首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluate if the distribution and abundance ofThalassia testudinum, Syringodium filiforme, andHalodule wrightii within Biscayne Bay, Florida, are influenced by salinity regimes using, a combination of field surveys, salinity exposure experiments, and a seagrass simulation model. Surveys conducted in June 2001 revealed that whileT. testudinum is found throughout Biscayne Bay (84% of sites surveyed),S. filiforme andH wrightii have distributions limited mainly to the Key Biscayne area.H. wrightii can also be found in areas influenced by canal discharge. The exposure of seagrasses to short-term salinity pulses (14 d, 5–45‰) within microcosms showed species-specific susceptibility to the salinity treatments. Maximum growth rates forT testudinum were observed near oceanic salinity values (30–40‰) and lowest growth rates at extreme values (5‰ and 45‰).S. filiforme was the most susceptible seagrass species; maximum growth rates for this species were observed at 25‰ and dropped dramatically at higher and lower salinity.H. wrightii was the most tolerant, growing well at all salinity levels. Establishing the relationship between seagrass abundance and distribution and salinity is especially relevant in South Florida where freshwater deliveries into coastal bays are influenced by water management practices. The seagrass model developed by Fong and Harwell (1994) and modified here to include a shortterm salinity response function suggests that freshwater inputs and associated decreases in salinity in nearshore areas influence the distribution and growth of single species as well as modify competitive interactions so that species replacements may occur. Our simulations indicate that although growth rates ofT. testudinum decrease when salinity is lowered, this species can still be a dominant component of nearshore communities as confirmed by our surveys. Only when mean salinity values are drastically lowered in a hypothetical restoration scenario isH. wrightii able to outcompeteT. testudinum.  相似文献   

2.
The Florida Bay ecosystem has changed substantially in the past decade, and alterations in the seagrass communities have been particularly conspicuous. In 1987 large areas ofThalassia testudinum (turtlegrass) began dying rapidly in western Florida Bay. Although the rate has slowed considerably, die-off continues in many parts of the bay. Since 1991, seagrasses in Florida Bay have been subjected to decreased light availability due to widespread, persistent microalgal blooms and resuspended sediments. In light of these recent impacts, we determined the current status of Florida Bay seagrass communities. During the summer of 1994, seagrass species composition, shoot density, shoot morphometrics, and standing crop were measured at 107 stations. Seagrasses had been quantified at these same stations 10 yr earlier by Zieman et al. (1989).T. testudinum was the most widespread and abundant seagrass species in Florida Bay in both 1984 and 1994, and turtlegrass distribution changed little over the decade. On a baywide basis,T. testudinum density and biomass declined significantly between surveys; mean short-shoot density ofT. testudinum dropped by 22% and standing crop by 28% over the decade.T. testudinum decline was not homogeneous throughout Florida Bay; largest reductions in shoot density and biomass were located principally in the central and western bay. Percent loss ofT. testudinum standing crop in western Florida Bay in 1994 was considerably greater at the stations with the highest levels of standing crop in 1984 (126–215 g dry wt m−2) than at the stations with lower levels of biomass. While turtlegrass distribution remained consistent over time, both the distribution and abundance of two other seagrasses,Halodule wrightii andSyringodium filiforme, declined substantially between 1984 and 1994. Baywide,H. wrightii shoot density and standing crop declined by 92%, andS. filiforme density and standing crop declined by 93% and 88%, respectively, between surveys. Patterns of seagrass loss in Florida Bay between 1984 and 1994 suggest die-off and chronic light reductions were the most likely causes for decline. If die-off and persistent water-column turbidity continue in Florida Bay, the long-term future of seagrasses in the bay is uncertain.  相似文献   

3.
Seagrass meadows are often cited as important nursery areas for newly settled red drum even though many estuaries, such as Galveston Bay, Texas, support large numbers of red drum and have limited seagrass cover, suggesting the use of alternate nursery areas. We examined patterns of habitat use for newly settled red drum at six sampling areas in Galveston Bay; two areas had seagrass beds and four areas had no seagrass. We measured densities in different habitat types using epibenthic sleds and enclosure samplers. Peak recruitment of young red drum to the estuary occurred during September through December. Highest densities of new settlers were found in seagrass meadows (primarilyHalodule wrightii), but when seagrass was absent, the highest densities of red drum occurred along theSpartina alterniflora marsh edge interface. Densities were relatively low on nonvegetated bottom away from the marsh edge. We also examined density patterns in other habitat types at selected sampling areas and found no red drum within marsh vegetation away from the marsh edge interface (5 and 10 m into the marsh interior). Oyster reefCrassostrea virginica was sampled using lift nets, and we found no red drum using this habitat, although adjacent seagrass and marsh interface habitats were used. Even though red drum densities in marsh edge were low relative to seagrass, the large areal extent of marshes in the bay complex probably makes marsh edge the most important nursery habitat for red drum in Galveston Bay.  相似文献   

4.
Between August 14 and September 26, 2004, four tropical weather systems (Charley, Frances, Ivan, and Jeanne) affected the central Indian River Lagoon (IRL). The central IRL received a prodigious amount of rainfall for the 2 mo, between 72 and 83 cm, which is a once-in-50-yr rainfall event. High stream discharges were generated that, combined with wind-suspended sediments, significantly reduced salinities and water transparency. In September, salinities among central IRL segments dropped from 30 psu or more to ≤15 psu, color increased from a low of 10 pcu to ≥100 pcu, and turbidity increased from ≤3 NTU up to 14 NTU. Evidence of the hurricanes' physical effects on seagrasses (burial, no scour) was limited to just one of the more than 25 sites inspected. Within 2 to 3 mo following the hurricane period, most parameters related to water transparency returned to or showed improvement over their prehurricane (February–July 2004) levels. Unseasonably low salinities (<20 psu) and moderately high color (>20 pcu) were observed through spring 2005, largely attributable to a relatively long residence time and a wetter-than-average spring season in 2005. By the end of the study period (July 2006), the central IRL generally showed a continuation of two opposite seagrass trends—an increase in depthlimit coverage but a decline in coverage density—that began before 2004. Also, within a limited reach of the central IRL, there was a temporary shift in species composition in summer 2005 (Ruppia maritima increased asHalodule wrightü decreased). It is likely that the persistently low salinities (not color) in 2004–2005 affected the species composition and coverage density. This study reveals that seagrasses are resilient to the acute effects of hurricanes and underscores the need to reduce chronic, an thropogenic effects on seagrasses.  相似文献   

5.
Seagrass beds have declined in Chesapeake Bay, USA as well as worldwide over the past century. Increased seston concentrations, which decrease light penetration, are likely one of the main causes of the decline in Chesapeake Bay. It has been hypothesized that dense populations of suspension-feeding bivalves, such as eastern oysters (Crassostrea virginica), may filter sufficient seston from the water to reduce light attenuation and enhance seagrass growth. Furthermore, eastern oyster populations can form large three-dimensional reef-like structures that may act like breakwaters by attenuating waves, thus decreasing sediment resuspension. We developed a quasi-three-dimensional Seagrass-Waves-Oysters-Light-Seston (SWOLS) model to investigate whether oyster reefs and breakwaters could improve seagrass growth by reducing seston concentrations. Seagrass growth potential (SGP), a parameter controlled by resuspension-induced turbidity, was calculated in simulations in which wave height, oyster abundance, and reef/breakwater configuration were varied. Wave height was the dominant factor influencing SGP, with higher waves increasing sediment resuspension and decreasing SGP. Submerged breakwaters parallel with the shoreline improved SGP in the presence of 0.2 and 0.4 m waves when sediment resuspension was dominated by wave action, while submerged groins perpendicular to the shoreline improved SGP under lower wave heights (0.05 and 0.1 m) when resuspension was dominated by along-shore tidal currents. Oyster-feeding activity did not affect SGP, due to the oysters’ distance from the seagrass bed and reduced oyster filtration rates under either low or high sediment concentrations. Although the current implementation of the SWOLS model has simplified geometry, the model does demonstrate that the interaction between oyster filtration and along-shore circulation, and between man-made structures and wave heights, should be considered when managing seagrass habitats, planning seagrass restoration projects, and choosing the most suitable methods to protect shorelines from erosion.  相似文献   

6.
In November 2004, we evaluated the effect of Hurricane Ivan on seagrass meadows in Alabama by surveying all coastal locations known to support seagrass prior to Hurricane Ivan's Iandfall in September 2004. We found that 82% of the sites containing seagrass in 2002 still supported seagrass, and that, as in 2002, the most abundant species wasHalodule wrightii (shoalgrass). We also found more sites containingRuppia maritima (widgeongrass) than previously recorded. We confirmed the existence ofThalassia testudinum (turtlegrass) in Little Lagoon, Alabama, whose first record in the state had been noted in 2002. A resurvey of the western half of Alabama's coastal waters in October 2005 after Hurricane Katrina found no loss of seagrass, with all sites that supported seagrass in 2004 still containing seagrass in 2005. There was no major loss of Alabama's seagrass resources due to Hurricanes Ivan or Katrina, even though both category 3 hurricanes severely affected the northern Gulf Coast.  相似文献   

7.
A broad-scale survey of seagrass species composition and distribution along Florida's central Gulf Coast (known as the Big Bend region) was conducted in the summer of 2000 to address growing concerns over the potential effects of increased nutrient loading from adjacent coastal rivers. Iverson and Bittaker (1986) originally surveyed seagrass distribution in this region between 1974–1980. We revisited 188 stations from the original survey, recording the presence or absence of all seagrass species. Although factors such as accuracy of station relocation, differences in sampling effort among studies, and length of time between surveys preclude statistical comparisons, several interesting patterns emerged. While the total number of stations occupied by the three most common seagrass species,Thalassia testudinum, Syringodium filiforme, andHalodule wrightii, was similar between the two time periods, we observed a change in the number of records of each species as well as changes in distribution with depth.T. testudinum andHalophila engelmanni occurrence declined in the deepest areas of the region, while the number of stations occupied byS. filiforme andH. wrightii increased in nearby areas. We observed several localized areas of seagrass loss, frequently associated with the mouths of coastal rivers. These results suggest that increased nutrient loading to coastal rivers that discharge into the Big Bend area may be affecting seagrasses by increasing phytoplankton abundance in the water column, thus changing water clarity characteristics of the region.  相似文献   

8.
We examined the effect of nutrients and grazers on Thalassia testudinum in Jobos Bay, Puerto Rico by fertilizing sediment and manipulating grazer abundances. Bottom-up effects were variable: Added nutrients did not increase seagrass aboveground biomass, but decreased belowground biomass—perhaps as a result of less biomass being allocated to belowground structures in response to greater nutrient supply in porewater. Experimental fencing of 1.5 × 1.5 m plots provided shelter that attracted large aggregations of fish, including seagrass herbivores. Seagrass biomass and shoot density decreased with increasing abundance of herbivorous fish, indicating a significant top-down effect. There were interactions between nutrient supply, provision of shelter, and grazing pressure. Fertilization enhanced seagrass %N; however, %N also increased in unfertilized plots that were fenced, most likely due to uptake of N excreted from the large numbers of fish associated with the fences. Only plots where shelter was provided and fertilizer was applied to sediments exhibited evidence of heavy grazing, reducing both seagrass cover and aboveground biomass. In the unfertilized fenced plots, signs of grazing were fewer despite large abundances of fish and enhanced nutritional quality of seagrass leaves. This suggests the possibility that high nutrient availability in sediments lowered concentrations of chemical defense compounds in the seagrass and that cues other than %N may have been involved in stimulating grazing. This study highlights the complexity of bottom-up and top-down interactions in seagrass systems and the important role of refuge availability in shaping the relative strengths of these controls.  相似文献   

9.
Seagrass protection and restoration in Florida’s Indian River Lagoon system (IRLS) is a mutual goal of state and federal programs. These programs require, the establishment of management targets indicative of seagrass recovery and health. We used three metrics related to seagrass distribution: areal coverage, depth limit, and light requirement. In order to account for the IRLS’s spatial heterogeneity and temporal variability, we developed coverage and depth limit targets for each of its 19 segments. Our method consisted of two steps: mapping the union of seagrass coverages from all availabe mapping years (1943, 1986, 1989, 1992, 1994, 1996, and 1999) to delineate wherever seagrass had been mapped and determining the distribution of depth limits based on 5,615 depth measurements collected on or very near the deep-edge boundary of the union coverage. The frequency distribution of depth limits derived from the union coverage, along with the median (50th percentile) and maximum (95th percentile) depth limits, serve as the seagrass depth targets for each segment. The median and maximum depth targets for the IRLS vary among segments from 0.8 to 1.8 and 1.2 to 2.8 m, respectively.Halodule wrightii is typically the dominant seagrass species at the deep-edge of IRLS grass beds. We set light requirement targets by using a 10-yr record of light data (1990–1999) and the union coverage depth limit distributions from the most temporally stable seagrass segments. The average annual light requirement, based on the medians of the depth limit distributions, is 33 ± 17% of the subsurface light. The minimum annual light requirement, based on of the 95th percentile of the depth distributions, is 20 ± 14%; the minimum growing season light requirement (March to mid September) is essentially the same (20 ± 13%). Variation in depth limits and light requirements, is probably due to factors other than light that influence the depth limit of seagrasses (e.g., competition, physical disturbance). The methods used in this study are robust when applied to large or long-term data sets and can be applied to other estuaries where grass beds are routinely monitored and mapped.  相似文献   

10.
Subsidence and erosion of intertidal salt marsh at Galveston Island State Park, Texas, created new areas of subtidal habitat that were colonized by seagrasses begining in 1999. We quantified and compared habitat characteristics and nekton densities in monospecific beds of stargrassHalophila engelmanni and shoalgrassHalodule wrightii as well as adjacent nonvegetated substrates. We collected 10 replicates per habitat type during April, July, October, and December 2001. Most habitat characteristics varied with season. Water temperature, salinity, and dissolved oxygen were similar among habitat types. Turbidity and depth were greatest inH. engelmanni beds and least inH. wrightii beds.H. engelmanni exhibited shorter leaves and higher shoot density and biomass core−1 thanH. wrightii. Densities of almost all dominant species of nekton (fishes and decapods) were seasonally variable, all were higher in seagrass habitats than in nonvegetated habitats, and most were higher in one seagrass species than the other. Naked gobyGobiosoma bosc, code gobyGobiosoma robustum, bigclaw snapping shrimpAlpheus heterochaelis, and blue crabCallinectes sapidus, were most abundant inH. engelmanni. Brown shrimpFarfantepenaeus aztecus, brackish grass shrimpPalaemonetes intermedius, and daggerblade grass shrimpPalaemonetes pugio were most abundant inH. wrightii. PinfishLagodon rhomboides and pink shrimFarfantepenaeus duorarum were equally abundant in either seagrass. Most dominant nekton varied in size by month, but only two (L. rhomboides andC. sapidus) exhibited habitat-related differences in size. Nekton densities in these new seagrass habitats equaled or exceeded densities associated with historical and current intertidal smooth cordgrassSpartina alterniflora marsh. Continued seagrass expansion and persistence should ensure ecosystem productivity in spite of habitat change.  相似文献   

11.
Changes in environmental conditions can be accompanied by shifts in the distribution and abundances of organisms. When physical factors become unsuitable for growth ofZostera marina (eelgrass), which is a dominant seagrass species in North America, other more ruderal seagrass species, includingRuppia maritima (widgeongrass), often increase in abundance or replace the dominant species. We report the proliferation of widgeongrass into eelgrass beds in Mission Bay and San Diego Bay in San Diego, California, during the 1997 to 1998 El Niño Southern Oscillation (ENSO). Widgeongrass persisted in these eelgrass beds at least one year after a return to non-ENSO conditions and an increase in eelgrass density. We suggest that a warming of the water in two bays in San Diego by 1.5–2.5°C could result, in a permanent shift in the local seagrass vegetation from eelgrass to widgeongrass. This shift, could, have substantial ecosystem-level ramifications.  相似文献   

12.
In 1994, 1995, and 1996, seagrasses in 46 of the 89 coastal embayments and portions of seven open-water near-shore areas in Massachusetts were mapped with a combination of aerial photography, digital imagery, and ground truth verification. In the open-water areas, 9,477.31 ha of seagrass were identified, slightly more than twice the 4,846.2 ha detected in the 46 coastal embayments. A subset of the 46 embayments, including all regions of the state were remapped in 2000, 2001, and 2002 and again in 2006 and 2007. We detected a wide range of changes from increases as high as 29% y−1 in Boston Harbor to declines as large as −33% y−1 in Salem Harbor. One embayment, Waquoit Bay, lost all of its seagrass during the mapping period. For the 12-year change analysis representing all geographic regions of the state, only three embayments exhibited increases in seagrass coverage while 30 of the original 46 embayments showed some indication of decline. For the decadal period, rates of decline in the individual embayments ranged from −0.06% y−1 to as high as −14.81% y−1. The median rate of decline by region ranged from −2.21% y−1 to −3.51% y−1 and was slightly less than the recently reported global rate of decline for seagrasses (−3.7% y−1). Accounting for the gains in three of the embayments, 755.16 ha (20.6%) of seagrass area originally detected was lost during the mapping interval. The results affirm that previously reported losses in a few embayments were symptomatic of more widespread seagrass declines in Massachusetts. State and Federal programs designed to improve environmental quality for conservation and restoration of seagrasses in Massachusetts should continue to be a priority for coastal managers.  相似文献   

13.
The US Army Corps of Engineers recently dredged and permanently reopened Packery Channel, historically a natural tidal inlet, to allow water exchange between the Gulf of Mexico and the Laguna Madre, TX, USA. The main objective of this study was to characterize estuarine-dependent recruitment and community structure in seagrass habitats adjacent to Packery Channel pre- and post-channel opening. We sampled fish and crustacean abundance using an epibenthic sled in Halodule wrightii seagrass meadows in both control and impact locations over 2 years, 1 year before the opening of Packery Channel (October 2004–May 2005) and 1 year after (July 2005–April 2006). Using the before–after control–impact design, we found significantly fewer nekton post-channel opening. However, we found significantly higher mean densities of newly settled estuarine-dependent species (Sciaenops ocellatus, Micropogonias undulatus, Lagodon rhomboides, Callinectes sapidus, and penaeid shrimp) post-opening. Multivariate analyses showed significant community assemblage changes post-opening with increased contribution of estuarine-dependent species post-opening. Our results show that estuarine-dependent nekton are using Packery Channel as a means of ingress into areas of the upper Laguna Madre’s seagrass meadows that were previously inaccessible, which may lead to higher fisheries productivity for some of these economically and ecologically important fishery species.  相似文献   

14.
Blue carbon initiatives require accurate monitoring of carbon stocks. We examined sources of variability in seagrass organic carbon (Corg) stocks, contrasting spatial with short temporal scales. Seagrass morphology and sediment Corg stocks were measured from biomass and shallow sediment cores collected in Moreton Bay, Australia. Samples were collected between 2012 and 2013, from a total of 77 sites that spanned a gradient of water turbidity. Environmental measures of water quality between 2000 and 2013 revealed strong seasonal fluctuations from summer to winter, yet seagrass biomass exhibited no temporal variation. There was no temporal variability in Corg stocks, other than below ground biomass stocks were slightly higher in June 2013. Seagrass locations were grouped into riverine, coastal, and seagrass loss locations and short temporal variability of Corg stocks was analysed within these categories to provide clearer insights into temporal patterns. Above ground Corg stocks were similar between coastal and riverine meadows. Below ground Corg stocks were highest in coastal meadows, followed by riverine meadows. Sediment Corg stocks within riverine meadows were much higher than at coastal meadows and areas of seagrass loss, with no difference in sediment Corg stocks between these last two categories. Riverine seagrass meadows, of higher turbidity, had greater total Corg stocks than meadows in offshore areas irrespective of time. We suggest that Corg stock assessment should prioritise sampling over spatial gradients, but repeated monitoring over short time scales is less likely to be warranted if environmental conditions remain stable.  相似文献   

15.
This note reports an unknown trophic interaction between a mammalian herbivore, the capybara (Hydrochaeris hydrochaeris), and the seagrassRuppia maritima (wigeongrass) and compares the feeding behavior of capybaras to other seagrass grazers. Observations were made in Spring 2002 in the Barra Grande, a small, shallow, moderately stratified, bar-built estuary at Ilha Grande, Rio de Janeiro State, southeast Brazil. The activities of the capybaras were investigated and grazing impacts were quantified in situ. The capybaras were observed feeding onR. maritima during the day and aquatic feeding alternated with periods of feeding on land.R. maritima was the only submerged aquatic vegetation to be consumed by the capybaras. The feeding activity of the capybaras on wige ongrass consisted of alternately diving down to theR. maritima then surfacing; the capybaras spent a significantly greater amount of time under water. In the area where the capybaras foraged 18.1% of the seagrass meadow showed recent grazing scars. Vegetation of recently and not recently grazed areas were compared. Grazing scars, which were slightly elongated, were not completely devoid ofR. maritima but presented reduced standing crop: canopy height, shoot density, and shoot, rhizome, and root biomass were reduced in grazed areas. The grazing patterns observed in capybaras resembled those previously reported in the sirenia, mammals that include two seagrass-eating species.  相似文献   

16.
A study of Halodule wrightii in a shallow subtropical Texas lagoon was performed to obtain seasonal data on its physiological ecology. Leaf production and biomass dynamics of H. wrightii were intensively monitored along with the underwater light environment at a 1.2-m depth study site over a 21-month period from June 1995 to February 1997. The annual photosynthetically active radiation (PAR) flux of 6,764 mol m−2 year−1 was more than twice as high as 2,400 mol m−2 year−1, the minimum annual PAR required for maintenance of growth. As light intensity declined, blade chlorophyll a/b ratios increased suggesting that the plants were photo-adapting. Seasonal trends were evident in shoot growth and biomass. Compared to other Halodule populations in Texas, H. wrightii in LLM displayed slow growth and low biomass, high leaf tissue N content, and low C/N ratio but high N/P ratio of 38 suggesting that the plants were phosphorus-limited.  相似文献   

17.
Complex links between the top-down and bottom-up forces that structure communities can be disrupted by anthropogenic alterations of natural habitats. We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.  相似文献   

18.
We examined the spatial and temporal variability in drift macroalgal abundance in two seagrass dominated estuarine systems on the Texas coast: Redfish Bay (in the Copano-Aransas Estuary) and Lower Laguna Madre. Measurements of benthic macroalgal variability were made in conjunction with a suite of biotic (seagrass biomass, percent cover, blade width and length, shoot density, epiphyte biomass, seagrass blade C:N ratios, and drift macroalgal abundance and composition) and abiotic (inorganic nitrogen and phosphorus concentrations, chlorophylla, total suspended solids, light attenuation, salinity, temperature, total organic carbon and porewater NH4 +) indicators. All parameters were measured at 30 sites within each estuary semiannually from July 2002 to February 2004. Principal components analysis (PCA) was used to examine relationships between drift macroalgal abundance and biotic and abiotic parameters. In both Redfish Bay and Lower Laguna Madre, drift macroalgal distribution was widespread, and during three of four sampling periods, abundance was equal to abovegro und biomass ofThalassia testudinum, the dominant seagrass. Drift macro algal abundance was highly variable within sites, between sites, and between seasons in both estuaries. No significant differences in drift macroalgal abundance were found between Redfish Bay and Lower Laguna Madre. In Redfish Bay, drift macroalgae (90.1±10.2 gm−2) tended to accumulate in bare patches within seagrass beds. In Lower Laguna Madre, drift macroalgae (72.7±10.7 gm−2) tended to accumulate in areas of dense seagrass cover rather than in bare areas. We found no relationship between drift macroalgal abundance and low (<2μM) water column nutrient concentrations, and although several of our measured parameters were related to drift macroalgal abundance, none alone sufficiently explained the variability in abundance noted between the two estuarine systems. The contrasting patterns of macroalgal accumulation between Redrish Bay and Lower Laguna Madre likely reflect differences in water circulation characteristics between the two regions as dictated by local physiography, in cluding the shape and orientation of the lagoons, with seasonal variations in macroalgal abundance related to changes in freshwater inflow and nutrient loading.  相似文献   

19.
The Laguna Madre has experienced a persistent bloom ofAureoumbra lagunensis for over eight years. The persistence of this bloom may be due in part to the often hypersaline conditions in Laguna Madre (40–60 psu) that favor the growth ofA. lagunensis. Above-normal rainfall in the fall of 1997 reduced the salinities in Baffin Bay from >40 to<20 psu.A. lagunensis cell densities dropped from>106 cells ml−1 in July 1997 to c. 200 cells ml−1 in January 1998. During this time of low brown tide density, phytoplankton biomass generally remained high and the Laguna Madre experienced successive blooms of diatoms (Rhizosolenia spp.) and cyanobacteria. Hypersaline conditions returned in 1998 and brown tide densities increased to>0.5 × 106 cells ml−1 by summer. The extraordinary persistence of the brown tide and the unusual sequence of intense blooms may be related in part to the reduction of zooplankton populations. Microzooplankton populations declined following the above-normal rain in the fall of 1997; populations did not recover until fall 1998. Copepod populations also declined sharply and remained low in Laguna Madre, but recovered by summer 1998 in Baffin Bay. Dilution experiments indicated that microzooplankton grazing and phytoplankton growth were usually balanced when measured during our cruises. The rapid recovery of theA. lagunensis bloom suggests that this alga may be a more resilient component of the Laguna Madre flora than previously suspected.  相似文献   

20.
Three quarters of the global human population will live in coastal areas in the coming decades and will continue to develop these areas as population density increases. Anthropogenic stressors from this coastal development may lead to fragmented habitats, altered food webs, changes in sediment characteristics, and loss of near-shore vegetated habitats. Seagrass systems are important vegetated estuarine habitats that are vulnerable to anthropogenic stressors, but provide valuable ecosystem functions. Key to maintaining these habitats that filter water, stabilize sediments, and provide refuge to juvenile animals is an understanding of the impacts of local coastal development. To assess development impacts in seagrass communities, we surveyed 20 seagrass beds in lower Chesapeake Bay, VA. We sampled primary producers, consumers, water quality, and sediment characteristics in seagrass beds, and characterized development along the adjacent shoreline using land cover data. Overall, we could not detect effects of local coastal development on these seagrass communities. Seagrass biomass varied only between sites, and was positively correlated with sediment organic matter. Epiphytic algal biomass and epibiont (epifauna and epiphyte) community composition varied between western and eastern regions of the bay. But, neither eelgrass (Zostera marina) leaf nitrogen (a proxy for integrated nitrogen loading), crustacean grazer biomass, epifaunal predator abundance, nor fish and crab abundance differed significantly among sites or regions. Overall, factors operating on different scales appear to drive primary producers, seagrass-associated faunal communities, and sediment properties in these important submerged vegetated habitats in lower Chesapeake Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号