首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The results of geochronological (U–Pb, Ar–Ar), geochemical, and isotopic (Sr, Nd) studies of the Ordovician and Devonian mafic volcanic–subvolcanic rock associations of the Minusinsk Depression are presented. The obtained ages of magmatic associations and the basite composition, considering previous studies, witness to the impact of two mantle plumes different in age (Late Cambrian–Ordovician and Devonian) on suprasubduction rock complexes in active continental margin settings.  相似文献   

2.
Lower Ordovician sequences of the Ebeta antiform, a southern extension of the Uraltau zone, were deposited at the conjugation of paleocontinental and paleoceanic sectors of the southern Urals. Four types of sections were formed on opposite sides of cordillera that existed at the margin of the East European paleocontinent on the Preordovician volcanic belt. Sections of the first three types made up the western apron on the uplift that served as a provenance. Lateral and vertical relationships of various sedimentary associations, as well as their variable (in space and time) facies patterns and sedimentation conditions are considered. An important role of redeposition, slumping, and faulting in the apron development has been revealed. The apron fringed the eastern wall of the Sakmara marginal riftogenic basin that arose at the Cambrian-Ordovician boundary. On another side of the marginal uplift in the east, a slightly modified perioceanic environment existed in the Early Ordovician. Sections of another type formed here at the periphery of Uralian paleocean. These sections are characterized by the universal occurrence of ophiolithoclastic olistostrome with fragments of an older oceanic crust.__________Translated from Litologiya i Poleznye Iskopaemye, No. 3, 2005, pp. 292–306.Original Russian Text Copyright © 2005 by Samygin, Kheraskova.  相似文献   

3.
New data on the Vendian age of the volcanogenic–sedimentary sequence of the Uraltau zone (Southern Urals) were obtained. The U/Pb (SHRIMP-II) isotope age obtained for zircons from rhyolite tuffs is 591.5 ± 3.5 Ma. The sequence under consideration is intruded by Vendian granites and overlain unconformably by Ordovician terrigenous and volcanogenic deposits. The composition of Vendian volcanics and granites testifies that they were formed in a suprasubduction setting at the continental margin, complexes of which are known in the Middle and Northern Urals.  相似文献   

4.
The dike and volcanic complexes in the upper parts of the ophiolitic sections in the Paleozoides of the South Urals and Mugodzhary are Ordovician and Devonian in age. Two types of Ordovician complexes are distinguished by petrology and geochemistry. One of these types is characterized by a suprasubduction forearc formation setting and the second type developed in spreading basins in close proximity to island arcs. The Ordovician dikes formed in the setting of suprasubduction forearc spreading occur as blocks in the melange of the Sakmara Zone. Zircons from the plagiogranite associated with the dikes are dated at 456 ± 4 Ma. The Polyakovka dike complex in the north of the Cis-Sakmara-Voznesenka Zone is associated with basalts and cherts containing Ordovician conodonts. The dikes were probably formed during subduction of the spreading center; contributions of mantle-plume and subduction-related components are noted. Dike and volcanic complexes of Early-Middle Devonian age determined using isotopic and biostratigraphic methods are widespread. Two groups of complexes are distinguished by structural and geochemical features. The first group was formed in the setting of dispersed spreading in the second half of the Early Devonian. Boninites occur among the rocks of this group. The second group was formed in the setting of fast focused backarc spreading that developed up to the late Eifelian. Dike-in-dike suites close to the first group in composition cut through the Early Eifelian island-arc complexes in the frontal part of the arc. Zircons from the granitoid veins accompanying these dolerite dikes are dated at 391.9 ± 3 Ma (late Eifelian).  相似文献   

5.
New data on composition and age of Precambrian granites and volcanic rocks in the southern part of the Lyapin structure (Northern Urals) are considered. The geochemical features of the igneous rocks are similar to those of the rocks formed in both divergent and convergent environments. In the Late Precambrian (583–553 Ma), the investigated area is assumed to have been a part of the active margin above the mantle plume.  相似文献   

6.
The composition of ophiolites widespread in the southern Urals shows that they were formed in a suprasubduction setting. Low-Ti and high-Mg sheeted dikes and volcanic rocks vary from basalt to andesite, and many varieties belong to boninite series. The rocks of this type extend as a 600-km tract. The volcanic rocks contain chert interbeds with Emsian conodonts. Plagiogranites localized at the level of the sheeted dike complex and related to this complex genetically are dated at 400 Ma. The ophiolites make up a base of thick islandarc volcanic sequence. The composition of the igneous rocks and the parameters of their metamorphism indicate that subduction and ascent of a mantle plume participated in their formation. The nonstationary subduction at the intraoceanic convergent plate boundary developed, at least, from the Middle Ordovician.  相似文献   

7.
Ordovician complexes of the convergent margins of lithospheric plates are established in the Paleozoides of the southern Urals. Several types of Ordovician sections that make up allochthons and characterize different geodynamic settings are thoroughly studied and dated on the basis of conodont biostratigraphy. The geochemistry and petrology of volcanic rocks bear information on the evolution of the Paleoural ocean and the convergent relationships of plates from the end of the Llanvirnian. The suprasubduction volcanic activity in the Late Ordovician gave way to within-plate volcanism of extension zones, the development of which continued into the Early Silurian.  相似文献   

8.
Ordovician rocks of the Lachlan Orogen consist of two major associations, mafic to intermediate volcanic and volcaniclastic rocks (Macquarie Arc), which aerially comprise several north–south-trending belts, and the quartz-rich turbidite succession. Relationships between these associations are integral to resolving their tectonic settings and opinions range between contacts being major thrusts, combinations of various types of faults, and stratigraphic contacts with structural complications. Stratigraphic contacts between these associations are found with volcaniclastic-dominant units overlying quartz-turbidite units along the eastern boundary of the eastern volcanic belt and along the southern boundary of the central volcanic belt. Mixing between these major associations is limited and reflects waning quartzose turbidite deposition along a gently sloping sea floor not penetrating steeper volcaniclastic aprons that were developing around the growing volcanic centres formed during late Middle Ordovician to early Silurian Macquarie Arc igneous activity. An island arc setting has been most widely supported for the Macquarie Arc, but the identification and polarity of the associated subduction zone remain a contentious issue particularly for the Early Ordovician phase of igneous activity. The Macquarie Arc initiated within a Cambrian backarc formed by sea-floor spreading behind a boninitic island arc and presumably reflects a renewed response to regional convergence as subduction ceased along the Ross–Delamerian convergent boundary at the East Gondwana continental margin. An extensional episode accompanied initiation of the late Middle Ordovician expansion in island arc development. A SSE-dipping subduction zone is considered to have formed the Macquarie Arc and underwent anticlockwise rotation about an Euler pole at the western termination of the island arc. This resulted in widespread deformation west of the Macquarie Arc in the Benambran Orogeny and development of subduction along the eastern margin of the orogenic belt.  相似文献   

9.
北山地区早古生代板块构造特征   总被引:35,自引:2,他引:35       下载免费PDF全文
位于甘肃省西北边界和内蒙古自治区西端的北山地区,早古生代大地构造单元由塔里木板块东段北缘和北侧贝加尔期分裂出来的旱山微板块组成,其间被石板井-小黄山蛇绿混杂岩带所分隔。在漫长的构造演化进程中发育有蛇绿岩带。同时,经历了大西洋型、安第斯型(?)和西太平洋型大陆边缘的演化阶段,陆壳增厚,地壳成熟度增加,由大洋地壳和过渡型地壳向大陆型地壳转化。晚古生代初,全区进入板内活动时期。  相似文献   

10.
鄂尔多斯盆地西、南缘奥陶纪地质事件群耦合作用   总被引:5,自引:0,他引:5  
北祁连造山带和北秦岭造山带在早古生代经历了相似的洋陆转化过程,于奥陶纪时发育了汇聚板块边缘的沟-弧-盆体系,分别形成了北西向展布的北祁连造山带走廊南山北缘早古生代岛弧及弧后盆地和东西向展布的北秦岭造山带早古生代岛弧及弧后盆地。期间,秦岭-祁连洋的俯冲造山作用和鄂尔多斯盆地西南缘沉积类型和内陆湖盆的发展演化之间存在有机的联系,构成了盆-山耦合体系,引发一系列构造事件、火山喷发事件和多种类型的事件沉积等。它们之间存在着一系列成因机制上的联系,有着共同的宏观背景。鄂尔多斯盆地西、南缘在几乎相同时期存在一次构造背景的转变,由被动大陆边缘转化为主动大陆边缘,并诱发了多期火山喷发事件,在盆地西南缘奥陶系形成多套斑脱岩夹层,这些斑脱岩可能为同时期或者稍后的钾盐矿(包括含钾卤水)的形成提供了重要物源。同时,鄂尔多斯盆地南缘由浅水碳酸盐台地陷落为深水斜坡,在盆地西、南缘奥陶系有规律的集中发育重力流沉积(海底扇、浊积岩等)、滑塌沉积和震积岩等事件沉积。从形成机制上,华南板块向北俯冲触发了火山活动和地震,火山喷发在奥陶系集中沉积了多套凝灰岩夹层,地震活动导致同时期大套重力流沉积,并触发相对深水区沉积物向深水区移动,使得重力流沉积转化为浊流沉积,形成了具有良好储层的浊积岩。统计表明,上述事件发育的时间与秦岭地区构造活动相对最活跃的时期基本一致。因此这些分布稳定的凝灰岩薄层和中奥陶世集中有规律分布的重力流沉积砂体为华南板块向华北本快俯冲背景下形成的,它们之间存在耦合关系。  相似文献   

11.
On the basis of stratigraphical and geological data, paleogeographical and palinspastic reconstructions of the Kazakhstan Paleozoides were done; their multistage geodynamic evolution was considered; their tectonic zoning was proposed. The main stages are described: the initiation of the Cambrian and Ordovician island arcs; the development of the Kazakhstan accretionary–collisional composite continent in the Late Ordovician as a result of continental subduction and the amalgamation of Gondwana blocks with the island arcs (a long granitoid collisional belt also formed in this period); the development of the Devonian and Carboniferous–Permian active margins of the composite continent and its tectonic destruction in the Late Paleozoic.In the Late Ordovician, compensated terrigenous and volcanosedimentary complexes formed within Kazakhstania and developed in the Silurian. The Sakmarian, Tagil, Eastern Urals, and Stepnyak volcanic arcs formed at the boundaries with the Ural, Turkestan, and Junggar–Balkhash Oceans. In the late Silurian, Kazakhstania collided with the island arcs of the Turkestan and Ob'–Zaisan Oceans, with the formation of molasse and granite belts in the northern Tien Shan and Chingiz. This was followed by the development of the Devonian and Carboniferous–Permian active margins of the composite continent and the inland formation of the Early Devonian rift-related volcanosedimentary rocks, Middle–Late Devonian volcanic molasse, Late Devonian–Early Carboniferous rift-related volcanosedimentary rocks, terrigenous–carbonate shelf sediments, and carbonaceous lake–bog sediments, and the Middle–Late Carboniferous clastic rocks of closed basins. In the Permian, plume magmatism took place on the southern margin of the Kazakhstan composite continent. It was simultaneous with the formation of red-colored molasse and the tectonic destruction of the Kazakhstan Paleozoides as a result of a collision between the East European and Kazakhstan–Baikal continents.  相似文献   

12.
Massive sulphide deposits in the Urals are found within volcanic and volcanic-sedimentary sequences of Ordovician to Middle Devonian ages. Four types of economic sulphide deposits have been recognized: Cyprus, Besshi, Urals and Baimak. The Cyprus-type copper sulphide deposits are hosted by mafic volcanites that occur in the basal parts of Palaeozoic volcanic sequences. The Besshi-type copper-zinc deposits are located within clastic sedimentary rocks intercalated with basalts and andesites. Zinc-copper deposits of the Urals-type are hosted by bimodal rhyolite-basalt assemblages, which occur at a higher stratigraphic level than those of Cyprus- and Besshi-types. The Baimak-type zinc-copper-barite deposits are associated with intrusive quartz porphyries which occur in the upper parts of bimodal volcanic successions. In addition there are some sulphide deposits of zinc-lead-barite and zinc-copper composition hosted by Ordovician terrigenous sequences which occur within depressions in Precambrian blocks. These types of sulphide deposits have been formed at various stages of divergence and convergence of the Earth's crust during the orogenic history of the Urals. Received: 27 June 1997 / Accepted: 14 May 1998  相似文献   

13.
The main differences and similarities between the tectonic features of the Urals and the Tien Shan are considered. In the Neoproterozoic and Early and Middle Paleozoic, the Ural and Turkestan oceanic basins were parts of one oceanic domain, with several distinct regions in which tectonic events took different courses. The Baltic continental margin of the Ural paleoocean was active, whereas the Tarim-Alay margin of the Turkestan ocean, similar in position, was passive. The opposite continental margin in the Urals is known beginning from the Devonian as the Kazakh-Kyrgyz paleocontinent. In the Tien Shan, a similar margin developed until the Late Ordovician as the Syr Darya block with the ancient continental crust. In the Silurian, this block became a part of the Kazakh-Kyrgyz paleocontinent. The internal structures of the Ural and Turkestan paleooceans were different. The East Ural microcontinent occurred in the Ural paleoocean during the Early and Middle Paleozoic. No microcontinents are established in the Turkestan oceanic basin. Volcanic arcs in the Ural paleoocean were formed in the Vendian (Ediacarian), at the Ordovician-Silurian boundary, and in the Devonian largely along the Baltic margin at different distances from its edge. In the Turkestan paleoocean, a volcanic arc probably existed in the Ordovician at its Syr Darya margin, i.e., on the other side of the ocean in comparison with the Urals. The subduction of the Turkestan oceanic crust developed with interruptions always in the same direction. The evolution of subduction in the Urals was more complicated. The island arc-continent collision occurred here in the Late Devonian-Early Carboniferous; the continent-continent collision took place in the Moscovian simultaneously with the same process in the Tien Shan. The deepwater flysch basins induced by collision appeared at the Baltic margin in the Famennian and Visean, whereas in the Bashkirian and Moscovian they appeared at the Alay-Tarim margin. In the Devonian and Early Carboniferous, the Ural and Turkestan paleooceans had a common active margin along the Kazakh-Kyrgyz paleocontinent. The sudduction of the oceanic crust beneath this paleocontinent in both the Urals and the Tien Shan started, recommenced after interruptions, and finally ceased synchronously. In the South Ural segment, the Early Carboniferous subduction developed beneath both Baltica and the Kazakh-Kyrgyz paleocontinent, whereas in the Tien Shan, it occurred only beneath the latter paleocontinent. A divergent nappe-fold orogen was formed in the Urals as a result of collision of the Kazakh-Kyrgyz paleocontinent with the Baltic and Alay-Tarim paleocontinents, whereas a unilateral nappe-fold orogen arose in the Tien Shan. The growth of the high divergent orogen brought about the appearance of the Ural Foredeep filled with molasse beginning from the Kungurian. In the Tien Shan, a similar foredeep was not developed; a granitic axis similar to the main granitic axis in the Urals was not formed in the Tien Shan either.  相似文献   

14.
Ultramafic–mafic- and ultramafic-hosted Cu (Co, Ni, Au) volcanogenic massive sulfide (VMS) deposits from ophiolite complexes of the Main Uralian Fault, Southern Urals, are associated with island arc-type igneous rocks. Trace element analyses show that these rocks are geochemically analogous to Early Devonian boninitic and island arc tholeiitic rocks found at the base of the adjacent Magnitogorsk volcanic arc system, while they are distinguished both from earlier, pre-subduction volcanic rocks and from later volcanic products that were erupted in progressively more internal arc settings. The correlation between the sulfide host-rocks and the earliest volcanic units of the Magnitogorsk arc suggests a connection between VMS formation and infant subduction-driven intraoceanic magmatism.  相似文献   

15.
鄂尔多斯地区南缘寒武纪层序地层和海平面变化   总被引:2,自引:1,他引:2  
蔡忠贤  秦玉娟 《地球科学》1997,22(5):474-490
通过对鄂尔多斯盆地南缘河津、岐山及陇县3个下古生界露头剖面的研究,对比表明、华北型的武系自辛人集组至凤山组可识别出14个三组层序,这些邓在生物地层上大体可与1-3个标准三叶虫带相对应,年代地层上除下寒武统2个层序形成时间在可能大于5Ma之外,中--上武统的层序均在2-3Ma之间,进一步利用盆地沉降分析模型逐步对下古生界累积去压实厚度曲线进行沉积物负载消减、盆地构造热沉降消减后发现,本区的盆地构造沉  相似文献   

16.
The conducted comprehensive study of the western part of Kyrgyz Ridge provided new data on the structure, composition and age of Precambrian and Early Paleozoic stratified and igneous complexes. The main achievements of these studies are: (1) the establishment of a wide age spectrum, embracing the interval from the Neoproterozoic to the end of the Early Ordovician, for the clastic-carbonate units composing the cover of the Northern Tian Shan sialic massif; (2) the reconstruction and dating of Early and Late Cambrian ophiolite complexes formed in suprasubduction settings;(3) the discovery and dating of the Early-Middle Ordovician volcano-sedimentary complex of island-arc affinity; and (4) proof of the wide occurrence of Late Ordovician granitoids, some of which bear Cu-Au-Mo ores. The intricate thrust-and-fold structure of the western part of the Kyrgyz Ridge, formed in several stages from the Middle Cambrian (?) until the end of the Middle Ordovician, was scrutinized; the importance of the Early Ordovician stage was demonstrated. The intrusion of large batholiths in the early Late Ordovician accomplished the caledonide structural evolution. Formation of Neoproterozoic and Early Paleozoic caledonide complexes, which were possibly related to the protracted and entangled evolution of the active continental margin, ceased by the Late Ordovician.  相似文献   

17.
Ordovician faunal data from the Scandinavian Caledonides is tested with new geochemical information from zircons to give U/Pb ages and source origins of volcanic arc and ophiolite sequences. Early Ordovician (Arenig-Llanvirn), low latitude, Toquima-Table Head faunas from the upper Upper Allochthon are associated with an island arc system formed adjacent to Laurentia. Contemporaneous mafic magmas were contaminated by crustal material during subduction and associated granites contain inherited zircons of Archaean age. The nearest source for such rocks is on the Laurentian rather than the Baltic side. Higher latitude Celtic province faunas from the upper Upper Allochthon are from one insular site accessible to forms from both Laurentia and Baltica.
The late Ordovician low-latitude Holorhynchus and subtropical Hirnantia faunas occur in overstep sequences above deeply eroded early Ordovician arc complexes. The transgression appears to be coeval with a second generation of spreading-related complexes. Single detrital zircons from sediments show sources from Archaean, Proterozoic and early Ordovician terranes. This suggests that deposition was in a basin situated along the same continental margin (Laurentia) to which the early Ordovician ophiolite/arc sequences had already become accreted. The late Ordovician faunas link both Laurentia and Baltica at a time of narrowing of lapetus.
The new geochemical data together with the faunal information is supported by recent palaeomagnetic studies.  相似文献   

18.
古亚洲洋不是西伯利亚陆台和华北地台间的一个简单洋盆,而是在不同时间、不同地区打开和封闭的多个大小不一的洋盆复杂活动(包括远距离运移)的综合体.其北部洋盆起始于新元古代末-寒武纪初(573~522Ma)冈瓦纳古陆裂解形成的寒武纪洋盆.寒武纪末-奥陶纪初(510~480Ma),冈瓦纳古陆裂解的碎块、寒武纪洋壳碎块和陆缘过渡壳碎块相互碰撞、联合形成原中亚-蒙古古陆.奥陶纪时,原中亚-蒙古古陆南边形成活动陆缘,志留纪形成稳定大陆.泥盆纪初原中亚-蒙古古陆裂解,裂解的碎块在新形成的泥盆纪洋内沿左旋断裂向北运动,于晚泥盆世末到达西伯利亚陆台南缘,重新联合形成现在的中亚-蒙古古陆.晚古生代时,在现在的中亚-蒙古古陆内发生晚石炭世(318~316Ma)和早二叠世(295~285Ma)裂谷岩浆活动,形成双峰式火山岩和碱性花岗岩类.蒙古-鄂霍次克带是西伯利亚古陆和中亚-蒙古古陆之间的泥盆纪洋盆,向东与古太平洋连通,洋盆发展到中晚侏罗世,与古太平洋同时结束,其洋壳移动到西伯利亚陆台边缘受阻而向陆台下俯冲,在陆台南缘形成广泛的陆缘岩浆岩带,从中泥盆世到晚侏罗世都非常活跃.古亚洲洋的南部洋盆始于晚寒武世.此时,华北古陆从冈瓦纳古陆裂解出来,在其北缘形成晚寒武世-早奥陶世的被动陆缘和中奥陶世-早志留世的沟弧盆系.志留纪腕足类生物群的分布表明,华北地台北缘洋盆与塔里木地台北缘、以及川西、云南、东澳大利亚有联系,而与上述的古亚洲洋北部洋盆没有关连,两洋盆之间有松嫩-图兰地块间隔.晚志留世-早泥盆世,华北地台北部发生弧-陆碰撞运动,泥盆纪时,在松嫩地块南缘形成陆缘火山岩带,晚二叠世-早三叠世华北地台与松嫩地块碰撞,至此古亚洲洋盆封闭.古亚洲洋的南、北洋盆最后的褶皱构造,以及与塔里木地台之间发生的直接关系,很可能是后期的构造运动所造成的.  相似文献   

19.
扬子板块北部古被动大陆边缘的地球化学特征   总被引:2,自引:0,他引:2  
本文初次提出扬子板块北部古被动大陆边缘的地球化学特征是:a、裂陷早期阶段,发育碱性双峰式火山岩,但在裂陷的晚期和移离的早期阶段,发育碱性而不具双峰特征的火山岩、岩脉群;b、发育具两类不同地球化学特征的砂页岩,裂陷阶段形成的砂页岩与活动大陆边缘形成的砂页岩具相似的地球化学特征,移离阶段所形成的砂页岩才真正具被动大陆边缘砂页岩的地球化学特征。  相似文献   

20.
The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430–480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin.

A consistent plate-tectonic model is proposed for the area, consisting of six main stages:

1. (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin;

2. (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc;

3. (3) opening and development of the Trinity back-arc basin around 430–480 Ma ago;

4. (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock;

5. (5) break in volcanic activity from the Early Devonian to the Early Permian; and

6. (6) development of a mature island-arc from the Early Permian to the Late Triassic.

The eastern Klamath Mountains island-arc formations and ophiolitic suite are part of the “Cordilleran suspect terranes”, considered to be Gondwana margin fragments, that have undergone large northward translations before final collision with the North American craton during Late Mesozoic or Cenozoic times. These eastern Klamath Mountains island-arcs could be associated with the paleo-Pacific oceanic plate that led to accretion of these allochthonous terranes to the American margin.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号