首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Songxi deposit is a newly discovered large Ag (Sb) deposit. By using a suite of high-vacuum quadrupole gas mass spectrometer systems, the authors have recognized many kinds of light hydrocarbons in fluid inclusions of minerals. These hydrocarbons are mainly composed of C1-C4 saturated alkanes, while the contents of C2-C4 unsaturated alkenes and aromatic hydrocarbons are quite low, suggesting that the metallogenic processes have not been affected by magmatic activities. Chemical equilibrium studies show that these hydrocarbons may be a mixture of organic gases generated by microorganism activity and those by thermal cracking of type-n kerogens (kukersite) in sedimentary host rocks, and the former may constitute more than two-thirds, implying that microorganism might have played an important role in the metallogenesis. The equilibrium temperature of the latter is about 300℃, which is much higher than the geothermal temperature at the estimated depth of metallogenesis. Thus, the light hydrocarbons gen  相似文献   

2.
嵩溪银(锑)矿是一个新发现的大型独立银矿。矿物流体包裹体超高真空四极气相质谱系统测定显 示,该矿成矿流体中存在多种轻烃有机气体,主要由C1-C4饱和烷烃组成,仅含微量C2-C4不饱和烯烃和芳烃,说明 成矿过程基本未受到高温岩浆作用的影响。化学平衡研究表明,这些轻烃气体为微生物成因和沉积岩围岩中Ⅱ类 干酪根热解成因的混合气体,其中前者占2/3以上,说明成矿中微生物活动曾起到相当大的作用;后者的平衡温度 为300℃,远超过成矿深度所能达到的地热温度,因此这部分轻烃气体可能源于沉积盆地深处,经成矿流体长距离携 带到达较浅的矿化部位。文章从一个侧面证实嵩溪矿可能为沉积热卤水改造型矿床,而不是前人所认为的海底基 性火山喷流或中低温火山热液充填矿床。  相似文献   

3.
文章在矿床地质、地球化学及同位素年代学研究的基础上,总结了菲莫铜钼多金属矿床的成因及理想模式。矿床中岩、矿石S、Pb同位素组成显示,矿床成矿物质主要来源于深部地幔或下地壳古老基底,后混入部分上地壳物质;H、O同位素特征显示,矿床成矿热液以上升的岩浆热液为主,结合部分变质热液及渗透淋滤的大气降水形成混合热液;Re-Os同位素测年得出矿床形成时间为(47·81±0·71)Ma,矿化主要发生于大皮甲岩体岩浆侵位晚期的期后热液阶段。矿床成因类型属沉积-变质-岩浆热液叠加改造型铜钼多金属矿床。成矿作用具长期性、多期次、多来源、多阶段、多成因的特征,大致经历了古元古代的沉积定位阶段→中新元古代的区域变质改造富集阶段→喜马拉雅期的颠覆性改造叠加富集成矿阶段。  相似文献   

4.
A selection of Precambrian kerogens has been characterized by Curie-point pyrolysis combined with gas chromatography and gas chromatography-mass spectrometry. The resulting pyrograms can be classified into two groups. The first group of pyrograms is derived from kerogens whose pyrolysis products are dominated by alkanes, alkenes and alkadienes, whereas the second group contains pyrograms from kerogens that produce complex mixtures of branched hydrocarbons dominated by components at every third carbon number (C9, C12, C15, C18, C21, and up to C33). It is suggested that these branched hydrocarbons may remotely represent remains of isoprenoid hydrocarbons, or other branched hydrocarbons, of the original organisms.  相似文献   

5.
在广东长坑金银矿床的主要含金岩石碳质硅质岩巾两次找到放射虫化石,其时代可能属于早石炭世。在这些碳质硅质岩中还发现一些生物化石残迹.如石英环、石英圈、石英单晶球、石英多晶球、生物残体和似生物结构。由此认为碳质硅质岩原来含有一定量的微体生物化石.形成于海盆环境,应属沉积成因,这是证明碳质硅质岩属于热水沉积成因而不属于热液蚀变交代成因的有力证据;也表明热水沉积过程有生物物质的加入,热水沉积和生物沉积可以混合发生,说明长坑金银矿床形成手张性、不补偿、水较深的盆地之中。对长坑盒银矿床的矿区含矿地层应泼归属的岩石地层单位提出了疑问。  相似文献   

6.
The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformably in low-grade metamorphic volcano-sedimentary rock series with well-developed Na-rich hydrothermal sedimentary rocks and typical hydrothermal sedimentary ore fabrics. Fluid inclusions and isotopic geochemistry studies suggest that cobalt mineralizing fluid is dominated by NaCl-H2O system, accompanied by NaCl-CO2-H2O-N2 system responsible for gold mineralization. Massive, banded and disseminated pyrite ores have similar compositions of He and Ar isotopes from the mineralizing fluid, with 3He/4He range between 0.10 to 0.31Ra (averaging 0.21Ra), and 40Ar/36Ar between 302 and 569 (averaging 373), which reflects that Co mineralizing fluids derived dominantly from meteoric water deeply circulating. δ34S values of pyrite approaches to zero (δ34S ranging from ?4.5‰ to +1.5‰, centering around ?1.8‰ to ?0.2‰), reflecting its deep source. Ore lead is characterized by distinctly high radiogenesis, with 206Pb/204Pb>19.279, 207Pb/204Pb>15.691 and 208Pb/204Pb>39.627, and its values show an increase trend from country rocks, regional Paleozoic volcanic rocks to ores. This may have suggested that high radiogentic ore Pb derived mainly from country rocks by leaching meteoric water-dominated hydrothermal fluid during its circulation at depth. Cobalt occurs mainly in sulfide phase (such as pyrite), but cobalt enrichment, and presence and increasing contents of Co-bearing minerals have a positive correlation with metamorphic degree. The Tuolugou deposit and other typical strata-bound Co-Cu-Au deposits have striking similarities in the geological features and metallogenic pattern of primary cobalt. All of them are syngenetic hydrothermal exhalative sedimentation in origin.  相似文献   

7.
On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, compositional variations, temperature and pressure changes, fluid evolution, Pb isotope tracing and Rb-Sr isotopic dating of fluid inclusions entrapped in the above three metallogenic stages. The results show that Na+ is decreased obviously with metallogenic evolution, while K+ and other cations and gas compositions (H2, CO, CH4 and CO2) are increased slightly, and that the temperature and salinity vary in a pulsating manner along with the metallogenic evolution. Inverse calculation of hydrogen and oxygen isotopes indicate that at the first metallogenic stage the fluids were magmatic water, at the second stage they were dominated by magmatic water with a minor amount of meteoric water involved, and at the third stage, i.e., the final stage of metallogenesis, the fluids were composed complete  相似文献   

8.
凤-太多金属矿集区主要金属矿床成矿系列与找矿方向   总被引:1,自引:0,他引:1  
通过对凤-太多金属矿集区区域地质背景及地球化学、地球物理特征的综合研究,结合区内已知矿床的系统分析,把凤-太多金属矿集区主要金属矿床划分为3个成矿系列,即泥盆纪碳酸岩盐容矿的铅锌矿床成矿系列、泥盆纪沉积改造型铜矿床成矿系列和中生代与造山作用有关的金矿床成矿系列。提出长沟-洞沟地区、凤州七里坪地区、苇子坪洞沟-剪子沟地区等为近期的找矿重点地区,并对长沟-洞沟地区、梯子崖—三角崖地区指出了具体的找矿方向,认为长沟-洞沟地区的已知铅锌矿带与八卦庙金矿床处于同一次级热水沉积盆地中,其范围大致与河-2异常吻合,成矿条件良好,长沟背斜南翼(倒转翼)、倾伏端和洞沟背斜长沟—八卦庙段是下一步铅锌金的重要找矿地段。这些对该区的找矿工作具有重要的指导意义。  相似文献   

9.
陕西柞山地区穆家庄铜矿稀土元素地球化学特征   总被引:6,自引:2,他引:6       下载免费PDF全文
尽管秦岭泥盆系铅锌金多金属成矿带成矿作用均与热水喷流沉积作用有关,柞山地区却有别于凤太地区,具有独特的铜矿成矿背景。本文通过对矿床的岩、矿石稀土元素地球化学研究,认为浸染状贫铜矿石和近矿围岩的稀土组成和配分曲线基本一致,表明浸染状贫铜矿石代表了泥盆纪时期热水沉积事件所形成的含少量硫化物的热水沉积岩初步富集的产物,泥盆纪时期形成了穆家庄铜矿的初始矿源层。嗣岩中的层纹状硅质岩可能代表了泥盆纪时期的热水沉积岩性质。块状富矿石的稀土组成代表了广泛的陆陆碰撞造山运动所产生的流体热液作用的结果,它既就地改造了初始矿源层,而且从异地可能带来了部分成矿物质,在合适的构造部位改造富集成矿。穆家庄铜矿的成因为改造型的。  相似文献   

10.
豆浩然  张文兰  王汝成  陈文迪 《地质学报》2018,92(11):2269-2300
牛塘界钨矿床是桂北地区苗儿山—越城岭岩体南部的一个大型钨矿床,与矿化密切相关的花岗岩为已绿泥石化的中细粒白云母花岗岩。对花岗岩进行了岩石地球化学研究,认为该岩体为高分异、高演化铝过饱和富钨花岗岩;对岩体中锆石进行了U- Pb定年分析,获得成岩年龄为410±4.9Ma;对与白钨矿共生的磷灰石进行了原位U- Pb定年,测得成矿年龄为418±37Ma,两组年龄数据表明,牛塘界钨矿床的成矿花岗岩及成矿作用都属加里东期。 本文还对牛塘界钨矿床的矿石进行了系统的研究,首先,根据蚀变类型划分出三种不同类型的矿石:矽卡岩化矿石、绿泥石化矿石及石英脉(块)型矿石;其次,根据三种矿石的特征划分出三个不同的成矿阶段,即三种矿石的形成与不同的成矿阶段相对应:矽卡岩化阶段、石英-硫化物阶段及晚期硅化-碳酸盐化阶段;第三,对各成矿阶段形成的白钨矿进行了原位微量元素分析,根据白钨矿中Mo含量的变化及白钨矿REE配分曲线中Eu的异常,阐释了成矿环境氧逸度的变化;根据白钨矿中微量元素Na和Nb含量的变化,结合白钨矿REE配分曲线特征,揭示了REE置换进入白钨矿的机理及成矿流体性质的演化趋势;第四,根据白钨矿氧同位素的分析结果,得出成矿流体为岩浆水混入部分经地层循环的大气水;第五,对成矿母岩中成矿元素W的分析结果表明,牛塘界钨矿成矿物质来源于成矿母岩。因此牛塘界钨矿床其成矿物质来源于矿区内高度分异演化的花岗岩,属加里东期晚期的产物。  相似文献   

11.
《Resource Geology》2018,68(3):303-325
The Lujing uranium deposit, located in the southeastern part of the Nanling metallogenic province, is one of the representative granite‐related hydrothermal uranium deposits in South China. Basic geology, geochemistry, and geochronology of the deposit have been extensively studied. However, there is still a chronic lack of systematic research on the genesis and metallogenic process of the deposit. Thus, we recently carried out an electron microprobe and stable isotopic analysis. The main research results and progresses are as follows: Uranium minerals in this deposit include coffinite, pitchblende, and uranothorite, and small amounts of uranium exist in accessory minerals in the form of isomorphism. Coffinite, which occurs predominantly as the pseudomorphs after pitchblende, also occurs as a primary mineral and is locally formed from the remobilization of uranium from adjacent uranium‐bearing minerals. The mineralizing fluid was originally composed of a magmatic fluid generated by late Yanshanian magmatism. The high As content of pyrite in ores may reflect the addition of meteoric water, or the formation water (or both), to the magmatic hydrothermal system. The δ34S values vary from −14.4‰ to 13.9‰ (mean δ34S = −3.9‰), showing a range that is similar to nearby Cambrian metamorphic strata and Indosinian granites, indicating that these host rocks represent the source of sulfur; however, the possibility of a mantle source cannot be completely ruled out. According to our new isotopic data and recent Pb isotopic data, we conclude that the uranium in ores was derived by leaching dominantly from the uranium‐rich host rocks, especially the Cambrian metamorphic strata. The δ13CPDB values (−8.75‰ to 1.40‰; mean δ13CPDB = −5.41‰) and δ18OSMOW values (5.45–18.62‰; mean δ18O = 13.02‰) of reddish calcite from the ore‐forming stage suggest that the CO2 in the mineralizing fluids was derived predominantly from the mantle, with a small component contributed by marine carbonates. Based on these new data and previous research results, this paper proposes that uranium metallogenesis in the Lujing deposit is closely associated with mafic magmatism resulting from crustal extension during the Cretaceous to Paleogene in South China.  相似文献   

12.
In Kamchatka, Central Koryak, Central Kamchatka and East Kamchatka metallogenic belts are distributed from northwest to southeast. K–Ar age, sulfur isotopic composition of sulfide minerals, and bulk chemical compositions of ores were analyzed for 13 ore deposits including hydrothermal gold‐silver and base metal, in order to elucidate the geological time periods of ore formation, relationship to regional volcanic belts, type of mineralization, and origin of sulfur in sulfides. The dating yielded ore‐forming ages of 41 Ma for the Ametistovoe deposit in the Central Koryak, 17.1 Ma for the Zolotoe deposit and 6.9 Ma for the Aginskoe deposit in the Central Kamchatka, and 7.4 Ma for the Porozhistoe deposit and 5.1 Ma for the Vilyuchinskoe deposit in the East Kamchatka metallogenic belt. The data combined with previous data of ore‐forming ages indicate that the time periods of ore formation in these metallogenic belts become young towards the southeast. The averaged δ34SCDT of sulfides are ?2.8‰ for the Ametistovoe deposit in Central Koryak, ?1.8‰ to +2.0‰ (av. ?0.1‰) for the Zolotoe, Aginskoe, Baranievskoe and Ozernovskoe deposits in Central Kamchatka, and ?0.7 to +3.8‰ (av. +1.7‰) for Bolshe‐Bannoe, Kumroch, Vilyuchinskoe, Bystrinskoe, Asachinskoe, Rodnikovoe, and Mutnovskoe deposits in East Kamchatka. The negative δ34SCDT value from the Ametistovoe deposit in Central Koryak is ascribed to the contamination of 32S‐enriched sedimentary sulfur in the Ukelayat‐Lesnaya River trough of basement rock. Comparison of the sulfur isotope compositions of the mineral deposits shows similarity between the Central Koryak and Magadan metallogenic belts, and East Kamchatka and Kuril Islands belts. The Central Kamchatka belt is intermediate between these two groups in term of sulfur isotopic composition.  相似文献   

13.
钦杭成矿带是华南地区一条著名的中生代斑岩-矽卡岩铜铅锌多金属成矿带,其南段阳春盆地内以集中发育白垩纪钨锡多金属矿床为特征,侏罗纪成矿仅有个别铜铁钼矿床报道。因此,区内有关侏罗纪成矿特征、矿化元素组合、成岩成矿物质等问题尚不明晰。本文对阳春盆地内黑石岗矽卡岩型铅锌矿床和留洞石英脉型钨钼矿床进行了成岩成矿年代学研究。结果显示,黑石岗花岗闪长岩的锆石U-Pb等时线年龄为164.9±0.7Ma,留洞钨钼矿的辉钼矿Re-Os同位素等时线年龄为164.6±4.0Ma,加权平均值161.2±2.4Ma,表明区内铅锌钨钼成矿作用均发生于中侏罗世晚期。该结果不仅扩充了区内侏罗纪成矿作用规模,同时丰富了区内侏罗纪矿化元素组合,包括铜铁-铜铅锌-钨钼等多金属矿床。留洞矿床辉钼矿具有极低的Re含量(514.6×10-9~2365×10-9),黑石岗花岗闪长岩的εHf(t)值变化于-5.2~-2.9之间,平均为-4.3。通过对成矿带内侏罗纪铜多金属矿床的相关数据综合及对比分析,本文认为阳春盆地此时期成岩成矿物质均以壳源为主,可能混有少量幔源物质。黑石岗和留洞矿床成岩成矿年龄的确定为下一步在阳春盆地开展侏罗纪矿床找矿勘探提供了重要信息,也为进一步深入研究钦杭成矿带侏罗纪成岩成矿作用动力学背景提供了参考。  相似文献   

14.
A previous study (Disnar et al., 1986a) indicated significant volatile hydrocarbon compounds (nC1 to C5) in mineralized carbonate rocks of the Trèves Pb-Zn deposit (Gard Dept., France) as well as an accumulation of methane, ethylene and ethane in the hanging wall of the deposit. The present study analyzed rock samples taken from outcrops vertically above and at a distance from the deposit and identified three anomalous zones indicating the presence of concealed mineralization. The first zone is due to methane (radius about 3 km), the second, to alkenes (about 2 km) and the third, to alkanes, higher homologues of methane (about 1 km). These anomalies are interpreted as resulting from migration of these compounds through the sedimentary cover from the deposit where they could have been generated during mineralizing events, or during subsequent diagenesis. Their specific signature with regard to that given by samples taken at a distance from the orebodies can be attributed to the hydrothermal and biological processes responsible for the deposition of the ore.  相似文献   

15.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

16.
通过对凤太盆地八卦庙金矿和八方山一二里河铅锌矿的矿床地质、矿床地球化学、流体地球化学的研究,发现两类矿床δ(^30Si)分布范围与海底喷流沉积成因硅质岩的硅同位素接近,表明其属热水沉积成因。矿床δ(^34S)比较接近,但铅锌矿矿石中硫源来源更广。碳酸盐的碳、氧同位素特征显示两类矿床均具有热水沉积特点,金矿的样品更趋向于火成岩,表明受后期岩浆热液影响更大。经过流体包裹体测温,金矿床均一温度变化范围大,具有多期次多阶段的特征。矿床同位素和流体包裹体特征表明,金矿床与铅锌矿床在成矿物源、成矿流体特征等方面都存在很多相似性,反映出热水喷流作用与两类矿床成因有密切的关系,但二者又存在差异。结合成矿地质背景,认为铅锌矿的形成与定位受区域热变质改造和动力作用控制,而金矿的形成主要受晚期岩浆热液活动控制,由此建立了金矿与铅锌矿的成矿模式。  相似文献   

17.
The Baizhangyan skarn‐porphyry type W–Mo deposit is located in a newly defined Mo–W–Pb–Zn metallogenic belt, which is in the south of Middle‐Lower Yangtze Valley Cu–Fe–Au polymetallic metallogenic belt in SE China. The W–Mo orebodies occur mainly within the contact zone between fine‐grained granite and Sinian limestone strata. There are two types of W–Mo mineralization: major skarn W–Mo mineralization and minor granite‐hosted disseminated Mo mineralization which was traced by drilling at depth. Eight molybdenite samples from Mo‐bearing ores yield Re–Os dates that overlap within analytical error, with a weighted average age of 134.1 ± 2.2 Ma. These dates are in close agreement with SIMS U–Pb concordant zircon age for fine‐grained granite at 133.3 ± 1.3 Ma, indicating that crystallization of the granite and hydrothermal molybdenite formation were coeval and likely cogenetic. The Baizhangyan W–Mo deposit formed in the Early Cretaceous extensional tectonic setting at the Middle‐Lower Yangtze Valley metallogenic belt and the Jaingnan Ancient Continent. Based on mineral compositions and crosscutting relationships of veinlets, hydrothermal alteration and mineralization, the ore mineral paragenesis of the Baizhangyan deposit is divided into four stages: skarn stage (I), oxide stage (II), sulfide stage (III), and carbonate stage (IV). Fluid inclusions in garnet, scheelite, quartz and calcite from W–Mo ores are mainly aqueous‐rich (L + V) type inclusions. Following garnet deposition at stage I, the high‐temperature fluids gave way to progressively cooler, more dilute fluids associated with tungsten–molybdenite–base metal sulfide deposition (stage II and stage III) (162–360°C, 2.7–13.2 wt % NaCl equivalent) and carbonate deposition (stage IV) (137–190°C, 0.9–5 wt % NaCl equiv.). Hydrogen‐oxygen isotope data from minerals of different stages suggest that the ore‐forming fluids consisted of magmatic water, mixed in various proportions with meteoric water. From stage I to stage IV, there is a systematic decrease in the homogenization temperature of the fluid‐inclusion fluids and calculated δ18O values of the fluids. These suggest that increasing involvement of formation water or meteoric water during the fluid ascent resulted in successive deposition of scheelite and molybdenite at Baizhangyan.  相似文献   

18.
柞水银洞子银铅多金属矿床岩、矿石稀土总量变化较大,稀土分配模式总体均为右倾型,富集轻稀土,重稀土分异不明显,重晶石脉、矿石皆呈负铈异常,铈亏损这一特征反映了成矿过程中的海底热水溶液作用。该矿床硫同位素组成变化范围大,且以重硫为主,主矿体含矿溶液总硫值与泥盆纪海水基本一致,反映硫源来自半封闭还原条件的泥盆纪海水。铅同位素分析表明矿床铅来源主要为深源,与海底火山活动存在一定关系。已有的同位素年龄数据和研究分析表明该矿床形成于中泥盆世,成矿作用与热水沉积成岩作用同时发生,相关证据也证明热水沉积作用是主要的成矿方式。研究认为,该矿床属热水喷流沉积成因,银洞子银铅多金属矿床的形成可以分为海底喷气沉积成矿和改造成矿期两个成矿期,前者是本矿床最主要的成矿期,形成了热水沉积岩(重晶石岩、硅质岩等)以及细粒金属矿物,建立了成矿模式。结合区内地质勘查工作,提出了5条找矿标志,并通过资料研究分析,从矿区外围找矿和新区找矿两个方面进行找矿预测,指出了8片预测靶区。这为深化认识柞水-山阳沉积盆地内成矿机理和指导找矿指明了方向。  相似文献   

19.
Anatase and its allomorphic mineral rutile have the most prominent economic significance among titanium mineral resources and constitute one of the badly needed mineral resources currently in China. The Yantizishan-Moshishan anatase deposit was formerly referred to as an iron deposit. Based on recent investigation and exploration the authors believe that it is actually a large metamorphosed sedimentary anatase-dominated deposit belonging to a new genetic type. Ore bodies occur in stratoid and lenticular forms in Mesoproterozoic (1751 Ma) schist, metasandstone (metasiltstone), and amphibolite. Rich ores have perthitic structure comprising chiefly interbedded quartz perthite (with disseminated anatase and rutile) and anatase perthite. Ore minerals are mainly anatase and subordinately rutile and ilmenite (±hematite), while nonmetallic minerals are chiefly quartz with a certain amount of anthophyllite and biotite (±garnet). The grain sizes of anatase, rutile and ilmenite are 0.01–0.1 mm. Rich ores contain 3.14% to 15.46% TiO2, averaging 6.91%, while the low-grade ores have TiO2 content about 1.2%to 2.97%, averaging 1.76%. The ores have relatively high TFe and V contents. Trace elements in anatase and rutile such as Nb and Cr were analyzed by the electron microprobe. According to their relatively low Nb and Cr contents, source anatase and rutile must have come from meta-mafic rocks. Trace elements of the associated ilmenite show relatively high MnO and low MgO contents, just in contrast to those of ilmenite in V-Ti-magnetite ores of magmatic origin. The protoliths of amphibolite wall rocks should be basalt and picrite-basalt. Pertochemical data suggest that the tectonic setting of these rocks belongs to an island arc or a transitional belt between the island arc and oceanic ridge. Silicon isotope study shows that δ30Si values of different anatase ores, quartzite, and schist in this deposit are 0.1‰ to –0.9‰, similar to those of marine hydrothermal exhalative sedimentary deposits. All of these geological and geochemical characteristics of the ore deposit suggest that the anatase ores and amphibolite are products of submarine basic volcanism. The ores had chemical precipitation features, but were later subjected to regional intermediate (or somewhat lower) grade metamorphism (1158 Ma). Rutile was formed mainly in the process of this metamorphism. The ore belt locally underwent hydrothermal modification during the emplacement of Late Yanshanian granite (118?Ma).  相似文献   

20.
庐枞盆地龙桥铁矿床中菱铁矿的地质特征和成因意义   总被引:6,自引:0,他引:6  
龙桥铁矿床是庐枞火山岩盆地中的一个大型的铁矿床,多年来对其矿床成因的认识存在较大的争论.文章在野外地质研究工作的基础上,通过对矿床中菱铁矿的岩矿分析鉴定和电子探针测试,确定了矿床纹层状矿石中的菱铁矿为沉积成因.通过对菱铁矿的产出特征分析,并结合龙桥铁矿床的部分地质地球化学研究成果,认为在该矿床形成过程中,早期沉积形成了纹层状的菱铁矿层,在燕山期的岩浆热事件中,部分沉积菱铁矿被交代形成了磁铁矿和具有残余骸晶结构等一系列矿石交代组构特征的矿物.纹层状矿石既具有沉积特征,也具有热液改造特征,证实了矿床的形成存在早期(三叠纪)的沉积成矿(菱铁矿)作用和晚期(燕山期)的热液成矿(磁铁矿)作用.菱铁矿的研究为进一步确定龙桥铁矿床的成因提供了新的佐证.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号