首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
Concentrations of Cd, Cr, Cu, Ni and Pb were determined in filtered water, suspended particulate matter, and bottom sediments from a 2000 km section of the Ob and Irtysh Rivers. Dissolved Cd, Cr, Cu and Ni concentrations are similar to, or higher than, results from other Russian Arctic and large world river-estuaries. Concentrations of Cd, Cr, Cu, Ni and Pb in suspended particulate matter are generally comparable to results from other Russian Arctic and large world rivers and estuaries. Comparison of trace metal ratios in crustal material and suspended particulate matter and bottom sediment suggests that the source of Cr, Cu and Ni is continental weathering. Particulate Cd and Pb are elevated relative to their crustal abundance, suggesting a source of these metals to the Ob-Irtysh in addition to continental weathering.  相似文献   

2.
The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.  相似文献   

3.
Suspended sediment adsorbs pollutants from flowing water in rivers and deposits onto the bed. However, the pollutants accumulated in the river bed sediment may affect the bio-community through food chain for a long period of time. To study the problem the concentration of heavy metals (Cr, Cd, Hg, Cu, Fe, Zn, Pb and As) in water, sediment, and fish/invertebrate were investigated in the middle and lower reaches of the Yangtze River during 2006-2007. The concentrations of heavy metals were 100-10,000 times higher in the sediment than in the water. Benthic invertebrates had relatively high concentrations of heavy metals in their tissues due to their proximity to contaminated sediments. Benthic invertivore fish had moderately high concentrations of heavy metals whereas phytoplanktivore fish, such as the silver carp, accumulated the lowest concentration of heavy metals. The concentrations of Cu, Zn, and Fe were higher than Hg, Pb, Cd, Cr, and As in the tissue samples. The concentration of heavy metals was lower in the river sediments than in the lake sediments. Conversely, the concentration of heavy metals was higher in river water than in lake water. While a pollution event into a water body is often transitory, the effects of the pollutants may be long-lived due to their tendency to be absorbed in the sediments and then released into the food chain. The heavy metals were concentrated in the following order: bottom material 〉 demersal fish and benthic fauna 〉 middle-lower layer fish 〉 upper-middle layer fish 〉 water.  相似文献   

4.
The concentration and areal distribution of selected trace metals (Cu, Zn, Pb, Cd, Mo, Ni, Mn and Hg) in surficial sediments of Saint John Harbour, New Brunswick, Canada, were studied to determine the extent of anthropogenic input and to estimate the effects of dumping dredged material in the outer harbour. Hg and Cd are of especial concern, since the disposal of dredge material containing these two elements is regulated under the Ocean Dumping Control Act.The concentrations of all metals are low: Cu 16, Zn 53, Pb 24, Cd 0.16, Mo 3, Ni 16, Mn 296 and Hg 0.04 μg g?1. Hg and Cd levels in sediments are well below the permissible limits of 0.75 and 0.6 μg g?1, respectively, set by the Ocean Dumping Control Act.The mean concentrations of trace elements are similar to the low mean values in the unpolluted Bay of Fundy. There is an overall decline in concentrations of metals in the sediments from the inner to the outer harbour. Comparison of the metal levels in the sediments from different areas within the harbour indicate that there is a detectable anthropogenic input in the Courtenay Bay area. Trace metal levels at the dumpsite are significantly lower than in the Courtenay Bay area, where the bulk of the dredged material originates.  相似文献   

5.
In early April 2003, fishermen from Kino Bay Sonora alerted us about a massive die-off of fish and mollusks occurring at Kun Kaak Bay. Phytoplankton samples taken on 17 May 2003 reported the presence of a harmful algal bloom composed of Chatonella marina, Chatonella cf. ovata, Gymnodinium catenatum and Gymnodinium sanguineum. On 22 of May, we collected samples of water, sediment and organisms at the affected area. Physicochemical parameters and nutrients were measured in water samples from different depths. Sediment and benthic organisms were analyzed for Cd, Cu, Zn, Pb and Hg. We found concentrations of heavy metals higher than background levels for this area. Cadmium and Lead concentrations in sediment from the HAB area were up to 6x greater than background levels and Cd in mollusks was 8x greater than regulations allow. A relationship between elevated Cd and Pb concentrations in sediment and the survival of toxic dinoflagellates is suspected.  相似文献   

6.
Natural variation in concentrations of Cd, Co, Cu, Ni, Pb, and Zn in sediments of Cleveland Bay can be modelled by linear regression by using the concentration of Al recovered by strong acid digestion as an independent variable. Samples that exceed the upper 95% prediction interval of regression models are classified as enhanced. Enhancement of trace metals occurs in the intertidal zone and near-shore sediments of western Cleveland Bay, in sites that are characterized by high accumulation rates of fine grained terrigenous sediment. There is a strong positive relationship between increasing enhancement of Cu and Pb and the recovery of these metals by weak HCl digestion, which suggests that for these metals the modelled enhancement is environmentally meaningful. In contrast, at least 60%, and generally greater than 80% of Cd is recovered by weak HCl digestion irrespective of modelled enhancement, and suggests that the statistically modelled enhancement of Cd may be more meaningful than weak HCl soluble concentrations.  相似文献   

7.
Metal pollution study on sediments of North Bay of Bengal sediments presented in this paper is based on existing Lithostratigraphy of upstream,mineralogy and geochemical analysis of 42 sediment samples.The statistical analysis identifies the metal pollution as well as its apparent source in the off shore regions.Samples were analyzed for grain size,organic content and heavy metals(Fe,Mn,Cr,Cu,Ni,Pb,Cd,Zn and Co) using the sequential extraction method to evaluate geochemical processes and pollution load.In an effort to surmise anthropogenic input,several approaches including classification by quantitative indexes such as enrichment factor,contamination factor,degree of pollution,pollution load index and geo accumulation index,were attempted.Metal speciation results indicate high%of Cd in exchangeable fraction of Mahanadi transect sediments where as a considerable amount of oxidizable fraction of Cr was detected at Dhamra.Quantitative indexes place North Bay of Bengal under moderately polluted zone due to high level of Cd.Normalization of metals to Fe indicated relatively high enrichment factors for Cd and Cr.Factor analysis identified seven possible types of geochemical associations where sediment pH plays a major role for the heavy metal mobility.The higher Cd concentration in exchangeable fraction as well as the higher EF for Cd and Cr present in sediment may pose a risk of secondary water pollution under slightest disturbance in the geo-chemistry of sediments.Comparison study with available data of near costal zones and upstream stratigraphy revealed that open cast mining,overburden dumping,mineral based industrial effluents were the major source of pollution for catchment area contamination.Bay of Bengal is likely to face a serious threat of metal pollution with the present deposition rates unless rigorous pollution control norms are applied.  相似文献   

8.
In the near pristine environment of a silled fjord on the west coast of Scotland samples were taken for the determination of dissolved and particulate trace metals (Fe, Mn, Cu, Ni, Cd, Zn and Pb), together with nutrient and hydrographic data, during 19 surveys carried out over a year. An indication of the pristine nature of the environment are the low concentrations of dissolved silicon, phosphate and nitrate which are considerably lower than those of coastal waters which are subject to larger anthropogenic burdens. Distributions of dissolved Cu, Ni and Cd were found to broadly reflect conservative mixing of freshwater and seawater with both end members having similar concentrations. The concentration of dissolved Cu and Ni in seawater entering upper Loch Linnhe (Cu 0.28 μg l−1; Ni 0.26 μg l−1) was consistent with the 1:1 conservative mix of Irish Sea water and North Atlantic surface water predicted from radio-caesium tracer experiments (Mackay & Baxter, 1985). Atmospheric input of trace metals to upper Loch Linnhe appeared to be a relatively minor term in the mass balance relative to fluvial inputs. Values of distribution coefficients Kd were similar to those previously reported for the coastal environment. Iron showed the strongest affinity for the suspended sediments; with particulate percentages of the total load usually greater than 80%. Lead and Mn showed a similar strong affinity to the particle phase. For Cu, Ni and Zn the mass of the element in the dissolved phase was generally greater than that in the particulate fraction. Cadmium, was least associated with the particles, with typically greater than 90% existing in the dissolved phase.  相似文献   

9.
Dil Deresi stream is a highly contaminated stream passing through the most heavily industrialized area of Izmit Bay. In this research, surface sediments in the <63-microm fraction collected from 34 sites at western part of Izmit Bay, Northeastern Marmara Sea, Turkey were analyzed by ICP-AES for Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn and Zn. Metal concentrations were compared with the marine sediment quality standards (SQS) and literature data to assess the pollution status of the sediments. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The analysis revealed three groups of elements: (1) Sn is the most enriched element; (2) As, Cd, Pb and Zn are minor enriched elements; and (3) Co, Cr, Cu, Fe, Mg, Mn and Ni are at background concentrations. The distribution maps of the concentrations and enrichment factors for all heavy metals were also produced as a contour plot based on Geographic Information System (GIS) technology.  相似文献   

10.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

11.
The Elizabeth River is a sub-estuary of the James River, the most southern tributary of the Chesapeake Bay. It is a highly industrialized area, and has been designated a "toxic hot spot" due to the heavy loads of contaminant metals and organic compounds in its bed sediments. Fifty surface sediment samples were taken along the channels and shoals of the Mainstem and the Southern Branch portions of the river. The samples were analyzed for trace metals (Cd, Cr, Cu, Pb and Zn), Fe and particle properties (% sand, % silt, % clay and specific surface area) to discern the spatial distribution of contaminant metals in this system. Enrichment factors were calculated to assess the overall level of contamination relative to other surrounding waterways as well as historic contamination levels within the river itself. The highest levels of metals were found to be in close proximity to industrial sources of contamination. The overall level of contamination was 3-10 times higher than baseline levels within the river, and 2-3 times higher than contaminant levels in other area waters.  相似文献   

12.
Concentrations of selected heavy metals (Cu, Pb, Zn, Cd, Cr, Ni and Fe) in surface sediments from nine sites in western Xiamen Bay and its vicinity were studied in order to understand current metal contamination due to urbanization and economic development in Xiamen, China. The sediment samples were collected in December 2004 and July 2005 respectively in order to examine temporal variations. In this study, we found that heavy metal concentrations in surface sediments sampled in the western Xiamen Bay and adjacent Maluan Bay and Yuandang Lagoon varied from 19 to 97mg kg(-1) for Cu, 45 to 60mg kg(-1) for Pb, 65 to 223mg kg(-1) for Zn, 0.11 to 1.01mg kg(-1) for Cd, 37 to 134mg kg(-1) for Cr, 25 to 65mg kg(-1) for Ni and 3.08 to 4.81% for Fe. Although all metal concentrations in sediments meets Chinese National Standard Criteria for Marine Sediment Quality, both metal enrichment factors (EF) and geoaccumulation index (I(geo)) show that Pb contamination exists in the entire study area and contamination of other metals are also present in some locations depending on the sources, of which sewage outlets and commercial ports are the main sources of contaminants to the area. This study shows that using the sediment quality standard criteria only to assess sediments cannot properly reflect sediment contamination. A multiple approaches should be applied for the sediment quality assessment.  相似文献   

13.
Surface sediments in the Xiaoqinghe estuary, southwestern coastal Laizhou Bay, were examined to assess the bio-toxic risk of heavy metals (Cd, Cu, Ni, Pb and Zn) with the effects range-low and effects range-median guidelines (ERL–ERMs) and the concentration ratio of simultaneously extractable metals to acid volatile sulfides ([SEM]/[AVS]). Based on the ERL–ERM guidelines, bio-toxic effect caused by Cu, Ni, Pb and Zn could be expected in the riverine surface sediments of the Xiaoqinghe estuary; and the surface sediments in the marine area were in good quality and only Ni might cause bio-toxic effect occasionally. The AVS–SEM guidelines revealed that no bio-toxic effect could be caused by any of the studied metals in both the riverine and marine sediments, since there were excess sulfides in surface sediments which could form water-insoluble substances with free metal ions and reduce the bioavailability of heavy metals.  相似文献   

14.
Concentrations of heavy metals (Cd, Cu, Pb and Zn) on suspended sediments during a flood event at Thwaite Mills, River Aire, were analysed using a five step sequential extraction technique to determine their major chemical associations (exchangeable, surface oxide and carbonate, Fe and Mn oxides, organic and residual metal ions). Total metal concentrations were lowest at higher discharges, resulting from dilution by clean sediment. The major transport fractions are the Fe and Mn oxides, which carry 29% of the total metals. Knowledge of the chemical forms of heavy metals on suspended sediment is essential for estimating their biological availability and physicochemical reactivity. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
太湖近代沉积物中重金属元素的累积   总被引:23,自引:3,他引:20  
利用210Pb、137Cs定年技术,对来自太湖不同生态和沉积特征的三个湖区的沉积物柱状样品进行了定年,用ICP—AES分析了沉积物中重金属等元素的含量,分析了太湖沉积物中重金属的累积特征及其成因.污染较重、蓝藻水华暴发频繁的梅梁湾沉积物中的重金属含量在近25年来逐年增加;太湖上游风浪较大的夹浦湖区表层10cm沉积速率大、粒度粗,除表层1cm外,1—10cm沉积物中各种重金属含量都较低,且层间变化剧烈;下游湖区正逐渐草型化的胥口湾除表层3cm外,沉积物中重金属的含量自底层向表层大致呈不断下降的趋势.研究表明,不同年代的太湖沉积物中重金属含量差异很大,明显大于不同湖区间沉积物重金属平均含量间的差异.水动力作用引起的沉积物粒度分异很可能是影响沉积物中重金属积累的一个重要因素.总体上太湖沉积物中重金属的污染比较轻微,但已经有一定程度的Cd污染,梅梁湾沉积物中自上世纪70年代开始明显积累Cd,其他重金属元素的积累也逐渐增加,值得关注.  相似文献   

16.
分析了阳宗海柱状及表层沉积物中Al、Fe、Mn、Zn、Cr、Co、Ni、Cu、As、Cd、Pb等金属元素的含量,结合沉积年代学,研究了沉积物重金属污染的时空变化和潜在生态风险特征.结果表明,表层沉积物中重金属含量具有一定的空间差异性,As、Cd、Cu、Pb和Zn在中东部湖区含量较高,而Cr、Co、Ni含量高值位于南、北湖区的近岸区域;柱状沉积物中,1990s之前As、Cd、Cu、Pb和Zn含量较为稳定,1990s中后期以来,其含量逐渐增加,并在2009-2010年前后达到最大值,此后逐渐下降;而柱状沉积物中Cr、Co、Ni含量变化趋势与Al、Fe相似,总体上由下向上逐渐降低,这主要与沉积物质地(粒度)逐渐变粗有关.重金属富集系数表明,阳宗海沉积物中主要污染元素为As、Cd、Cu、Pb和Zn,1990s中后期污染程度快速增加,2009-2010年前后达到峰值,此后污染程度逐渐降低;表层沉积物中Cu为未污染至"弱"污染水平;Zn、Pb为"弱-中等"污染水平,As为"中等-强"污染水平,Cd为"弱-强"污染水平,中东部湖区污染程度高于其他湖区,这可能与该湖区缺少入湖径流、自然碎屑物质沉积速率较低以及砷污染事件等人为源的重金属贡献影响更为显著有关.生态风险评价结果表明,在2002-2010年前后沉积物重金属达到"中等-强"潜在生态危害,主要贡献因子是Cd和As,近年来其生态风险等级逐渐降低;表层沉积物中重金属在中东部湖区具有"中等"程度潜在生态危害,而其他湖区表层沉积物重金属具有较低程度的潜在生态风险.  相似文献   

17.
太湖流域滆湖底泥重金属赋存特征及其生物有效性   总被引:1,自引:0,他引:1  
包先明  晁建颖  尹洪斌 《湖泊科学》2016,28(5):1010-1017
为了探讨太湖流域滆湖底泥重金属(Cd、Cr、Cu、Zn、Ni和Pb)的赋存特征及其生物有效性,对底泥重金属总量、形态以及生物富集量进行了分析.结果表明,6种重金属含量的空间分布表现为北部湖区最高,其次为南部湖区,中部湖区最低,重金属Ni、Cu、Zn和Pb含量显著高于沉积物背景值,分别是背景值的4.77、3.89、2.96和2.76倍,重金属总量与沉积物中的黏土成分含量具有显著相关性.采用三级四部提取法对重金属形态进行分析表明,6种重金属的生物有效态(弱酸结合态、可还原态和可氧化态之和)含量顺序为CdCuZnPbNiCr,其中Cd、Cu、Zn和Pb的生物有效态含量分别占总量的84.15%、78.47%、76.50%和64.29%.Cu和Zn在铜锈环棱螺中富集含量要显著高于其他金属元素.相关性分析表明,6种重金属中仅Cr和Pb的生物富集量与有效态含量具有显著相关性,这表明,重金属在生物体内的富集不仅与有效态含量有关,还与底泥重金属总量有关.因此,评价滆湖重金属的生态风险时需要综合考虑重金属的总量及生物有效态含量.  相似文献   

18.
In the heavily industrialized Masan Bay of southern coast, Korea, the potential harmful effects of heavy metals (Cd, Co, Cu, Ni, Pb, Sn, Zn, and Hg) were evaluated in terms of the pollution load index (PLI) and ecological risk assessment index (ERI) methods, and the results obtained were considered alongside the health of the macrobenthic fauna communities. The results revealed that the bay sediments, especially in the inner bay and the outfall area of a sewage treatment plant, are exposed to moderate to serious levels of metal pollution. Hg and Cd contributed the most to the potential toxicity response indices in sediments recently deposited in the bay. The potential ecological risk assessment of heavy metals in the bay was highlighted by the use of the benthic biological pollution index (BPI), suggesting that the ERI is a useful toxicity response index, which can quantify the overall ecological risk level to a target environment.  相似文献   

19.
Water Resources - Data on the concentrations of Cd, Cu, Pb, and Zn in bottom sediments of Amur Bay are given. The pollution of bottom sediments is especially heavy near the central part of...  相似文献   

20.
Concentration of 7 heavy metals, Zn, Fe, Cu, Cr, Cd, Pb and Ni in mudflat sediments, mangrove root sediments and root tissues of Acanthus ilicifolius, Aegicerus corniculatum and Kandelia candel from the Mai Po Nature Reserve, Northwest Hong Kong, were measured. Metal concentrations in the upper 0–10 cm of the sediment cores from the mudflat were 4–25% higher than those found in the bottom 21–30 cm. Relative Topsoil Enrichment Index approximated 1.0 for all the metals. Mudflat sediment concentrations of Fe, Ni, Cr, Cd and Cu were greater than those found in the mangrove sediments. Except for Fe, concentrations of the other 6 heavy metals were more elevated in the mangrove root sediments than in the corresponding root samples. Higher concentration factors for Zn, Fe and Cu may indicate bioaccumulation. Mean metal concentrations in both mudflat and mangrove sediments decreased in the order Fe > Zn > Pb > Ni > Cu > Cr > Cd. Mangrove root tissues also showed the same pattern except that Pb > Cu > Ni  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号