首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In previous works, a generic dynamical model has been suggested by Huang et al., which is shown to be correct for both adiabatic and radiative blast-waves, in both ultra-relativistic and non-relativistic phases. In deriving their equations, Huang et al. have assumed that the radiative efficiency of the fireball is constant. They then applied their model directly to realistic cases where the radiative efficiency evolves with time. In this paper, we abandon the above assumption and re-derive a more accurate dynamical equation for gamma-ray burst remnants. Numerical results show that the model presented by Huang et al. is accurate enough in general cases.  相似文献   

2.
The equation of radiative acoustics is derived by taking into account the effect of a transverse magnetic field, which is quite similar to the acoustic equation derived in Paper I. The only difference is that theadiabatic, isothermal, andisentropic speeds of sound and theradiation-acoustic speed are replaced by theadiabatic, isothermal, andisentropic magnetoacoustic speeds and theradiation-magnetoacoustic speed, respectively. The main results shown in Paper I are valid even in the presence of a transverse magnetic field.  相似文献   

3.
It is well known that adiabatic shocks in ordinary gases are stable to both tranverse and longitudinal perturbations, but this need not be true if there are significant thermal effects due to chemical reactions or cooling processes. For example, detonation waves in gases are observed to form cellular structures if the chemical reaction is sufficiently temperature sensitive and a similar instability occurs in radiative shocks in the ISM if their speed exceeds 150 km s–1. This means that interstellar shocks will be subject to this radiative instability in many cases. The temperature sensitivity of the nuclear reactions in Type I supernovae is also such that we would expect detonation waves in these objects to have a cellular structure.  相似文献   

4.
The equation of radiative acoustics is derived by taking into account the effect of a non-transverse magnetic field, and the solutions are schematically represented. The main results shown in Paper I and Paper II are valid even in the presence of a non-transverse magnetic field, and the only difference is that theadiabatic, isothermal, andisentropic speeds of sound and theradiation-acoustic speed in Paper I which respectively correspond to theadiabatic, isothermal, andisentropic magnetoacoustic speeds and theradiation-magnetoacoustic speed in Paper II are replaced by the sets of speeds ofadiabatic, isothermal, isentropic, andradiation-acoustic fast andslow waves, respectively.  相似文献   

5.
The coupled set of equations of hydrodynamics and radiative transfer is derived for small disturbances in a plane, grey atmosphere. Only radiative transfer is taken into account in the energy equation; dynamical effects of radiation are ignored. A mean stationary radiative flux through the photosphere is taken into account. The radiative transfer equation is used by assuming the Eddington approximation, moreover, an exponential height profile of the temperature and an analytical opacity formula are supposed. For this model we obtained an asymptotic solution for plane nonadiabatic acoustic waves and radiation waves. The approach provides a detailed discussion of the interaction of nonadiabatic p‐modes and radiation waves in a realistic model of the photosphere of a solar‐like star.  相似文献   

6.
The unrestricted second-order virial tensor formalism has been used to calculate the characteristic frequencies of linear adiabatic oscillations of a composite stellar model having an isothermal core and a polytropic envelope in presence of a weak poloidal magnetic field. The frequencies of the transverse shear mode and the nonradial pulsation mode for both a radiative and a convective envelope (corresponding to polytropic index 3 and 1.5, respectively) alongwith that of the toroidal mode for the radiative envelope get increased in presence of the magnetic field. However, the frequency of the toroidal mode for the convective envelope registers a decrease in presence of the field. The corrections to the various frequencies decrease with increasing values of the parameter characterizing the lowering of the core temperature in presence of the magnetic field.  相似文献   

7.
Radiative control of surface temperature is a key characteristic of the martian environment and its low-density atmosphere. Here we show through meteorological modeling that surface temperature can be far from radiative equilibrium over numerous sloping terrains on Mars, where nighttime mesoscale katabatic winds impact the surface energy budget. Katabatic circulations induce both adiabatic atmospheric heating and enhancement of downward sensible heat flux, which then becomes comparable to radiative flux and acts to warm the ground. Through this mechanism, surface temperature can increase up to 20 K. One consequence is that warm signatures of surface temperature over slopes, observed through infrared spectrometry, cannot be systematically associated with contrasts of intrinsic soil thermal inertia. Apparent thermal inertia maps retrieved thus far possibly contain wind-induced structures. Another consequence is that surface temperature observations close to sloping terrains could allow the validation of model predictions for martian katabatic winds, provided contrasts in intrinsic thermal inertia can be ruled out. The thermal impact of winds is mostly discussed in this paper in the particular cases of Olympus Mons/Lycus Sulci and Terra Meridiani but is generally significant over any sloped terrains in low thermal inertia areas. It is even general enough to apply under daytime conditions, thereby providing a possible explanation for observed afternoon surface cooling, and to ice-covered terrains, thereby providing new insights on how winds could have shaped the present surface of Mars.  相似文献   

8.
We propose an approximate analytical approach to the problem of the transition of supernova remnants from the adiabatic stage of their evolution to the radiative one. Contrary to the traditional notion, this process turns out to last for a quite long time which is commensurable with the duration of the adiabatic stage. We calculate some parameters of the thermal X-ray radiation of supernova remnants.  相似文献   

9.
王建民  胡晨  杨芳  张恩鹏  吴枚 《天文学报》2006,47(4):355-361
考虑了在黑洞质量增长过程中,辐射效率的变化对黑洞质量增长的影响.随着吸积的进行,黑洞的角动量会发生变化,辐射效率也会随之发生变化,从而影响了质量增长.对于黑洞的指数增长模型,给出了考虑辐射效率对黑洞质量增长影响下的黑洞质量增长方程,用数值方法进行求解,并得到了黑洞质量随时间变化的曲线.与假定辐射效率为常数的模型对比,结果表明辐射效率的变化对黑洞质量的增长有较明显的影响,使黑洞的增长延迟.这个模型可以定量地说明最近的观测结果.  相似文献   

10.
We investigate the effect of dust on the scaling properties of galaxy clusters based on hydrodynamic N -body simulations of structure formation. We have simulated five dust models plus radiative cooling and adiabatic models using the same initial conditions for all runs. The numerical implementation of dust was based on the analytical computations of Montier & Giard. We set up dust simulations to cover different combinations of dust parameters that make evident the effects of size and abundance of dust grains. Comparing our radiative plus dust cooling runs with a purely radiative cooling simulation, we find that dust has an impact on cluster scaling relations. It mainly affects the normalization of the scalings (and their evolution), whereas it introduces no significant differences in their slopes. The strength of the effect critically depends on the dust abundance and grain size parameters as well as on the cluster scaling. Indeed, cooling due to dust is effective in the cluster regime and has a stronger effect on the 'baryon driven' statistical properties of clusters such as   L X– M , Y – M , S – M   scaling relations. Major differences, relative to the radiative cooling model, are as high as 25 per cent for the   L X– M   normalization, and about 10 per cent for the Y – M and S – M normalizations at redshift zero. On the other hand, we find that dust has almost no impact on the 'dark matter driven'   T mw– M   scaling relation. The effects are found to be dependent in equal parts on both dust abundances and grain size distributions for the scalings investigated in this paper. Higher dust abundances and smaller grain sizes cause larger departures from the radiative cooling (i.e. with no dust) model.  相似文献   

11.
We formulate the general relativistic force-free electrodynamics in a new 3 1 language. In this formulation,when we have properly defined electric and magnetic fields,the covariant Maxwell equations could be cast in the traditional form with new vacuum con-stitutive constraint equations. The fundamental equation governing a stationary,axisymmet-ric force-free black hole magnetosphere is derived using this formulation which recasts the Grad-Shafranov equation in a simpler way. Compared to the classic 3 1 system of Thorne and MacDonald,the new system of 3 1 equations is more suitable for numerical use for it keeps the hyperbolic structure of the electrodynamics and avoids the singularity at the event horizon. This formulation could be readily extended to non-relativistic limit and find applica-tions in flat spacetime. We investigate its application to disk wind,black hole magnetosphere and solar physics in both flat and curved spacetime.  相似文献   

12.
We consider an extended Chaplygin gas equation of state which is driven from D-brane action and construct a cosmological model based on this equation of state. In this regard, we compute the scale factor of the model under a certain approximation. The conservation equation of this case is a non-linear differential equation which should solve using the special conditions. We also analyze the stability of the model by using sound speed as well as adiabatic index and discuss certain special cases of the model. We find special equation of state in this model which yields to dynamical and thermodynamical stability. Furthermore, we study the cosmological consequences of this model under certain conditions.  相似文献   

13.
The features of the relativistic charge particle motion and emission due to the radiative slamping in the strong electromagnetic fields are investigated. It is shown that the radiative force responsible for curvature radiation is associated with the particle drift in an inhomogeneous magnetic field. The adiabatic trajectory is obtained for the relativistic particle, moving in a strong static electron-magnetic field, particle energy being determined by the balance of the work of the electric field and the energy losses through curvature radiation.  相似文献   

14.
The effect of variation of radiative efficiency on the growth of the black hole mass is discussed. In the process of accretion, the black hole's angular momentum varies, resulting in a variation of the radiative efficiency, and the growth of the black hole mass is thereby affected. For the exponential growth model of back holes and taking into account the effect of a varying radiative efficiency, the equation for the growth of the black hole mass is solved numerically. Compared to the model that assumes a constant radiative efficiency, the result indicates that variation of radiative efficiency has a marked, retarding effect on the growth of the black hole mass. This model can explain quantitatively some recent observational results.  相似文献   

15.
A numerical solution to the integral equation for radiative transfer by resonance reradiation in an isothermal spherical atmosphere is described. The method presented is 100 times more efficient than earlier spherical radiative transfer models. The new model can accommodate density variations in the full three dimensional space and includes effects due to the presence of pure absorbers. Complete frequency redistribution is assumed for photon scattering. Applications of this model to the problem of solar photons scattered by atomic hydrogen in the atmospheres of Venus, Earth and Mars are described, and limb and disk profiles, as well as equivalent mean disk intensities for Venus, Earth and Mars, are presented.  相似文献   

16.
The growth of weak MHD discontinuities have been studied in a radiation induced flow field at very high temperature. Growth and decay properties of weak MHD discontinuities have been discussed under the influences of time-dependent gasdynamic field, the radiation field and the magnetic field with finite electrical conductivity. The effects of thermal radiation and conduction of the global behaviour of weak MHD discontinuities have been studied under a quasi-equilibrium and quasi-isotropic hypothesis of the differential approximation to the radiative heat transfer equation. It is shown that the existence of the time-dependent radiation field gives rise to a radiation induced wave which has a negligibly small effect on the non-relativistic flow properties of the gasdynamic field. It is also shown that the radiation stresses resist the steepening tendency of a compressive weak wave and help in stabilizing it whereas the thermal conduction effects counteracts to destabilize it. It is found that under radiation effects the shock formation is either disallowed or delayed. The two cases of diverging waves and converging waves have been studied separately to answer a particular question as to when a shock discontinuity or a coustic will be formed or disallowed under curvature effects.  相似文献   

17.
In a BransDicke (BD) cosmological model, the energy density associated with some scalar field decreases as a 2[( o +1/2)/( o +1)] with the scalefactor a ( t ) of the universe, giving matter with an equation of state In this model, the universe could be closed but still have a non-relativistic matter density corresponding to its critical value, o =1. Different cosmological expressions, such as luminosity distance, angular diameter, number count and ratio of the redshift thicknessangular size, are determined in terms of the redshift for this model.  相似文献   

18.
Bruce Hapke 《Icarus》2008,195(2):918-926
It is well known that the bidirectional reflectance of a particulate medium such as a planetary regolith depends on the porosity, in contrast to predictions of models based on the equation of radiative transfer as usually formulated. It is shown that this failure to predict porosity dependence arises from an incorrect treatment of the light that passes between the particles. In this paper a more physically correct treatment that takes account of the necessity of preventing particles from interpenetrating is used together with the two-stream approximation to solve the radiative transfer equation and derive improved expressions for the bidirectional and directional-hemispherical reflectances. It is found that increasing the filling factor (decreasing the porosity) increases the reflectance of low and medium albedo powders, but decreases it for ones with very high albedos. The model agrees qualitatively with measured data.  相似文献   

19.
A general Monte Carlo relaxation method has been formulated for the computation of physically self-consistent model stellar atmospheres. The local physical state is obtained by solving simultaneously the equations of statistical equilibrium for the atomic and ionic level populations, the kinetic energy balance equation for the electron gas to obtain the electron temperature, and the equation of radiative transfer. Anisotropic Thomson scattering is included in the equation of transfer and radiation pressure effects are included in the hydrostatic equation. The constraints of hydrostatic and radiative equilibrium are enforced. Local thermodynamic equilibrium (L.T.E.) is assumed as a boundary condition deep in the atmosphere. Elsewhere in the atmosphere L.T.E. is not assumed.The statistical equilibrium equations are solved with no assumptions made concerning detailed balance for the bound-bound radiative processes. The source function is formulated in microscopic detail. All atomic processes contributing to the absorption and emission of radiation are included. The kinetic energy balance equation for the electron gas is formulated in detail. All atomic processes by which kinetic energy is gained and lost by the electron gas are included.The method has been applied to the computation of a model atmosphere for a pure hydrogen early-type star. An idealized model of the hydrogen atom with five bound levels and the continuum was adopted. The results of the trial calculation are discussed with reference to stability, accuracy, and convergence of the solution.Contribution No. 385 from the Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

20.
Variational principles for relativistic smoothed particle hydrodynamics   总被引:1,自引:0,他引:1  
In this paper we show how the equations of motion for the smoothed particle hydrodynamics (SPH) method may be derived from a variational principle for both non-relativistic and relativistic motion when there is no dissipation. Because the SPH density is a function of the coordinates the derivation of the equations of motion through variational principles is simpler than in the continuum case where the density is defined through the continuity equation. In particular, the derivation of the general relativistic equations is more direct and simpler than that of Fock. The symmetry properties of the Lagrangian lead immediately to the familiar additive conservation laws of linear and angular momentum and energy. In addition, we show that there is an approximately conserved quantity which, in the continuum limit, is the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号