首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MIT ocean-bottom seismometer is a free-fall, pop-up instrument capable of recording three components of seismic data on the sea floor for periods of at least one month. Data are recorded in digital format on a specially designed magnetic tape recorder. An event recording scheme and semiconductor memories assure both efficient data storage and preservation of first motion information. Sensors and recording electronics are housed in a cylindrical pressure vessel, which sits vertically atop an expendable base plate on the ocean bottom. Attached to the pressure case are three glass spheres for buoyancy. After a pre-set time interval, a motor-driven mechanical latch release frees the instrument to float to the ocean surface for recovery.  相似文献   

2.
The ocean bottom seismograph described in this paper has been developed primarily for recording earthquakes on the mid-oceanic ridges. The instrument is suitable for dropping onto the most rugged areas of the ocean floor. Acoustic tracking with the ship's precision echo sounder enables it to be located there relative to both the topography of the sea bed and the ship. The outputs of a 3-component seismometer and a hydrophone are recorded in FM form on a low-power magnetic tape recorder designed specifically for the instrument.  相似文献   

3.
The Hawaii Institute of Geophysics began development of the Ocean Subbottom Seisometer (OSS) system in 1978, and OSS systems were installed in four locations between 1979 and 1982. The OSS system is a permanent, deep ocean borehole seismic recording system composed of a borehole sensor package (tool), an electromechanical cable, recorder package, and recovery system. Installed near the bottom of a borehole (drilled by the D/V Glomar Challenger), the tool contains three orthogonal, 4.5-Hz geophones, two orthogonal tilt meters; and a temperature sensor. Signals from these sensors are multiplexed, digitized (with a floating point technique), and telemetered through approximately 10 km of electromechanical cable to a recorder package located near the ocean bottom. Electrical power for the tool is supplied from the recorder package. The digital seismic signals are demultiplexed, converted back to analog form, processed through an automatic gain control (AGC) circuit, and recorded along with a time code on magnetic tape cassettes in the recorder package. Data may be recorded continuously for up to two months in the self-contained recorder package. Data may also be recorded in real time (digital formal) during the installation and subsequent recorder package servicing. The recorder package is connected to a submerged recovery buoy by a length of bouyant polypropylene rope. The anchor on the recovery buoy is released by activating either of the acoustical command releases. The polypropylene rope may also be seized with a grappling hook to effect recovery. The recorder package may be repeatedly serviced as long as the tool remains functionalA wide range of data has been recovered from the OSS system. Recovered analog records include signals from natural seismic sources such as earthquakes (teleseismic and local), man-made seismic sources such as refraction seismic shooting (explosives and air cannons), and nuclear tests. Lengthy continuous recording has permitted analysis of wideband noise levels, and the slowly varying parameters, temperature and tilt.Hawaii Institute of Geophysics Contribution 1909.  相似文献   

4.
A problem in the use of ocean bottom seismometers is the difficulty in leveling the sensors while ensuring good coupling to the seafloor. We have investigated the coupling characteristics of the seismic sensors in the new ONR ocean bottom seismometer. In the deployable sensor package for that instrument, a three-component seismometer set is suspended on a 2-axis passive leveling gimbal and is immersed in a viscous fluid. We report tests, conducted in a seismic vault, comparing the output of a gimbaled seismometer set to that of a set rigidly coupled to the ground. Our results show that the degree to which the gimbaled set is coupled to ground motion is a function of the viscosity of the coupling fluid. The coherence between the two sensor sets is poor (<0.4) at some frequencies within the band of interest (0.15 to 20 Hz) and on some components when the viscosity of the coupling fluid is comparatively low (14 Pa-s or 0.16 kSt kinematic viscosity). In addition, the outputs of some components over portions of this frequency band are attenuated and are phase-shifted relative to the outputs of the set rigidly coupled to the ground. Coherence and phase response similarity improve as the viscosity of the coupling fluid is increased. With a coupling fluid viscosity of 980 Pa-s (10 kSt), coherence and phase agreement between the two sensor sets is good (>0.9) across nearly the entire band of interest on all three components. A simple analytical model of the gimbaled seismometer set as a damped, driven, compound-pendulum provides a basis for understanding the test results.  相似文献   

5.
In order to improve the locating capability for offshore earthquakes and tsunamis monitored off northeastern Taiwan, a cable-based ocean bottom seismographic observatory named “Marine Cable Hosted Observatory” (MACHO) was constructed and began operation at the end of 2011. The installed instruments of the observatory include a broadband seismometer, a strong-motion seismometer and a pressure gauge. In addition, various scientific instruments could be deployed for other purposes as well. At present, the seismic data are transmitted in real-time via a fiber cable, and integrated into the current inland seismographic network in Taiwan. The ocean bottom station has contributed to provide high quality seismic data already. According to observations from January 2012 to June 2013, there were a total of 15,168 earthquakes recorded by the system. By using the data from the ocean bottom station, the number of relocated earthquakes with an azimuth gap less than 180 degrees substantially increase about 34 %. Meanwhile, the root–mean–square of the time residual, the error in epicenter, and the error in depth of the earthquake locations decrease. Therefore, the implementation of MACHO has the advantage of extending the coverage of existing the Taiwan seismic network to the offshore, providing more accurate and real-time seismic data for offshore earthquakes monitoring. The results show that MACHO is crucial and necessary for monitoring seismic activities in northeastern Taiwan.  相似文献   

6.
Unlike response of seismometers resting on hard rock where the seismometer case moves with the rock to high frequencies, the response of ocean bottom seismometers (OBS) can be strongly affected by the low mechanical strength of ocean sediments. The motion as measured by the seismometer will not follow the expected relationships between pressure and particle motion for different wave types. Cross coupling between horizontal and vertical motions can occur, especially when there is differential motion between water and sediment. Resonant amplification and attenuation of higher frequencies also occur. Secondary seismic arrivals are especially subject to distortion. Overall response is strongly dependent upon the mass and configuration of the OBS and the rigidity and density of the bottom material. Tests at Lopez Island, Puget Sound using both directly applied mechanical transients and seismic signals with various instrument configurations demonstrate the above effects and provide some guidance for improved designs.Hawaii Institute of Geophysics Contribution No. 1172.  相似文献   

7.
Three distinct ocean bottom seismograph (OBS) systems have been developed at the Hawaii Institute of Geophysics to satisfy the different requirements for short-range refraction and anisotropy experiments, long-range refraction experiments, and short-term and semi-permanent monitoring for earthquakes. One system, originally designed for semi-permanent use in conjunction with a monster buoy of the IDOE North Pacific Experiment has been modified for emplacement off Oahu. It contains 3-component 1 Hz seismometers and a hydrophone and obtains power and transmits data via tow conductor cable. Two additional systems were designed for short-term use: a 2 Hz telemetering system (TOBS); and 4.5 Hz free-fall pop-up system (POBS). The TOBS contains 3-component seismometers and a hydrophone and transmits data to the ship via light-weight single-conductor electromechanical cable and an HF-VHF radio link from a surface buoy. The bottom package also includes a backup tape recorder. This system exhibits the advantages of real-time data acquisition (e.g. precise timing, rapid appraisal of data quality, optimum use of explosives, and common recording with other data) and the complexities and difficulties associated with a deep-sea mooring. However, use of cable with near neutral bouyancy permits the design of a deep-water system with low weights and stress levels. The POBS is a self-contained package containing a vertical and single horizontal seismometer, hydrophone, cassette tape recorder, and pre-set timed release. This system is relatively simple and inexpensive. Total weight of 150 kg in air (before launch) permits emplacement and retrieval from a ship with no special equipment by two (strong) persons. Experience to data suggests that the optimum deployment scheme for many studies is a combination of TOBS's and POBS's.Hawaii Institute of Geophysics Contribution 835.  相似文献   

8.
Tests of a new Ocean Bottom Hydrophone (obh) instrument have recently been completed at Woods Hole Oceanographic Institution. This instrument is designed to float 3 m above the seafloor at depths of up to 6100 m for periods of up to 10 days and continuously records the output of a single hydrophone on a four-channel 0.064 cm/s (1/40 in./s) analog magnetic tape recorder. This instrument has an acoustic transponder and release system and is designed primarily for multiple deployments as a fixed ocean bottom receiver for seismic refraction work.Contribution No. 4174 of the Woods Hole Oceanographic Institution.  相似文献   

9.
D. G. Levchenko 《Oceanology》2006,46(5):739-750
Recording seismic signals on the bottom is accompanied by specific distortions caused by resonance phenomena. In the literature, such distortions are explained by the natural vibration of the heavy housing of a seismometer on a soft elastic sediment layer. Meanwhile, there are experimental results that contradict this model. In the present paper, we consider the rheological properties of the bottom sediments, which in fact were not taken into account previously. The model of a viscoplastic medium was used (the Bingham model), and the parameters of the model were experimentally determined. The estimates show that, in the frequency range from 0.003 to 30 Hz used in broadband bottom seismology, the effect of the mass of the seismometer on the results of recording on a soft bottom is negligible. Large errors can be introduced only when a seismometer is placed on rubberlike media such as peat soil, algae aggregations, etc. Resonance phenomena in recording signals on the bottom can occur when seismic waves propagate through a layer of water-saturated sediments. These phenomena are more pronounced for shear waves, whereas the distortions of the longitudinal waves propagating through the water-saturated layer are relatively weak.  相似文献   

10.
SEDIS IV型短周期自浮式海底地震仪数据校正方法   总被引:6,自引:0,他引:6  
利用15台SEDISIV型短周期自浮式海底地震仪在南海中、北部地壳深部结构调查中所获得的资料,探讨了海底地震仪数据校正的方法和校正后的效果,结果表明:使用该地震仪所获得的原始资料经过放炮时间、炮点坐标数据局部化、海底地震仪位置误差以及记录时间漂移4方面的校正后,数据更趋合理,误差显著降低。放炮时间的校正消除了时钟漂移和时间延迟的误差;炮点坐标数据局部化处理消除了炮点位置整体趋势性偏移的现象;试错法进行位置误差和记录时间的精细校正时,时间漂移的校正量值约为几个到十几个毫秒,位置校正的量值仅在几米到数百米之间,实测数据所绘曲线的形态和位置都与理论曲线十分吻合,可见校正后误差显著降低。  相似文献   

11.
Acoustic reflection profiling data display is traditionally done with the aid of a facsimile type of recorder. It is not uncommon to record the unprocessed acoustic data on a tape recorder for subsequent playback through a laboratory computer. This still involves the use of some sort of facsimile recorder for the ultimate display of profiles. This paper presents the results of a study to adapt a high-speed digital dot matrix plotter for the ultimate display in place of the conventional facsimile recorder. Because a minicomputer drives the display directly, a host of signal conditioning procedures are permitted, with the final display being generated in real time. Algorithms are developed to control the marking density, allow adaptive threshold control, bottom tracking, automatic gain control, and de-emphasis of water column boundary reverberation. These techniques are just a few of the many that can be employed since the computer can readily be carried on a large ship in deep water, or a small vessel in a harbour. Shallow water is the difficult case for high energy acoustic sources because the water column boundaries behave much like an excited acoustic cavity. For this reason, a section of seismic profile is shown which was obtained with a 7·5 kHz pinger in only 8 m of water in Narragansett Bay. This research was partiallysupported by the Division of Computer Research of the National Science Foundation.  相似文献   

12.
对长达70.20m的东海浅钻EY02-1进行了岩石磁学和古地磁分析,证明沉积物的载磁矿物主要为低矫顽力的磁铁矿,磁性地层揭示了发生于9.62~8.58m的磁极性事件,结合钻孔上部的AMS14C测年证明它为全新世初期的哥德堡磁极性漂移,线性外推的时间是距今12681~10206Ma,为全新世开始时地磁场是否发生过短期的磁极性漂移提供了新证据;与东海高分辨率的浅地层地震剖面以及典型钻孔(中法联合东海地震调查和DZQ4钻孔)对比还揭示,在中更新世地层中也出现过两次磁倾角变化。在钻孔中下部54.00~50.94m(2271—2151号样品)出现一段磁倾角变小甚至变成负值,但是由于该段沉积物以粗颗粒的砂为主并且负向样品并不连续,依据研究的标准不作为反磁极性事件。第二个比较连续的负向样品段出现在最底部70.20~64.31m。虽然研究区域内不乏揭示中更新统地层的地震剖面,但至今没有足够长的钻孔在时间上予以佐证。根据东海地震相对比和沉积物中海侵和海退旋回的不同特征以及布容期以来报道的反磁极性事件发生的时间来推测下部地层的时代归属。由于钻孔最底部的沉积主要是粗颗粒的粉砂质砂和细砂,同时钻孔也穿透了倒数第二冰期的杂乱地震相地层和其下的平行透明海相层,所以推测下部的倒转可能为发生在MIS8晚期的CR0反磁极性事件(距今265~255ka)。  相似文献   

13.
The ocean bottom seismograph (OBS) of the Institut für Geophysik, Hamburg (IfG) is designed for refraction seismic experiments and for recording microseismic noise. Hydrophone signals are recorded directly on a casette tape recorder with a band width of 3–60 Hz. Signals from three component 1 Hz seismometers are recorded on a 2nd casette tape recorder in FM for a frequency range of 0.1–1 Hz. A telemetering buoy at the surface is connected with the OBS by a polypropylene rope.  相似文献   

14.
The authors compare the signal-to-noise ratios obtained on bottomed seismometers, bottomed hydrophones, and buried seismometers from near-surface explosions in the Ngendei Expedition. The data were recorded in 5.5-km-deep water in the south central Pacific Ocean with a triaxial borehole seismograph and four triaxial ocean-bottom seismographs having externally mounted hydrophones. At ranges less than 35 km, the data indicate that the ocean bottom seismometer is a superior signal detector than the ocean-bottom hydrophone, and that the subbottom seismometer is superior in performance to the ocean-bottom seismometer. Above 4 Hz, the seismometer appears to have a 10-dB signal-to-noise advantage over the hydrophone for surface explosions at ranges less than 30 km  相似文献   

15.
An ocean bottom seismometer array on the Nova Scotia shelf edge recorded T-phases from an earthquake swarm on the mid-Atlantic ridge at about 31.6° N in June 1975. The swarm occured along a segment of the ridge that ruptured similarly 17 yr previously. From 1964 to mid-1979 the worldwide network recorded three other earthquake swarms along this segment of the mid-Atlantic ridge (MAR). A sparse network of sensors in the SOFAR channel, having a lower magnitude threshold, might provide a better means of monitoring the seismicity of both short-length transforms and ridge crests along the MAR than does the worldwide seismic network.  相似文献   

16.
A pop-up bottom seismic recorder designed for seismic refraction experiments was built by the Institute of Oceanographic Sciences in 1968. The device is housed within a 71 cm diameter sphere weighing 270 kg when launched. signals picked up by a hydrophone are recorded in analogue form on magnetic tape in the band 2–100 Hz. The total continuous recording period is 12 hr but the lifetime of the system can be effectively extended by cycling the tape-recorders to allow shooting to go on for up to 3 days. Ballast release is by acoustic command or by pre-set clock. The instruments have been used in water depths from 150 to 4820 m making a total of 63 deployments with a 95% recovery rate. A new version with three-component geophones is being built.  相似文献   

17.
A simple shaker table for seismometer calibration   总被引:1,自引:0,他引:1  
A unique and simple shaker table (shake table or shaking table), designed, constructed, and installed at the Hawaii Institute of Geophysics, has proven to be a valuable aid in testing and calibrating short period seismometers, as well as ocean bottom and ocean sub-bottom seismometer/tilt meter packages. It consists of a platform suspended in a stairwell by a single elastic cord (10 m extended length) driven by GeoSpace HS-10 geophones. Platform motion is monitored by orthogonal reference geophones and tilt meters. The relatively low natural periods of the platform, about 1.9 sec vertical and 6.5 sec horizontal, provide sufficient isolation from local vibrations that calibration can be made near operational amplitudes. Vertical or horizontal driver geophones can be driven by a commercial signal generator or white noise generator, or from magnetic tape output. The table can also be tilted with respect to the drivers to determine tilt tolerances and to calibrate tilt meters. A Hewlett-Packard 3582-A spectrum analyzer, used to analyze both reference and output signals, provides near real-time system cabibration and is an efficient means for investigating parasitic system resonances. The analyzer can also provide a white noise signal source to the driver geophones.Hawaii Institute of Geophysics Contribution 1443.  相似文献   

18.
2015年10月,利用便携式宽频带地震仪在祁连山老虎沟12号冰川上进行了9 d的冰震观测,在台站的震动信号中识别出大量与冰川动态特性相关的冰震。根据信号的频率等特征,可将其分为短周期冰震和长周期冰震。短周期冰震的持续时间大多在0.1 s以下,频谱集中在20~100 Hz之间,其数量可达每天6 600个,占所检测到冰震的绝大部分。长周期冰震持续时间可达几十秒至数小时,其地震波形频率集中在0.1~10 Hz,观测期间检测到296次长周期冰震。对比冰震发震时间和当地气温发现:气温下降,短周期冰震事件数量快速增加;气温升高,短周期冰震数量逐渐减少。短周期冰震的发震时间分布呈现出以1 d为周期变化的特征。利用麦克斯韦模型模拟的冰川在气温影响下的应力变化可以解释观测到的冰震日变性:当气温下降,冰川温度下降,冰体积收缩并产生应变,相应的拉张应力使得冰裂隙破裂而产生短周期冰震信号。  相似文献   

19.
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8′E) close to a hydrothermal vent (49°39′E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at ~9.0 km is the bottom of a layer (2–3 km thick); the Moho (at depth of ~6–7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by ~15 km, the 660 discontinuity is elevated by ~18 km, and a positive thermal anomaly between 182 and 237 K is inferred.  相似文献   

20.
Instrument calibration of ocean bottom seismographs   总被引:1,自引:0,他引:1  
To increase the accuracy of measuring sea floor motion with ocean bottom seismometers, we calibrate the seismometer system on the ocean floor. Data from the sea floor calibration, augmented with electronic and land calibration data, enables us to find the OBS transfer function to an accuracy of 0.5% in the frequency range of 0.1 to 32 Hz. We are able to distinguish between temperature, instrument and OBS ground coupling effects, all of which alter the transfer function. This paper reviews our method of calibration and discusses the effects of temperature and some of the instrument design features on the vertical seismometer transfer function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号