首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-temperature (e.g., >200 °C) post-infrared infrared (pIRIR) stimulated luminescence of feldspar has been widely used for dating, because it usually suffers negligibly from anomalous fading. However, compared to the quartz optically stimulated luminescence (OSL) or low-temperature (e.g., 50 °C) IR stimulated luminescence (IRSL) from feldspars, the high-temperature pIRIR signals have been shown to bleach more slowly and usually have high residual does of a few Gys or more, which limits its application to date relatively young samples and may cause problems for correcting residual dose/signal. In this study, we investigated the bleachability of K-feldspar pIRIR signals for individual grains. A significant variation in the bleachability of the pIRIR signal was observed among different K-feldspar grains from the same sample. Experiments show that such a variability may result in different residual doses for different grains and, consequently, additional scatter in De values. We present a method for quickly testing the bleachability of individual grains. Our result suggests that selecting the easy-to-bleach grains for De determination provides an efficient way to date young samples using high-temperature pIRIR signals, which avoids the compromise of using low-temperature pIRIR signals that may suffer from anomalous fading.  相似文献   

2.
3.
Studies of modern sediments, their sedimentology and depositional processes are important for understanding the behaviour of the luminescence characteristics of quartz and feldspar in fluvial settings. Previous studies have shown large variations in OSL characteristics of quartz from different fluvial systems, while the IRSL and pIRIR signals from K-feldspar have been understudied. We test the effects of fluvial setting on luminescence characteristics by collecting modern (<1 year old) bedload sediments down the courses of three river systems with very different hydrological characteristics, geologic contexts, and catchment lithologies. The single grain (SG) and multi-grain aliquot (MGA) OSL (quartz) and IRSL and pIRIR (K-feldspar) properties of samples were measured and compared to better understand intra- and inter-fluvial system patterns in sensitivity, bleaching, and equivalent dose (De) distribution skewness and kurtosis. The quartz OSL and K-feldspar IRSL and pIRIR signal sensitivities increase with downstream transport distance of sediments, confirming previous studies (quartz) and showing that IRSL signals from K-feldspar also increase in response to reworking cycles. Increasing transport distance also results in better bleaching of the OSL signal from quartz samples (MGA and SG) due to more grains being exposed to sunlight. By contrast, the IRSL and pIRIR signals retain significant residuals in all samples, though 5–15% of grains yield zero-dose De values and age modelling of SG data yields accurate burial dose estimates. Additionally, the skewness and kurtosis of SG OSL De datasets from one river increase with transport distance, with the best bleached samples exhibiting the highest skewness, thereby questioning the applicability of the skewness-value of a De dataset as an accurate indicator for partial-bleaching. Our data shows marked variability between (i) different river systems and (ii) the measured minerals, however consistent use of statistical models allows accurate De estimation in all contexts. Age modelling of SG data from K-feldspar, thus, provides a valuable tool for future fluvial research in regions where poor OSL characteristics prevent the use of quartz as a dosimeter.  相似文献   

4.
We investigated the infrared stimulated luminescence (IRSL) and post-infrared IRSL (pIRIR) signals emitted by K-feldspars from sedimentary samples from Asia, Europe and Africa using a single-aliquot multiple elevated temperature (MET) stimulation procedure. For separate aliquots of the same sample, we show that variation among the dose response curves (DRCs), or growth curves, constructed from the regenerative dose signal (Lx), the test dose signal (Tx, an indicator of luminescence sensitivity) and the sensitivity-corrected signal (Lx/Tx) can be largely eliminated by normalising the DRCs using one of the regenerative dose signals; we call this procedure ‘regenerative-dose normalisation’ or re-normalisation. Furthermore, for the MET-pIRIR signals measured at 250 °C, we find that different samples have re-normalised DRCs that follow the same growth function, despite the samples differing significantly in terms of their geological provenance, sedimentary context, equivalent dose (De) and luminescence sensitivity. This common feature offers the potential to establish a ‘global standardised growth curve’ (gSGC) for different samples of K-feldspar, and thereby enable De values to be estimated for a large number of single aliquots by projecting the re-normalised natural signals on to the gSGC. For the 18 samples investigated in this study, we find that De estimates obtained from the gSGC are consistent with those obtained using full single-aliquot regenerative dose (SAR) procedures for doses of up to ∼1600 Gy. The establishment of a gSGC would greatly reduce the time required to date older samples using K-feldspar, as regenerative doses of several hundreds to a few thousands of Gy are typically delivered to each aliquot in each SAR cycle.  相似文献   

5.
Luminescence dating has been applied to scoria and lahar deposits from Somma–Vesuvius, Italy. Samples include scoria from the AD472 and 512 (or 536) eruptions and lahar deposits. In order to find a stable luminescence signal which is less affected by anomalous fading, infrared stimulated luminescence (IRSL) signals at elevated temperatures after bleaching with IR at 50 °C (termed post-IR IRSL; pIRIR) were tested at different preheat and elevated stimulation temperatures. The fading rates of both IRSL and pIRIR signals reduced dramatically with increasing preheat and pIRIR stimulation temperatures. A pIRIR signal measured at 290 °C after a preheat at 320 °C (60 s) and an IR stimulation at 50 °C (100 s) was selected to calculate the equivalent dose (De). The gamma spectrometry results indicate that the U-series nuclides are not in equilibrium and there is a large 226Ra excess. The dose rates and ages were calculated by assuming a 226Ra excess (over its parent 230Th) at deposition, and that this unsupported excess then decayed to the present level. The resulting luminescence ages of the two scoria samples agreed with the expected ages, and the ages of the lahar deposits indicate that they are associated with the AD1631 eruption.  相似文献   

6.
Raised beach sand deposits along the southeastern coast of Norway were dated by optical (OSL) and infrared stimulated luminescence (IRSL) and the quartz and K-feldspar luminescence characteristics were described. Due to the poor quartz luminescence characteristics, only a limited number of samples were suitable for OSL dating. More promising are the K-feldspar extracts, with typical K-feldspar luminescence characteristics and no sign of fading. For equivalent dose (De) determination, sand-size quartz and feldspar extracts were used, applying a single aliquot regenerative (SAR) protocol. Both, OSL and IRSL De estimates show a wide distribution, unexpected for beach deposits. The calculated OSL and IRSL age estimates were generally in good agreement and the correctness of the ages was confirmed by independent age control. Because only a limited number of the quartz samples were suitable for OSL dating, IRSL dating of the K-feldspar represents an alternative to OSL quartz dating.  相似文献   

7.
The Wulanmulun site found in 2010 is an important Paleolithic site in Ordos (China), from which lots of stone and bone artifacts and mammalian fossils have been recovered. It was previously dated by radiocarbon and optically stimulated luminescence (OSL) techniques on quartz. To further confirm the reliability of the chronology constructed based on OSL ages and test the applicability of the recently developed pIRIR procedure on sediments from northern China, twenty-four sediment samples (including eolian, lacustrine and fluvio-eolian sands) from the site were determined using the multi-elevated-temperature post-IR IRSL (MET-pIRIR or pIRIR) procedure on potassium feldspar. The results show that the studied samples have two MET-pIRIR De preheat plateaus (280–320 and 340–360 °C), and the bleaching rates of the luminescence signals are associated with sample ages and stimulation temperatures. All the pIRIR ages (7–155 ka) corrected for anomalous fading and residual dose obtained after solar bleaching for 15 h are larger than the corresponding quartz OSL ages (4–66 ka) previously determined, even for the young eolian samples (<10 ka). But the corrected IRSL(50 °C) ages (6–85 ka) are broadly consistent with the quartz ages. It appears that the IRSL(50 °C) ages are more reliable, although this contradicts the previously results obtained by other people. On the other hand, we also obtained an extended age plateau between the stimulation temperatures of 50 and 290 °C in the plot of age versus stimulation temperature (A-T plot) by subtracting different residual doses obtained after different bleaching times. The reliability of the plateau ages requires further investigation. For the sediment samples from this site, quartz should be more suitable for dating than K-feldspar, and the quartz OSL ages of 50–65 ka for its cultural layer should be reliable.  相似文献   

8.
A protocol for optical dating of potassium-rich feldspar (K-feldspar) is proposed. It utilizes the infrared stimulated luminescence (IRSL) signal measured by progressively increasing the stimulation temperature from 50 to 250 °C in step of 50 °C, so-called multi-elevated-temperature post-IR IRSL (MET-pIRIR) measurements. Negligible anomalous fading was observed for the MET-pIRIR signals obtained at 200 and 250 °C. This was supported by equivalent dose (De) measurements using the IRSL and MET-pIRIR signals. The De values increase progressively from 50 °C to 200 °C, but similar De values were obtained for the MET-pIRIR signal at 200 and 250 °C. Measurement of modern samples and bleached samples indicates that the MET-pIRIR signals have small residual doses less than 5 Gy equivalent to about 1–2 ka. We have tested the protocol using various sedimentary samples with different ages from different regions of China. The MET-pIR IRSL ages obtained at 200 and 250 °C are consistent with independent and/or quartz OSL ages.  相似文献   

9.
Loess deposits surrounding the high mountainous regions of arid central Asia (ACA) play an important role in understanding environmental changes in Eurasia on orbital and sub-orbital time scales. However, problems with dating loess in ACA have limited the interpretation of climatic and environmental data, especially Holocene data. We selected a typical loess/paleosol sequence (LJW10) on the northern slope of the Tianshan Mountains in ACA consisting of 280 cm of loess with multiple paleosols formed in the upper 170 cm of the section. We applied quartz OSL dating to coarse-grained (63–90 μm) fractions, and newly developed K-feldspar pIRIR dating protocols to both coarse-grained and medium-grained (38–63 μm) fractions of the samples from LJW10 section. Internal checks of the quartz OSL dating indicate that the single-aliquot regenerative-dose protocol on large aliquots (5 mm) is appropriate for equivalent dose (De) determinations and that the quartz ages of the loess samples are likely to be reliable. Luminescence characteristics and internal checks of the pIRIR dating indicate the pIRIR signal at a 170 °C stimulation temperature with a 200 °C preheat can be used for both coarse-grained and medium-grained De determinations. Anomalous fading tests for the pIRIR 170 °C signal indicate the pIRIR signals are stable and the anomalous fading of the pIRIR 170 °C signal can be ignored. Sunlight bleaching tests of the loess indicate the residual dose for the pIRIR 170 °C signal can also be ignored as it corresponds to only ∼9 years for the medium-grained K-feldspar and ∼85 years for the coarse-grained K-feldspar. The pIRIR ages of five medium-grained and coarse-grained K-feldspar samples are consistent with coarse-grained quartz OSL ages, and both the medium-grained and coarse-grained ages increase uniformly with depth, indicating these pIRIR ages are reliable. Based on the coarse-grained quartz OSL ages, and on coarse-grained and medium-grained K-feldspar pIRIR ages, an age-depth model for the paleosol-loess sequence was established by using a Bacon age-depth model. This model suggests eolian loess deposition began by at least ∼16 ka ago and that paleosol development on these eolian loess deposits began ∼5.5 ka, continuing to the present, with periods of high effective moisture at 5.5–4.9, 4.6–4.1, and 3.4–3.1 ka. This sequence suggests overall relative aridity during the early Holocene and an increase in effective moisture beginning ∼5.5 ka during the mid-late Holocene in ACA.  相似文献   

10.
The applicability of the post-IR IRSL single-aliquot regenerative-dose protocol (termed pIRIR protocol) has been tested on K-rich feldspar from recent coastal sediment samples (<500 a) from the southern North Sea coast and southern Baltic Sea coast. The most suitable post-IR IRSL (pIRIR) stimulation temperature is found to be 150 °C by using a preheat temperature of 180 °C. For this pIRIR stimulation temperature, a detectable pIRIR signal is obtained and the residual dose is minimized. Furthermore, anomalous fading is found to be negligible in the pIRIR150 signal for our young samples whereas the fading rates for the conventional IRSL signal measured at 50 °C (IRSL50) is between 5 and 7%/decade. However, the pIRIR150 signal bleaches significantly slower compared to the IRSL50, according to bleaching experiments using daylight, solar simulator and IR diodes, although the residual doses of both signals are similar. The laboratory residual doses in perfectly bleached aliquots are variable from sample to sample and vary between 300 ± 170 and 800 ± 460 mGy for the pIRIR150. The precision of the residual dose determination is generally poor and causes large uncertainties on the residual subtracted ages. The laboratory residual doses alone cannot account for the observed overestimation in our two youngest samples (<70 a), indicating that the feldspar signals in these samples were presumably not fully bleached prior to aeolian or beach deposition. However, even if the age uncertainties are large we obtained pIRIR150 ages in agreement with independent age estimates for the two older samples, which are 70 and 390 years old.  相似文献   

11.
Numerical dating of loess is important for Quaternary studies. Recent progress in post-infrared infrared-stimulated luminescence (pIRIR) signals from potassium-rich feldspar has allowed successful dating of Chinese loess beyond the conventional dating limit based on quartz optically stimulated luminescence (OSL) signals. In this study we tested the multiple-aliquot regenerative-dose (MAR) pre-dose multiple-elevated-temperature post-IR IRSL (pMET-pIRIR) procedure on samples from the palaeosol S5 (∼480 ka) and S8 (∼780 ka) layers from the Luochuan and Jingbian sections, respectively. The results show that (1) compared to sensitivity-corrected signal (Lx/Tx), a higher saturation dose is observed for the sensitivity-uncorrected MET-pIRIR signals (Lx), suggesting that MAR is advantageous for dating old samples; (2) negligible fading component can be achieved using the pMET-pIRIR procedure; (3) for the sample from the top of palaeosol S5, De values (1360 + 226/-167 Gy) broadly consistent with expected De (1550 ± 72 Gy) can be obtained using the sensitivity-uncorrected 300 °C MET-pIRIR signal. Our study suggests that a De value of about 1800 Gy may be the maximum dating limit of Chinese loess using the MAR pMET-pIRIR procedure.  相似文献   

12.
We present a comparative study of quartz OSL, polymineral IRSL at low temperature (50 °C, IR50) and post-IR elevated temperature (290 °C) IRSL (pIRIR290) feldspar dating on nine samples from the Tokaj loess section in NE Hungary (SE Europe). Preheat plateau tests show a drop in quartz OSL De between 160 and 240 °C but above 240 °C a clear De plateau is present. Quartz OSL SAR is shown to be generally appropriate to these samples (recycling, recuperation) but a satisfactory dose recovery result was only obtained when a dose was added to a sample without any prior optical or thermal pre-treatment; this gave a dose recovery ratio of 1.04 ± 0.05 after subtracting the natural dose from the measured dose. The pIRIR290 SAR protocol also results in acceptable dose recovery results for the pIRIR290 signal (1.08 ± 0.01) when a large dose is added to the natural dose. Bleaching experiments suggest a detectable non-bleachable residual pIRIR290 dose of 10 ± 4 Gy. Agreement with quartz OSL ages is best achieved by correcting the IR50 ages for fading; however this is not necessary when using the pIRIR290 signal. With respect to Hungarian Late Quaternary geology our results indicate that the major part of the Tokaj loess has been deposited during MIS 3 (60–24 ka), with periods of soil formation occurring during the onset of MIS 3 (≥58 ka) and between about 35 and 25 ka. Our results also indicate episodic deposition of loess and varying, non-linear sedimentation rates during MIS 3. Proxy analyses in the literature are based on the traditional concept of continuous deposition; in the light of our new data the use of such simple assumptions must be reconsidered.  相似文献   

13.
Infrared stimulated luminescence (IRSL) and post-IR IRSL are applied to small aliquots and single grains to determine the equivalent dose (De) of eleven alluvial and fluvial sediment samples collected in the Pativilca valley, Central Peru at ca. 10°S latitude. Small aliquot De distributions are rather symmetric and display over-dispersion values between 15 and 46%. Small aliquot g-values range between 4 and 8% per decade for the IRSL and 1 and 2% per decade for the post-IR IRSL signal. The single grain De distributions are highly over-dispersed with some of them skewed to higher doses, implying partial bleaching; this is especially true for the post-IR IRSL. Measurements of a modern analog reveal that residuals due to partial bleaching are present in both the IRSL as well as the post-IR IRSL signal. The g-values of individual grains exhibit a wide range with high individual uncertainties and might contribute significantly to the spread of the single grain De values, at least for the IRSL data. Electron Microprobe Analysis performed on single grains reveal that a varying K-content can be excluded as the origin of over-dispersion. Final ages for the different approaches are calculated using the Central Age Model and the Minimum Age Model (MAM). The samples are grouped into well-beached, potentially well-bleached and partially bleached according to the evaluation of the single grain distributions and the agreement of age estimates between methods. The application of the MAM to the single grain data resulted in consistent age estimates for both the fading corrected IRSL and the post-IR IRSL ages, and suggests that both approaches are suitable for dating these samples.  相似文献   

14.
15.
We present the results of K-feldspar IRSL dating of the four lower terraces (T3–T6) of the Portuguese Tejo River, in the Arripiado-Chamusca area. Terrace correlation was based upon: a) analysis of aerial photographs, geomorphological mapping and field topographic survey; b) sedimentology of the deposits; and c) luminescence dating. Sediment sampled for luminescence dating gave unusually high dose rates, of between 3.4 and 6.2 Gy/ka and, as a result, quartz OSL was often found to be in saturation. We therefore used the IRSL signal from K-feldspar as the principal luminescence technique. The K-feldspar age results support sometimes complex geomorphic correlations, as fluvial terraces have been vertically displaced by faults (known from previous studies). Integration of these new ages with those obtained previously in the more upstream reaches of the Tejo River in Portugal indicates that the corrected K-feldspar IRSL ages are stratigraphically and geomorphologically consistent over a distance of 120 km along the Tejo valley. However, we are sceptical of the accuracy of the K-feldspar ages of samples from the T3 and T4 terraces (with uncorrected De values >500 Gy). In these cases the Dose Rate Correction (DRC) model puts the natural signals close to luminescence saturation, giving a minimum corrected De of about 1000 Gy, and thus minimum terrace ages; this may even be true for those doses >200 Gy. Luminescence dating results suggest that: T3 is older than 300 ka, probably ca. 420–360 ka (~Marine Isotope Stage [MIS]11); T4 is ca. 340–150 ka (~MIS9-6); T5 is 136–75 ka (~MIS5); T6 is 60–30 ka (MIS3); an aeolian sand unit that blankets T6 and some of the older terraces is 30–≥12 ka. Collectively, the luminescence ages seem to indicate that regional river downcutting events may be coincident with periods of low sea level (associated, respectively, with the MIS10, MIS6, MIS4 and MIS2).  相似文献   

16.
In this article we test for the first time the potential of single-grains of K-rich feldspar to date well-bleached and poorly bleached sediments using a post-IR IRSL (pIRIR) protocol. We measure natural dose distributions using K-rich feldspars from four coastal samples applying the pIRIR protocol with a preheat of 200 °C and a pIRIR stimulation temperature of 180 °C; each sample had an independent age control obtained from quartz OSL and radiocarbon dating. We also analyse single-grain dose distributions of “zero-dose” and γ-irradiated samples to determine thermal transfer/residual doses and the intrinsic sources of variability of pIRIR single-grain measurements, respectively. Based on these experiments, we conclude that thermal transfer/residual dose give rise to an offset of ∼0.6 Gy in these samples and that the uncertainty assigned to individual pIRIR single-grain dose estimates cannot be smaller than 16.5%.The analysis of the well-bleached samples shows that only the brightest 30% of the grains give pIRIR single-grain ages in agreement with the age control; this effect may arise from the suggested correlation between blue emission and potassium content of individual grains. Comparison of single-grain quartz and feldspar dose distributions from the poorly bleached samples shows that quartz is relatively better bleached; nevertheless, selection of a reliable ‘minimum’ feldspar dose was achieved using two different statistical models.  相似文献   

17.
We investigated the sensitivity change of multiple-elevated-temperature (MET) stimulated post-infrared infrared-stimulated luminescence (MET-pIRIR) signals as a response to irradiation, sunlight bleaching and heating using samples from the Mu Us Desert, central China. A strong dose dependence of MET-pIRIR signal sensitivity was observed. The intensity of the test-dose signals (Tx) increase with the pre-dose received. Furthermore, the signal sensitivity can be reset by sunlight bleaching or heating. This suggests that both the electron traps and hole centres in K-feldspar can be bleached by sunlight, and can, therefore, be used for dating. Using the test-dose signal as a monitor for sensitivity change, it was found that the sensitivity (or hole centres) saturate at a higher dose (D0 = ∼750 Gy) than the sensitivity-corrected signals (or electron traps) (D0 = ∼400 Gy). We propose a multi-aliquot regenerative-dose (MAR) MET-pIRIR dating protocol, which utilises the high saturation dose of hole centres. This protocol was tested using aeolian sediments from north China with ages ranging from 0 to 470 ka. It was found that, compared to the dose limit of ∼800–1000 Gy using the normal MET-pIRIR or pIRIR procedure, the new method can measure a natural dose of up to ∼1500 Gy and produce ages consistent with the expected ages for the samples investigated.  相似文献   

18.
The Gurbantunggut Desert is the second-largest desert in China, located in the westerly-dominated region of north-western China. Previous understanding of palaeoclimate of this desert was mostly based on lake and loess records from the Junggar Basin and Tian Shan Mountains, whilst direct dating of sedimentary records from the desert was very limited. This study applies high-resolution post-infrared infrared stimulated luminescence (pIRIR) dating to three sedimentary profiles at the southern edge of the Gurbantunggut Desert, which contain aeolian sand and water-lain sediments, recording palaeoenvironmental changes at the desert margin since the Last Glacial Maximum (LGM). Different pIRIR dating procedures were applied for samples with different ages. For Holocene-aged samples, a single-aliquot regenerative-dose (SAR) pIRIR procedure based on a three-stepped pIRIR measurement at 110 °C, 140 °C and 170 °C was used, and a standard growth curve (SGC) procedure yields an equivalent dose (De) similar to that of the full-SAR procedure; thus, is applicable for accelerating De measurement. For samples much older than the Holocene, a multi-aliquot regenerative-dose (MAR) pIRIR procedure based on a three-stepped pIRIR measurement at 150 °C, 200 °C and 250 °C was found to be the optimal dating procedure, because a SAR procedure would yield underestimated ages due to uncorrected initial sensitivity change. pIRIR dating results of the investigated profiles reveal a substantial sand accumulation during the LGM, an intensification of aeolian deposition at ∼12 ka and a wetter depositional environment at ∼10–8 ka. A rapid fluvial deposition is dated at ∼20–19 ka, corresponding to the deglaciation period. The sedimentary records from the desert margin show some correlation with lake and loess records in the same region and suggest a complex response of the desert environment to different climatic factors.  相似文献   

19.
The Yellow River is characterized by its tremendous sediment load. In this study we investigated the residual OSL signals in modern fluvial sand and suspended-sediment samples from the middle reach of the river. The residual equivalent dose (De) is found to vary with grain size, mineralogy and the techniques used for the De determination. The results indicate that the OSL signals in some grains from these samples were not completely bleached prior to burial, the maximum individual De value obtained is up to 56 Gy. The results also show that coarse grains are generally better bleached at deposition than fine grains; the fine-grained quartz from suspended sediments are better bleached than the fine-grained quartz from the fluvial sand deposits. The Des obtained using quartz TT-OSL signals are up to ~380 Gy for these modern samples.  相似文献   

20.
《Quaternary Geochronology》2008,3(1-2):99-113
The Chinese Loess Plateau (CLP) is of major interest to Quaternary geologists because it represents an important terrestrial archive of palaeoclimatic fluctuations. Previous multiple-aliquot luminescence dating studies of Chinese loess mainly used thermoluminescence (TL) and infrared stimulated luminescence (IRSL) signals of polymineral fine-grains; these are known to be subject to anomalous fading and thus will tend to yield age underestimations. In this paper we investigate whether the blue-light stimulated luminescence (BLSL) signals from 63 to 90 μm quartz grains extracted from three western Chinese loess sites (Zhongjiacai, Le Du and Tuxiangdao) can be used to establish a reliable chronology. The single-aliquot regenerative-dose (SAR) procedure is used for the equivalent dose (De) determinations and the suitability of our measurement protocol is confirmed by dose recovery tests. The influence of an IRSL signal on the quartz De measurements derived from BLSL has been investigated. From these results we conclude that an IRSL contamination, expressed as an IRSL/BLSL ratio, of up to 10% can be accepted before the values of De are significantly affected. All three sites yield stratigraphically consistent and spatially highly reproducible optical ages up to about 50–70 ka. At the Tuxiangdao site a marked hiatus in the record is identified between ∼20 and ∼30 ka; this remained undetected in previous studies and clearly highlights the importance of high-resolution optical dating in Chinese loess research. The optical ages presented in this work provide more evidence for episodic loess deposition and varying loess accumulation rates in the western part of the CLP. Our study seems to confirm the potential of optically stimulated luminescence (OSL) dating using the SAR procedure applied to the very fine sandy quartz fraction in Chinese loess back to ∼40–50 ka (∼120–150 Gy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号