the latter and displaced to the east. Due to its phase relations to SST and winds, the basinwide temperature anomaly evolution at thermocline depths on an interannual time scale may determine the slow physics of ENSO, and play a central role in initiating and terminating coupled air-sea interaction. This observed basinwide phase propagation of subsurface anomaly patterns can be understood partially as water discharge processes from the western Pacific to the east and further to high latitudes, and partially by the modified delayed oscillator physics. Received: 17 January 1997 / Accepted: 10 March 1998  相似文献   

5.
The data analyses in the first part of this study have shown that the sea surface temperature anomalies (SSTA) in the eastern equatorial Pacific are significantly correlated with the preceding anomalous convergence of the meridional wind stress near the equator. In order to understand the dynamical role of the convergent meridional wind stress anomalies in the El Nino occurring, an ideal wind stress which converges about the equator is set up based on the observations revealed in the first part. A simple dynamical model of tropical ocean is used to study the response of the tropical ocean to the convergent meridional wind stress. The results show that the convergent wind stress in the eastern equatorial Pacific is favorable for the occurrence of El Nino. When the convergent wind stress exerts on the tropical ocean, the westward propagating Rossby wave is excited, which, on the one hand, makes the mixed layer near the equator become thicker. On the other hand, the westward oceanic currents associated with the Rossby wave appear in the vicinity of the equator. The oceanic currents can drive the upper layer sea water to transfer to the west, which is favorable for the sea water to pile up in the western equatorial Pacific and to accumulate energy for the upcoming warm event.  相似文献   

6.
基于美国哥伦比亚大学Lamont—Doherty地球观象台LDEO(Lamont—DohertyEarth Observatory)海表温度资料和NCEP/NCAR再分析风场资料,分析了1997/1998年El Nino3期间西太平洋暖池海表温度和西风距平的时间演变特征,同时也分析了东太平洋暖池海表温度和北风距平的时间演变特征。结果表明,1997/1998年El Nino3事件期间,西太平洋暖池海表温度变化及异常西风和东太平洋暖池海表温度变化及异常北风都与Nino3指数变化密切相关。将东、西太平洋暖池及异常北风、西风一并结合起来考虑,进一步研究了1997/1998年El Nino3事件发生、发展的可能机制:异常西风驱动西太平洋暖池东端暖水向东伸展直接有利于赤道东太平洋海表温度增加;异常西风激发东传的暖Kelvin波对东太平洋的冷上升流有抑制作用,从而有利于赤道东太平洋海表温度增加;东传的异常西风可以通过埃克曼漂流效应将赤道两侧的海表暖水向赤道辐合从而加强了赤道附近的下沉流,也有利于赤道东太平洋赤道附近海表温度增加。几乎与此同时,北风距平通过产生北风吹流将东太平洋暖池暖水由北向南输送至赤道附近直接导致Nino3区海表温度增加。上述增温因素的叠加作用共同导致了1997/1998年El Nino事件迅速发生、异常强大。  相似文献   

7.
第一部分(Zhang et al,2001)的资料分析表明,El Nio事件发生之前在赤道中东太平洋存在着显著的异常经向风应力辐合、为了分析这种超前的辐合经向风应力距平在其后的ElNio事件发生中的动力作用,本文利用简单热带海洋动力学模式,从动力学上研究了热带海洋对关于赤道辐合的理想经向风应力强迫的响应,指出赤道东太平洋出现在El Nio事件之前的辐合经向风应力异常有利于El Nio事件的发生。辐合的经向风应力强迫作用于热带海洋,会激发出西传的Rossby波,使得赤道附近的海洋混合层变厚。由于耗散的影响,最大的增厚区位于强迫区域。当这个强迫作用于赤道东太平洋时,这将有利于以 Nl Nio事件发生;另一方面,Rossby波响应在赤道及其附近使得表层海水向西流动,中东太平洋表层水的不断向西输送有利于表层水在西太平洋堆积,为后来暖事件的发生累积能量。  相似文献   

8.
The oscillation characteristics of 1948 - 2003 South China Sea (SCS) summer monsoon intensity (SCSSMI) is analyzed by wavelet transform and the relationship between SCSSMI filtered by Lanczos filter at different time scale and oceanic thermal conditions is studied. The results show that SCSSMI exhibits dominant interannual (about 4 a), decadal (about 9 a) and interdecadal (about 38 a) oscillation periods. The interannual variation is the strongest and the interdecadal variation the weakest. The region of significant correlation between SCS summer monsoon intensity and oceanic thermodynamic variables at different time scale is greatly different. Significant correlation area of interannual variation of SCSSMI is concentrated in near equatorial region. Corresponding correlation displays quasi-biannual variability. If positive anomalies of SST and the depth of thermocline happen in eastern equatorial Indian Ocean and western equatorial Pacific, and negative anomalies of SST and the depth of thermocline happen in western equatorial Indian Ocean and eastern equatorial Pacific in previous autumn and winter, the interannual variation of SCSSMI will enhance. If the condition is contrary, interannual variation of SCSSMI will weaken. The interannual variation of SCSSMI will influence SST. The region surrounding SCS and east of Australia shows significantly negative correlation in autumn, and significantly positive correlation exhibits in west equatorial Indian Ocean, eastern equatorial Pacific and equatorial Atlantic in winter. The decadal variation of SCSSMI is modulated by PDO. Interdecadal variation of SCSSMI is relevant to the global warming and PDO.  相似文献   

9.
A climate regime shift (CRS) in the Pacific sea surface temperature (SST) pattern was identified in 1996/1997. This decadal SST change is characterized by a warming over the equatorial western Pacific (EWP) and mid-latitude North and South Pacific and a cooling in the equatorial central Pacific (ECP). The large-scale atmospheric circulation change associated with this CRS exhibits a pair of low-level anticyclonic (cyclonic) gyres off the EWP (ECP) and a zonal-vertical overturning circulation anomaly along the equator. Both the empirical orthogonal function and singular vector decomposition analyses indicate that the CRS signal in 1996/1997 is robust. A mixed layer heat budget analysis suggests that the abrupt change of SST in the EWP and ECP is attributed to different physical processes. The abrupt warming over the EWP was initiated by a short wave radiation (SWR) anomaly in association with a preceding warming in the ECP. The cooling in the ECP happened about 6 months later than that of the EWP and was primarily attributed to anomalous oceanic zonal and vertical temperature advections.  相似文献   

10.
After the strong 2015/16 El Ni?o event, cold conditions prevailed in the tropical Pacific with the second-year cooling of the 2017/18 La Ni?a event. Many coupled models failed to predict the cold SST anomalies(SSTAs) in 2017. By using the ERA5 and GODAS(Global Ocean Data Assimilation System) products, atmospheric and oceanic factors were examined that could have been responsible for the second-year cooling, including surface wind and the subsurface thermal state. A time sequence is described to demonstrate how the cold SSTAs were produced in the central-eastern equatorial Pacific in late 2017. Since July 2017, easterly anomalies strengthened in the central Pacific; in the meantime, wind stress divergence anomalies emerged in the far eastern region, which strengthened during the following months and propagated westward, contributing to the development of the second-year cooling in 2017. At the subsurface, weak negative temperature anomalies were accompanied by upwelling in the eastern equatorial Pacific, which provided the cold water source for the sea surface. Thereafter, both the cold anomalies and upwelling were enhanced and extended westward in the centraleastern equatorial Pacific. These changes were associated with the seasonally weakened EUC(the Equatorial Undercurrent) and strengthened SEC(the South Equatorial Current), which favored more cold waters being accumulated in the central-equatorial Pacific. Then, the subsurface cold waters stretched upward with the convergence of the horizontal currents and eventually outcropped to the surface. The subsurface-induced SSTAs acted to induce local coupled air–sea interactions, which generated atmospheric–oceanic anomalies developing and evolving into the second-year cooling in the fall of 2017.  相似文献   

11.
赤道不稳定波(tropical instability waves)存在于热带东太平洋赤道附近, 通常于每年的春末夏初出现, 以约0.6 m/s速度向西传播, 波周期为20~40天左右, 波长约为1000~2000 km。本文利用一个全球高分辨率海气耦合模式对赤道不稳定波在赤道附近的热量输送进行分析, 表明赤道不稳定波产生指向赤道的热通量, 从而部分抵消了热带东太平洋地区由Ekman辐散和温度平流导致的强冷却效应, 维持热带地区的热量平衡。其对赤道冷舌区的增暖作用可以消除和减弱气候模式中热带东太平洋地区的系统性冷偏差, 能使冷舌的强度和分布得到合理的改善, 对气候模式的改进和发展具有潜在贡献。赤道不稳定波还可以改变赤道海洋上空低层大气层结稳定度, 导致近地层强的风场辐合辐散, 并进一步影响大气混合层的温度、 风场等气象要素。模拟分析结果还表明, 赤道不稳定波对大气强迫产生二次响应, 改变赤道上空逆温层的垂直位移和逆温强度。研究赤道不稳定波对热带海洋气候及其海气相互作用机理的理解具有重要意义。  相似文献   

12.
Tropical instability waves (TIWs) arise from oceanic instability in the eastern tropical Pacific and Atlantic Oceans, having a clear atmospheric signature that results in coupled atmosphere–ocean interactions at TIW scales. In this study, the extent to which TIW-induced surface wind feedback influences the ocean is examined using an ocean general circulation model (OGCM). The TIW-induced wind stress (τTIW) part is diagnostically determined using an empirical τTIW model from sea surface temperature (SST) fields simulated in the OGCM. The interactively represented TIW wind tends to reduce TIW activity in the ocean and influence the mean state, with largest impacts during TIW active periods in fall and winter. In December, the interactive τTIW forcing induces a surface cooling (an order of ?0.1 to ?0.3 °C), an increased heat flux into the ocean, a shallower mixed layer and a weakening of the South Equatorial Current in the eastern equatorial Pacific. Additionally, the TIW wind effect yields a pronounced latitudinal asymmetry of sea level field across the equator, and a change to upper thermal structure, characterized by a surface cooling and a warming below in the thermocline, leading to a decreased temperature gradient between the mixed layer and the thermocline. Processes responsible for the τTIW–induced cooling effects are analyzed. Vertical mixing and meridional advection are the two terms in the SST budget that are dominantly affected by the TIW wind feedback: the cooling effect from the vertical mixing on SST is enhanced, with the maximum induced cooling in winter; the warming effect from the meridional advection is reduced in July–October, but enhanced in November–December. Additional experiments are performed to separate the relative roles the affected surface momentum and heat fluxes play in the cooling effect on SST. This ocean-only modeling work indicates that the effect of TIW-induced wind feedback is small but not negligible, and may need to be adequately taken into account in large-scale climate modeling.  相似文献   

13.
Coupled general circulation model (GCM) simulations participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed with respect to their performance in the equatorial Atlantic. In terms of the mean state, 29 out of 33 models examined continue to suffer from serious biases including an annual mean zonal equatorial SST gradient whose sign is opposite to observations. Westerly surface wind biases in boreal spring play an important role in the reversed SST gradient by deepening the thermocline in the eastern equatorial Atlantic and thus reducing upwelling efficiency and SST cooling in the following months. Both magnitude and seasonal evolution of the biases are very similar to what was found previously for CMIP3 models, indicating that improvements have only been modest. The weaker than observed equatorial easterlies are also simulated by atmospheric GCMs forced with observed SST. They are related to both continental convection and the latitudinal position of the intertropical convergence zone (ITCZ). Particularly the latter has a strong influence on equatorial zonal winds in both the seasonal cycle and interannual variability. The dependence of equatorial easterlies on ITCZ latitude shows a marked asymmetry. From the equator to 15°N, the equatorial easterlies intensify approximately linearly with ITCZ latitude. When the ITCZ is south of the equator, on the other hand, the equatorial easterlies are uniformly weak. Despite serious mean state biases, several models are able to capture some aspects of the equatorial mode of interannual SST variability, including amplitude, pattern, phase locking to boreal summer, and duration of events. The latitudinal position of the boreal spring ITCZ, through its influence on equatorial surface winds, appears to play an important role in initiating warm events.  相似文献   

14.
文中重点分析了中国科学院大气物理研究所LASG最新发展的全球大气环流谱模式(R42L9)与一全球海洋环流模式(T63L30)耦合形成的全球海洋-大气-陆面气候系统模式(GOALS/LASG)新版本已积分30 a的模拟结果,通过与多种观测资料的对比分析,讨论了赤道太平洋海表温度(SST)的年际变化及其纬向传播、赤道东太平洋SST异常与其他洋面SST变化之间的遥相关关系、赤道太平洋浅表层海温的年际变化特征等研究内容.结果表明,COALS模式模拟出了赤道太平洋SST异常出现不规则的年际变化特点;赤道东太平洋SST异常的向西传播过程;赤道太平洋混合层海温变化由西向东、由深层向浅层的传播过程;同时也模拟出了赤道东太平洋SST变化与赤道西太平洋以及与西南太平洋海温之间的反相关关系,与南印度洋和副热带大西洋SST之间的正遥相关关系等实际观测现象.但COALS模式也存在明显的不足,如对赤道东、中太平洋SST异常的年际变化幅度明显偏小,没能模拟出赤道东太平洋的SST变化比赤道中太平洋强的特点;赤道太平洋SST从东向西的传播速度明显比实际观测慢得多,但混合层海温极值变化由西向东的传播速度明显比实际情况快得多;没能模拟出赤道东太平洋SST变化同西北太平洋SST的负相关和北印度洋海温变化的正相关现象,因此也影响了对南亚、东南亚降水年际变化的模拟能力.  相似文献   

15.
利用1981—2002年美国国家气象中心(National Meteorological Center,NMC)逐日海表温度(sea surface temperature,SST)、10 m高处风场(V)及逐月混合层厚度(mixed layer depth,mld)资料,研究了太平洋区域海表温度季内振荡的气候及异常特征,重点探讨了北太平洋区域海表温度季内振荡的维持机制。研究发现,太平洋区域海表温度存在3个季内振荡强度气候高值区,即热带东太平洋(终年存在)、西北太平洋(北半球春、夏、秋存在)、西南太平洋(南半球夏季前后存在),它们出现在气候混合层厚度最小的区域和季节。海表温度季内振荡强度年际异常与混合层厚度年际异常存在显著负相关,在物理上,这种关系比它与海表温度异常的关系更直接。北太平洋区域5—9月地面风场与海表温度季节内振荡的基本耦合模态揭示出以漂流和感热输送为动力的一个负反馈过程,它存在于薄混合层海区,这是该海区强海表温度季内振荡的维持机制。  相似文献   

16.
Tian  Feng  Zhang  Rong-Hua  Wang  Xiujun 《Climate Dynamics》2021,56(11):3775-3795

Phytoplankton pigments (e.g., chlorophyll-a) absorb solar radiation in the upper ocean and induce a pronounced radiant heating effect (chlorophyll effect) on the climate. However, the ocean chlorophyll-induced heating effect on the mean climate state in the tropical Pacific has not been understood well. Here, a hybrid coupled model (HCM) of the atmosphere, ocean physics and biogeochemistry is used to investigate the chlorophyll effect on sea surface temperature (SST) in the eastern equatorial Pacific; a tunable coefficient, α, is introduced to represent the coupling intensity between the atmosphere and ocean in the HCM. The modeling results show that the chlorophyll effect on the mean-state SST is sensitively dependent on α (the coupling intensity). At weakly represented coupling intensity (0 ≤ α < 1.01), the chlorophyll effect tends to induce an SST cooling in the eastern equatorial Pacific, whereas an SST warming emerges at the strongly represented coupling intensity (α ≥ 1.01). Thus, a threshold exists for the coupling intensity (about α = 1.01) at which the sign of SST responses can change. Mechanisms and processes are illustrated to understand the different SST responses. In the weak coupling cases, indirect dynamical cooling processes (the adjustment of ocean circulation, enhanced vertical mixing, and upwelling) tend to dominate the SST cooling. In the strong coupling cases, the persistent warming induced by chlorophyll in the southern subtropical Pacific tends to induce cross-equatorial northerly winds, which shifts to anomalous westerly winds in the eastern equatorial Pacific, consequently reducing the evaporative cooling and weakening indirect dynamical cooling; eventually, SST warming maintains in the eastern equatorial Pacific. These results provide new insights into the biogeochemical feedback on the climate and bio-physical interactions in the tropical Pacific.

  相似文献   

17.
Effect of the spatial distributions of chlorophyll-a concentration on upper ocean temperature and currents in the equatorial Pacific is investigated through a set of numerical experiments by using an ocean general circulation model. This study indicates that enhanced meridional gradient of chlorophyll-a between the equator and off-equatorial regions can strengthen zonal circulation and lead to a decrease in equatorial sea surface temperature (SST). However, the circulation changes by themselves are not effective enough to affect SST in the equatorial cold tongue (CT) region. The comparison between the experiments indicates that the CT SST are more sensitive to chlorophyll-a distribution away from the equator. The off-equatorial chlorophyll-a traps more solar radiation in the mixed layer, therefore, the temperature in the thermoeline decreases. The cold water can then be transported to the equator by the meridional circulation within the mixed layer. Furthermore, the relation among CT SST, the surface heat flux, and the equatorial upwelling are discussed. The study implies the simulation biases of temperature on the equator are not only related to the local ocean dynamics but also related to some deficiency in simulating off-equatorial processes.  相似文献   

18.
张人禾  黄荣辉 《大气科学》1998,22(4):587-599
通过资料分析,研究了发生在热带西太平洋海表面西风或东风应力异常与El Ni?o事件的关系。分析结果表明,对应着El Ni?o事件从发生到消亡的过程,热带西太平洋纬向风应力存在着从西风应力异常到东风应力异常的变化,并且在这个过程中,西风应力异常向东传,东风应力异常紧接其后也向东传。本文还根据观测资料的分析结果建立了理想风应力,并利用简单热带海洋模式,对热带西太平洋纬向风应力异常及其东传在ENSO循环中的作用进行了动力学分析,指出了它们在El Ni?o事件发生和消亡中起着重要的作用。西风应力异常通过激发出海洋中东传的暖Kelvin波及其在大洋东边界反射产生的暖Rossby波、以及西风应力异常本身东传到赤道东太平洋,引起正的海洋混合层扰动厚度异常,导致了El Ni?o事件的发生;而异常东风应力则通过激发出东传的冷Kelvin波及其在大洋东边界反射产生的冷Rossby波、以及东风应力异常本身东传到赤道东太平洋,引起负的海洋混合层扰动厚度异常,导致了El Ni?o事件的消亡。对于热带西太平洋上风应力异常的形式是东部为异常西风应力而其西部为异常东风应力,并且它们同时向东传时,则大洋东部混合层厚度对异常风应力的响应随异常东风和西风应力的强度不同而不同,它们强度的相对大小对El Ni?o的持续时间具有重要的作用。  相似文献   

19.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

20.
Delayed impact of El Niño on Tropical Indian Ocean (TIO) Sea Surface Temperature (SST) variations and associated physical mechanisms are well documented by several studies. However, TIO SST evolution during the decay phase of La Niña and related processes are not adequately addressed before. Strong cooling associated with La Niña decay over the TIO could influence climate over the Indian Oceanic rim including Indian summer monsoon circulation and remotely northwest Pacific circulation. Thus understanding the TIO basin-wide cooling and related physical mechanisms during decaying La Niña years is important. Composite analyses revealed that negative SST anomalies allied to La Niña gradually dissipate from its mature phase (winter) till subsequent summer in central and eastern Pacific. In contrast, magnitude of negative SST anomalies in TIO, induced by La Niña, starts increasing from winter and attains their peak values in early summer. It is found that variations in heat flux play an important role in SST cooling over the central and eastern equatorial Indian Ocean, Bay of Bengal and part of Arabian Sea from late winter to early summer during the decay phase of La Niña. Ocean dynamical processes are mainly responsible for the evolution of southern TIO SST cooling. Strong signals of westward propagating upwelling Rossby waves between 10°S to 20°S are noted throughout (the decaying phase of La Niña) spring and summer. Anomalous cyclonic wind stress curl to the south of the equator is responsible for triggering upwelling Rossby waves over the southeastern TIO. Further, upwelling Rossby waves are also apparent in the Arabian Sea from spring to summer and partly contributing to the SST cooling. Heat budget analysis reveals that negative SST/MLT (mixed layer temperature) anomalies over the Arabian Sea are mostly controlled by heat flux from winter to spring and vertical advection plays an important role during early summer. Vertical and horizontal advection terms primarily contribute to the SST cooling anomalies over southern TIO and the Bay of Bengal cooling is primarily dominated by heat flux. Further we have discussed influence of TIO cooling on local rainfall variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号