首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paleoclimate simulations usually require model runs over a very long time.The fast integration version of a state-of-the-art general circulation model (GCM),which shares the same physical and dynamical processes but with reduced horizontal resolution and increased time step,is usually developed.In this study,we configure a fast version of an atmospheric GCM (AGCM),the Grid Atmospheric Model of IAP/LASG (Institute of Atmospheric Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics),at low resolution (GAMIL-L,hereafter),and compare the simulation results with the NCEP/NCAR reanalysis and other data to examine its performance.GAMIL-L,which is derived from the original GAMIL,is a finite difference AGCM with 72×40 grids in longitude and latitude and 26 vertical levels.To validate the simulated climatology and variability,two runs were achieved.One was a 60-year control run with fixed climatological monthly sea surface temperature (SST) forcing,and the other was a 50-yr (1950-2000) integration with observational time-varying monthly SST forcing.Comparisons between these two cases and the reanalysis,including intra-seasonal and inter-annual variability are also presented.In addition,the differences between GAMIL-L and the original version of GAMIL are also investigated. The results show that GAMIL-L can capture most of the large-scale dynamical features of the atmosphere, especially in the tropics and mid latitudes,although a few deficiencies exist,such as the underestimated Hadley cell and thereby the weak strength of the Asia summer monsoon.However,the simulated mean states over high latitudes,especially over the polar regions,are not acceptable.Apart from dynamics,the thermodynamic features mainly depend upon the physical parameterization schemes.Since the physical package of GAMIL-L is exactly the same as the original high-resolution version of GAMIL,in which the NCAR Community Atmosphere Model (CAM2) physical package was used,there are only small differences between them in the precipitation and temperature fields.Because our goal is to develop a fast-running AGCM and employ it in the coupled climate system model of IAP/LASG for paleoclimate studies such as ENSO and Australia-Asia monsoon,particular attention has been paid to the model performances in the tropics.More model validations,such as those ran for the Southern Oscillation and South Asia monsoon, indicate that GAMIL-L is reasonably competent and valuable in this regard.  相似文献   

2.
A fast version of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geo- physical Fluid Dynamics(LASG)/Institute of Atmospheric Physics(IAP)climate system model is briefly documented.The fast coupled model employs a low resolution version of the atmospheric component Grid Atmospheric Model of IAP/LASG(GAMIL),with the other parts of the model,namely an oceanic component LASG/IAP Climate Ocean Model(LICOM),land component Common Land Model(CLM),and sea ice component from National Center for Atmospheric Research Community Climate System Model (NCAR CCSM2),as the same as in the standard version of LASG/IAP Flexible Global Ocean Atmosphere Land System model(FGOALS g).The parameterizations of physical and dynamical processes of the at- mospheric component in the fast version are identical to the standard version,although some parameter values are different.However,by virtue of reduced horizontal resolution and increased time-step of the most time-consuming atmospheric component,it runs faster by a factor of 3 and can serve as a useful tool for long- term and large-ensemble integrations.A 1000-year control simulation of the present-day climate has been completed without flux adjustments.The final 600 years of this simulation has virtually no trends in global mean sea surface temperatures and is recommended for internal variability studies.Several aspects of the control simulation’s mean climate and variability are evaluated against the observational or reanalysis data. The strengths and weaknesses of the control simulation are evaluated.The mean atmospheric circulation is well simulated,except in high latitudes.The Asian-Australian monsoonal meridional cell shows realistic features,however,an artificial rainfall center is located to the eastern periphery of the Tibetan Plateau persists throughout the year.The mean bias of SST resembles that of the standard version,appearing as a"double ITCZ"(Inter-Tropical Convergence Zone)associated with a westward extension of the equatorial eastern Pacific cold tongue.The sea ice extent is acceptable but has a higher concentration.The strength of Atlantic meridional overturning is 27.5 Sv.Evidence from the 600-year simulation suggests a modulation of internal variability on ENSO frequency,since both regular and irregular oscillations of ENSO are found during the different time periods of the long-term simulation.  相似文献   

3.
Using reanalysis data as a benchmark,the authors evaluate the performance of an Atmospheric General Circulation Model(AGCM) named GAMIL(Grid-point Atmospheric Model of LASG/IAP).GAMIL is used to simulate the tropospheric temperature anomalies associated with the El Nio-Southern Oscillation(ENSO) in boreal winters for the period 1980-99.The results show that the symmetrical components of temperature anomalies simulated by GAMIL closely resemble those in the reanalysis data in spatial patterns,especially in the Northern Hemisphere.The limitation of the model is that the simulated cold anomaly over South Asia is located to the east of the reanalysis.The observed temperature anomalies in the South Pacific and the high latitudes of the Southern Hemisphere are not evident in the simulation.The maximum value is 0.8 K smaller and the minimum value is-0.4 K smaller than the reanalysis.The difference between the simulation and the reanalysis is more evident in the regional features of the asymmetrical components of the temperature anomalies.Our results demonstrate that the previously discovered weak response of the GAMIL model to specified sea surface temperature forcing is dominated by the symmetric(asymmetric) component in the tropics(extra-tropics).  相似文献   

4.
亚洲季风降水的多模式模拟结果分析   总被引:2,自引:2,他引:0  
利用参加政府间气候变化委员会(IPCC)第四次评估报告(AR4)的多个大气模式(包括中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室新发展的全球格点大气模式GAMIL)的AMIP-II(大气模式比较计划-II)积分的集合平均结果(MMEA),研究了当前大气模式对亚洲季风降水的平均模拟能力,同时也评估了GAMIL的模拟水平。对多年平均冬夏季降水的模拟研究发现:MMEA和GAMIL对冬季降水的模拟好于夏季。与以往的结果相比,MMEA对夏季印度洋和西太平洋地区降水的模拟改进不明显;部分模式能够模拟出夏季东亚副热带地区从中国东海到中太平洋的带状梅雨降水,但大部分模式的模拟强度还不够。可以看出GAMIL除了冬季印度洋和夏季菲律宾模拟的降水稍弱外,与MMEA的结果很接近。降水场的误差与环流场的误差对应。此外,作者还研究了降水的年际变化和季风爆发撤退过程的模拟能力。MMEA与观测在印度季风区降水的相关系数不如在东亚热带和东亚副热带季风区的好。各模式冬季的相关系数一般好于夏季,特别是东亚热带季风区冬季的相关系数普遍较高,而印度季风区夏季的相关系数普遍较低。MMEA对标准差的模拟并不总比单个模式的好。各个模式对东亚热带季风区冬季的降水距平同号率和降水距平百分率模拟得最好。季风爆发、撤退时降水推移的模拟也还有待于进一步提高。  相似文献   

5.
CAPT(Climate Change Prediction Program and Atmospheric Radiation Measurement Program(CCPP-ARM) Parameterization Testbed) has been a valuable tool to assess climate models in recent years,and the Tropical Warm Pool-International Cloud Experiment(TWP-ICE) has collected comprehensive measurements to verify its physical parameterizations.The present study evaluates the performances of the two GAMIL(grid-point atmospheric model of IAP LASG) versions during TWP-ICE using CAPT.The results indicate that GAMIL2.0 reproduced better shifts of clouds and rainfall during three distinct monsoon phases than GAMIL1.0,although both of them simulated the large-scale dynamical states well,which are mainly attributable to the different convective parameterizations.  相似文献   

6.
Vertical cumulus momentum transport is an important physical process in the tropical atmosphere and plays a key role in the evolution of the tropical atmospheric system. This paper focuses on the impact of the vertical cumulus momentum transport on Madden-Julian Oscillation (MJO) simulation in two global climate models (GCMs). The Tiedtke cumulus parameterization scheme is applied to both GCMs [CAM2 and Spectral Atmospheric general circulation Model of LASG/IAP (SAMIL)]. It is found that the MJO simulation ability might be influenced by the vertical cumulus momentum transport through the cumulus parameterization scheme. However, the use of vertical momentum transport in different models provides different results. In order to improve model's MJO simulation ability, we must introduce vertical cumulus momentum transport in a more reasonable way into models. Furthermore, the coherence of the parameterization and the underlying model also need to be considered.  相似文献   

7.
The Cloud Feedback Model Intercomparisons Project (CFMIP) Observation Simulator Package (COSP) is adopted in the Grid-point Atmospheric Model of IAP LASG (GAMIL2) during CFMIP at Phase II to evaluate the model cloud fractions in a consistent way with satellite observations. The cloud simulation results embedded in the Atmospheric Model Intercomparison Project (AMIP) control experiment are presented using three satellite simulators: International Satellite Cloud Climatology Project (ISCCP), Moderate Resolution Imaging Spectroradiometer (MODIS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar onboard the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Overall, GAMIL2 can produce horizontal distributions of the low cloud fraction that are similar to the satellite observations, and its similarities to the observations on different levels are shown in Taylor diagrams. The discrepancies among satellite observations are also shown, which should be considered during evaluation.  相似文献   

8.
GAMIL2.0 is the newly released version of the Grid-point Atmospheric Model of IAP LASG(GAMIL),in which the major modifications from GAMIL1.0 include an updated deep convection scheme and the incorporation of a two-moment bulk stratiform cloud microphysics scheme.This study evaluates the performances of both versions on Madden Julian Oscillation(MJO) simulations.The results show that GAMIL2.0 obtains an enhanced MJO eastward and northward propagation,which is weak in GAMIL1.0,and it reproduces a more reasonable MJO major structure coupling upper level wind,lower level wind,and outgoing long wave radiation.The contributions of each scheme and factor to the improvement of GAMIL2.0 simulations need further study.  相似文献   

9.
The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of IAP LASG version 1.0 (GAMIL1.0) model, which was guided by observational sea surface temperature (SST) from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.  相似文献   

10.
热带地区的湿绝热过程会放大地表的增暖幅度,在约200 hPa高度上产生增暖峰值,该现象被称为“热带对流层放大”。热带对流层放大是气候变化的显著特征之一,是检验气候模式性能的重要指标。本文基于RSS4.0卫星数据和ERA5.1再分析资料,系统分析了FGOALS-g3模式对气温变化特别是热带对流层放大的模拟能力,并通过新旧版本模式(FGOALS-g3与FGOALS-g2)的比较指出了新版本模式模拟技巧的提升;通过比较FGOALS-g3历史模拟试验与GAMIL3单独大气模式AMIP试验结果,研究了海气耦合过程对模拟结果的影响。结果表明,FGOALS-g3能够合理再现观测中的全球对流层显著增温趋势,但模拟的增温趋势偏强,这与气候系统内部变率以及两代气候系统模式所使用的历史气候外强迫差异有关。其对于观测中热带平均增温廓线以及热带对流层放大的空间分布均表现出良好的模拟性能,模拟的热带对流层放大现象的量值大小存在正偏差,与模拟的对流层低层温度变化偏强有关。FGOALS-g3较FGOALS-g2在性能上有一定提升,主要表现为增加了对于火山气溶胶强迫的响应,并在热带对流层放大的空间分布及平均气温趋势廓线...  相似文献   

11.
Simulated outgoing longwave radiation (OLR) outputs by two versions of the grid-point atmospheric general circulation model (GAMIL) were analyzed to assess the influences of improvements in cloud microphysics and convective parameterization schemes on the simulation of the Madden-Julian oscillation (MJO) and other tropical waves. The wavenumber-frequency spectral analysis was applied to isolate dominant modes of convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and inertio-gravity (IG) waves. The performances of different versions of the GAMIL model (version 1.0 (GAMIL1.0) and version 2.0 (GAMIL2.0)) were evaluated by comparing the power spectrum distributions of these waves among GAMIL1.0, GAMIL2.0, and observational data. GAMIL1.0 shows a weak MJO signal, with the maximum variability occurring separately at wavenumbers 1 and 4 rather than being concentrated on wavenumbers 1–3, suggesting that GAMIL1.0 could not effectively capture the intraseasonal variability. However, GAMIL2.0 is able to effectively reproduce both the symmetric and anti-symmetric waves, and the significant spectra of the MJO, Kelvin, and MRG waves are in agreement with observational data, indicating that the ability of GAMIL2.0 to simulate the MJO and other tropical waves is enhanced by improving the cloud microphysics and convective parameterization schemes and implying that such improvements are crucial to further improving this model’s performance.  相似文献   

12.
Performances of two LASG/IAP(State Key Laboratory of Numerical Modeling for Atmospheric Sci- ences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics)Atmospheric General Circulation Models(AGCMs),namely GAMIL and SAMIL,in simulating the major characteristics of the East Asian subtropical westerly jet(EASWJ)in the upper troposphere are examined in this paper.The mean vertical and horizontal structures and the correspondence of the EASWJ location to the meridional temperature gradient in the upper troposphere are well simulated by two models.However,both models underestimate the EASWJ intensity in winter and summer,and are unable to simulate the bimodal distribution of the ma- jor EASWJ centers in mid-summer,relative to the observation,especially for the SAMIL model.The biases in the simulated EASWJ intensity are found to be associated with the biases of the meridional temperature gradients in the troposphere,and furthermore with the surface sensible heat flux and condensation latent heating.The models capture the major characteristics of the seasonal evolution of the diabatic heating rate averaged between 30°-45°N,and its association with the westerly jet.However,the simulated maximum diabatic heating rate in summer is located westward in comparison with the observed position,with a rela- tively strong diabatic heating intensity,especially in GAMIL.The biases in simulating the diabatic heating fields lead to the biases in simulating the temperature distribution in the upper troposphere,which may further affect the EASWJ simulations.Therefore,it is necessary to improve the simulation of the meridional temperature gradient as well as the diabatic heating field in the troposphere for the improvement of the EASWJ simulation by GAMIL and SAMIL models.  相似文献   

13.
Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric Model of IAP LASG (GAMIL) on retrospective prediction of the A-AM interannual variation (IAV), and determine to what extent GAMIL can capture the two major observed modes of A-AM rainfall IAV for the period 1979-2003. The first mode is associated with the turnabout of warming (cooling) in the Nifio 3.4 region, whereas the second mode leads the warming/cooling by about one year, signaling precursory conditions for ENSO.
We show that the GAMIL one-month lead prediction of the seasonal precipitation anomalies is primarily able to capture major features of the two observed leading modes of the IAV, with the first mode better predicted than the second. It also depicts the relationship between the first mode and ENSO rather well. On the other hand, the GAMIL has deficiencies in capturing the relationship between the second mode and ENSO. We conclude: (1) successful reproduction of the E1 Nifio-excited monsoon-ocean interaction and E1 Nifio forcing may be critical for the seasonal prediction of the A-AM rainfall IAV with the GAMIL; (2) more efforts are needed to improve the simulation not only in the Nifio 3.4 region but also in the joining area of Asia and the Indian-Pacific Ocean; (3) the selection of a one-tier system may improve the ultimate prediction of the A-AM rainfall IAV. These results offer some references for improvement of the GAMIL and associated seasonal prediction skill.  相似文献   

14.
平流程准两年振荡(QBO)是赤道平流层(~100-1 hPa)变率的主要模态,可对中高纬地区的环流产生重要影响,但目前利用通用大气环流模式(GCM)对其进行准确模拟仍然是一个挑战.本文利用IAP大气环流模式(IAP-AGCM)的中高层大气模式版本(IAP-AGCML69)对QBO进行模拟,并对其动量收支情况进行分析.研究发现,QBO主要是由对流活动引起的重力波强迫(参数化)引起的,但该动量强迫被平流层赤道上升流所引起的平流过程显著削弱.模式可分辨尺度的波动强迫对赤道上空的QBO的总纬向风倾向有正贡献,在上平流层,其量值大小与参数化的重力波强迫相当.以上结果提供了QBO形成机制以及模式模拟差异可能原因的认识.  相似文献   

15.
郭准  周天军 《大气科学》2012,36(5):863-878
1997/98年强E1 Ni(n)o背景下西太平洋暖池区云辐射强迫的变化,表现出诸多不同于以往的特征,已经成为检验气候模式性能的一个重要标准.本文基于卫星资料,分析了大气环流模式GAMIL1.0和2.0版对上述现象的模拟能力.结果表明,GAMIL1.0模式对热带地区云辐射特征分布,尤其对西太平洋暖池区的长(短)波云辐射...  相似文献   

16.
LASG/IAP和BCC大气环流模式模拟的云辐射强迫之比较   总被引:4,自引:8,他引:4  
郭准  吴春强  周天军 《大气科学》2011,35(4):739-752
通过与ISCCP (International Satellite Cloud Climatology Project)逐月辐射资料的比较,本文从气候态和对ENSO响应的角度,评估了国内的三个大气环流模式BCC AGCM、IAP GAMIL和IAP SAMIL对云辐射强迫的模拟能力,讨论了影响模拟结果不确定性的因素.分...  相似文献   

17.
The Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2) has been developed through upgrading the deep convection parameterization, cumulus cloud fraction and two-moment cloud microphysical scheme, as well as changing some of the large uncertain parameters. In this paper, its performance is evaluated, and the results suggest that there are some significant improvements in GAMIL2 compared to the previous version GAMIL1, for example, the components of the energy budget at the top of atmosphere (TOA) and surface; the geographic distribution of shortwave cloud radiative forcing (SWCF); the ratio of stratiform versus total rainfall; the response of atmospheric circulation to the tropical ocean; and the eastward propagation and spatiotemporal structures of the Madden Julian Oscillation (MJO). Furthermore, the indirect aerosols effect (IAE) is -0.94 W m-2, within the range of 0 to -2 W m-2 given by the IPCC 4th Assessment Report (2007). The influence of uncertain parameters on the MJO and radiation fluxes is also discussed.  相似文献   

18.
1.IntroductionNumericalmodelsforweatherpredictionarebecomingmorereliableandpopularinmeteorologyandclimateresearch.Multi-laye...  相似文献   

19.
This paper evaluates the simulation of Arctic sea ice states using an ocean-ice coupled model that employs LASG/IAP(the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/the Institute of Atmospheric Physics) Climate Ocean Model(LICOM) and the sea-ice model from the Bergen Climate Model(BCM).It is shown that the coupled model can reasonably reproduce the major characteristics of the mean state,annual cycle,and interannual variability of the Arctic sea ice concentration.The coupled model also shows biases that were generally presented in other models,such as the underestimation of summer sea ice concentration and thickness as well as the unsatisfactory sea ice velocity.Sensitivity experiments indicate that the insufficient performance of the ocean model at high latitudes may be the main reason for the biases in the coupled model.The smoother and the fake "island",which had to be used due to the model’s grid in the North Pole region,likely caused the ocean model’s weak performance.Sea ice model thermodynamics are also responsible for the sea ice simulation biases.Therefore,both the thermodynamic module of the sea ice component and the model grid of the ocean component need to be further improved.  相似文献   

20.
GAMIL CliPAS试验对夏季西太平洋副高的预测   总被引:2,自引:1,他引:1  
邹立维  周天军  吴波 《大气科学》2009,33(5):959-970
利用GAMIL CliPAS “两步法” 季度预测试验, 检验了后报的1980~1999年北半球夏季西太平洋副热带高压 (简称副高) 的年际变化, 检查了Seoul National University (SNU) 动力统计预测系统对SST预测准确度, 并讨论了影响中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室格点大气模式 (GAMIL) 对副高预测效果的可能原因。500 hPa位势高度可预报性指数表明西太平洋副高具有较高可预报性。集合平均基本能再现西太平洋副高的变率特征, 但最大方差的位置和强度与观测稍有区别。观测证据显示, 副高存在2~3年变率和3~5年变率, 且2~3年变率比3~5年变率强。GAMIL能够准确预测观测副高的3~5年变率, 尽管其强度要强于观测。这与试验所用的预测海温能够很好表现赤道中东太平洋 (5.5°S~5.5°N, 190.5°E~240.5°E) 海温的年际变率有关。同时, GAMIL预测的副高2~3年变率较之观测显著偏弱, 这可能与SNU预测的海洋大陆地区 (5.5°S~0.5°N, 110.5°E~130.5°E) SST的2~3年变率偏弱有关。分析表明, SNU预测海温的这种弱点, 与SNU海温统计预测模式所用的历史海温 (OISST) 本身对海洋大陆地区2~3年变率的刻画能力较弱有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号