首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The diffusion of electromagnetic fields is dependent not only on conductivity, but also on magnetic permeability, dielectric permittivity and polarizability, i.e. dispersive conductivity. The long‐offset transient electromagnetic (LOTEM) method is mainly used to determine the spatial distribution of conductivity in the subsurface. However, earlier work on loop‐loop TEM suggests that transient EM methods can also be affected by induced polarization (IP). Numerous 1D forward calculations were carried out to study the IP effect on LOTEM data, using the Cole‐Cole relaxation model to simulate the polarizability of the ground. Besides the polarizability of each layer, the IP effect depends on the LOTEM field set‐up and the spatial distribution of conductivity in the ground. In particular, near‐surface layers with high chargeabilities can significantly distort the late time transients of the electric field components in the vicinity of the transmitter. The influence of polarizable layers on the magnetic field components can be neglected under normal circumstances. In 1997 and 1999, LOTEM measurements were carried out at Mt. Vesuvius in Italy to explore the geological structure of the volcano. Sensitivity studies on the effect of polarizable layers suggest that high chargeabilities in connection with conductive layers at greater depths would result in a detectable distortion of the electric field transients. Although the simultaneous IP measurements revealed high chargeabilities in a near‐surface layer, no evidence of IP effects could be found in the measured LOTEM data. We conclude that the observed chargeabilities are local and that 3D effects are probably present in the data. Another aspect is the measurement of the system response, which is usually measured by placing a receiver very close to the transmitter. Therefore, large distortions can be expected if near‐surface polarizable layers exist. This was verified in practice by field measurements in an area with high chargeabilities in Longerich, Cologne.  相似文献   

2.
Previous studies of ground ice using moveout type ground-penetrating radar (GPR) surveys indicate that the dielectric permittivity can constrain the type of ground ice present in the subsurface. Due to the high-loss nature of the active layer over permafrost targets, however, the signal strength of GPR signals is often insufficient to resolve the basal boundary required for determining the dielectric permittivity of an underlying unit. We apply a non-conventional antenna orientation and post-processing method to determine the dielectric permittivity of the unit underlying the lowest resolvable boundary. We conduct moveout surveys using a 450 MHz GPR with collinear parallel oriented antennas on two adjacent ground ice formations in the region of Thomas Lee Inlet, Devon Island, Nunavut. We exploit the Brewster angle to calculate the approximate dielectric permittivity of ground ice formations below the active layer. The results agree within 1 dielectric unit with on-ice permittivity measurements made during a complementary study of the site.  相似文献   

3.
Pairs of short baselength mercury-level tiltmeters mounted on shallow piers coupled to sedimentary rocks have been used to monitor ground tilting at three inland locations in western Canada. Noise levels have been estimated over large Nyquist intervals to evaluate site conditions and for comparison with results observed in crystalline rocks at other locations. The results show that tilt noise patterns are similar for different locations, and that noise levels are higher for unconsolidated sediments. Tidal estimates for the principal lunar semidiurnal constituentM 2 were obtained from the least noisy sections of the tilt series. Uncertainties in the estimated amplitudes for the record lengths considered range from 4 to 20% depending on location and azimuth. Comparison of the observedM 2 tide with those predicted for an elastic Earth loaded by two different ocean configurations (Schwiderski or Parke) shows better agreement with the Schwiderski marine tidal model. Differences between observaton and theory suggest a strain-induced perturbation source.  相似文献   

4.
The attenuation of ground‐penetrating radar (GPR) energy in the subsurface decreases and shifts the amplitude spectrum of the radar pulse to lower frequencies (absorption) with increasing traveltime and causes also a distortion of wavelet phase (dispersion). The attenuation is often expressed by the quality factor Q. For GPR studies, Q can be estimated from the ratio of the real part to the imaginary part of the dielectric permittivity. We consider a complex power function of frequency for the dielectric permittivity, and show that this dielectric response corresponds to a frequency‐independent‐Q or simply a constant‐Q model. The phase velocity (dispersion relationship) and the absorption coefficient of electromagnetic waves also obey a frequency power law. This approach is easy to use in the frequency domain and the wave propagation can be described by two parameters only, for example Q and the phase velocity at an arbitrary reference frequency. This simplicity makes it practical for any inversion technique. Furthermore, by using the Hilbert transform relating the velocity and the absorption coefficient (which obeys a frequency power law), we find the same dispersion relationship for the phase velocity. Both approaches are valid for a constant value of Q over a restricted frequency‐bandwidth, and are applicable in a material that is assumed to have no instantaneous dielectric response. Many GPR profiles acquired in a dry aeolian environment have shown a strong reflectivity inside dunes. Changes in water content are believed to be the origin of this reflectivity. We model the radar reflections from the bottom of a dry aeolian dune using the 1D wavelet modelling method. We discuss the choice of the reference wavelet in this modelling approach. A trial‐and‐error match of modelled and observed data was performed to estimate the optimum set of parameters characterizing the materials composing the site. Additionally, by combining the complex refractive index method (CRIM) and/or Topp equations for the bulk permittivity (dielectric constant) of moist sandy soils with a frequency power law for the dielectric response, we introduce them into the expression for the reflection coefficient. Using this method, we can estimate the water content and explain its effect on the reflection coefficient and on wavelet modelling.  相似文献   

5.
Characterization of hydraulic conductivity (K) in aquifers is critical for evaluation, management, and remediation of groundwater resources. While estimates of K have been traditionally obtained using hydraulic tests over discrete intervals in wells, geophysical measurements are emerging as an alternative way to estimate this parameter. Nuclear magnetic resonance (NMR) logging, a technology once largely applied to characterization of deep consolidated rock petroleum reservoirs, is beginning to see use in near‐surface unconsolidated aquifers. Using a well‐known rock physics relationship—the Schlumberger Doll Research (SDR) equation—K and porosity can be estimated from NMR water content and relaxation time. Calibration of SDR parameters is necessary for this transformation because NMR relaxation properties are, in part, a function of magnetic mineralization and pore space geometry, which are locally variable quantities. Here, we present a statistically based method for calibrating SDR parameters that establishes a range for the estimated parameters and simultaneously estimates the uncertainty of the resulting K values. We used co‐located logging NMR and direct K measurements in an unconsolidated fluvial aquifer in Lawrence, Kansas, USA to demonstrate that K can be estimated using logging NMR to a similar level of uncertainty as with traditional direct hydraulic measurements in unconsolidated sediments under field conditions. Results of this study provide a benchmark for future calibrations of NMR to obtain K in unconsolidated sediments and suggest a method for evaluating uncertainty in both K and SDR parameter values.  相似文献   

6.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This work presents a new modelling scheme for the simulation of electromagnetic radio waves, based on a full-field simulator. Maxwell's equations are modified in order to include dielectric attenuation processes, such as bound- and free-water relaxation, ice relaxation and the Maxwell–Wagner effect. The new equations are obtained by assuming a permittivity relaxation function represented by a generalized Zener model. The convolution integral introduced by the relaxation formulation is circumvented by defining new hidden field variables, each corresponding to a different dielectric relaxation. The equations are solved numerically by using the Fourier pseudospectral operator for computing the spatial derivatives and a new time-splitting integration algorithm that circumvents the stiffness of the differential equations. The program is used to evaluate the georadar electromagnetic response of a Japanese burial site, in particular, a stone coffin-like structure.  相似文献   

8.
In land surveys, the weathering layer can often distort the seismic signal due to it passing through rapid velocity and density changes, dispersion, scattering and inelastic absorption. In a simple spring‐dashpot model for the earth response, an equivalent medium groups these complex phenomena into two parameters only; these are called ground viscosity and ground stiffness. The most recent controllers for vibrators can estimate both parameters. To validate these measurements, Saudi Aramco conducted an experiment measuring ground viscosity and stiffness from two different vibrator control systems over an area of varying terrain conditions, including unconsolidated sand and limestone outcrop. The two systems measured different values, but detected similar trends that correlated well with weathering conditions and surface geology, e.g. lower viscosity values on the outcrop than on the sand. The ratio of ground viscosity to ground stiffness can approximate the shallow S‐wave velocity, which we converted into P‐wave velocity through calibration with sparse uphole data. Static corrections incorporating this velocity information somewhat improved the focusing of seismic time sections. This new approach does not require additional acquisition efforts, and can model shallow complex formations in arid areas where classical static methods often fail.  相似文献   

9.
Proglacial icings are one of the most common forms of extrusive ice found in the Canadian Arctic. However, the icing adjacent to Fountain Glacier, Bylot Island, is unique due to its annual cycle of growth and decay, and perennial existence without involving freezing point depression of water due to chemical characteristics. Its regeneration depends on the availability of subglacial water and on the balance between ice accretion and hydro‐thermal erosion. The storage and conduction of the glacial meltwater involved in the accretion of the icing were analyzed by conducting topographic and ground penetrating radar surveys in addition to the modelling of the subglacial drainage network and the thermal characteristics of the glacier base. The reflection power analysis of the geophysical data shows that some areas of the lower ablation zone have a high accumulation of liquid water, particularly beneath the centre part of the glacier along the main supraglacial stream. A dielectric permittivity model of the glacier – sediment interface suggests that a considerable portion of the glacier is warm based; allowing water to flow through unfrozen subglacial sediments towards the proglacial outwash plain. All these glacier‐related characteristics contribute to the annual regeneration of the proglacial icing and allow for portions of the icing to be perennial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In the present research, an attempt is made to derive the generalized expressions for the transient electromagnetic response of a large loop source over the surface of a homogeneous earth model for arbitrary receiver positions inside or outside the source loop. Expressions are derived for the impulse as well as step excitations of the source loop. As a cross check for validity of expressions, the step response expression is obtained from the impulse response expression and vice versa. Computations are performed for the TEM response over a homogeneous earth model for source-receiver offset (r = 0) pertinent to the central loop configuration and the results are compared with the published results for the central loop TEM responses. The results are in well coincidence with each other and thus provide the check for the authenticity of the expressions. To exemplify the nature of TEM response at various source receiver offsets, results are presented for the TEM response at source receiver offsets r = 0, r = a/2, r = a and r = 2a, 6a, 12a pertaining to the central loop, in-loop, on-loop and offset loop configurations, respectively. The results depict their characteristic variations. At receiver positions inside the loop source, both the impulse as well as step responses are of same sign, whereas at the receiver positions outside the loop source, both the curves exhibit a change of sign that shifts towards the later times with increase in the offset distances. The change of sign in impulse response occurs at a relatively later time than that in the step response. This is the initial presentation of TEM response expressions for the large loop source over a homogeneous earth model for arbitrary receiver position inside and/ or outside the loop source except for the case of receiver at the center of the loop and at the coincident loop point. This research would be of immense use in the development and use of the large loop TEM method in its various configurations and thus would enhance the applicability and cost effectiveness of the large loop source TEM method.  相似文献   

11.
Fractured rocks have presented formidable challenges for accurately predicting groundwater flow and contaminant transport. This is mainly due to our difficulty in mapping the fracture‐rock matrix system, their hydraulic properties and connectivity at resolutions that are meaningful for groundwater modeling. Over the last several decades, considerable effort has gone into creating maps of subsurface heterogeneity in hydraulic conductivity (K) and specific storage (Ss) of fractured rocks. Developed methods include kriging, stochastic simulation, stochastic inverse modeling, and hydraulic tomography. In this article, I review the evolution of various heterogeneity mapping approaches and contend that hydraulic tomography, a recently developed aquifer characterization technique for unconsolidated deposits, is also a promising approach in yielding robust maps (or tomograms) of K and Ss heterogeneity for fractured rocks. While hydraulic tomography has recently been shown to be a robust technique, the resolution of the K and Ss tomograms mainly depends on the density of pumping and monitoring locations and the quality of data. The resolution will be improved through the development of new devices for higher density monitoring of pressure responses at discrete intervals in boreholes and potentially through the integration of other data from single‐hole tests, borehole flowmeter profiling, and tracer tests. Other data from temperature and geophysical surveys as well as geological investigations may improve the accuracy of the maps, but more research is needed. Technological advances will undoubtedly lead to more accurate maps. However, more effort should go into evaluating these maps so that one can gain more confidence in their reliability.  相似文献   

12.
Summary The introduction of precision radio navigation systems employing pulse techniques and the ever increasing interest in spherics have stimulated considerable interest in the propagation of the ground wave transient over the surface of the earth. The theory of the propagation of a transient radio frequency ground wave over a finitely conducting plane earth is presented for the particular case of theNorton surface wave by a consideration of a wave, interrupted abruptly at one point in time (t=0), a wave interrupted abruptly at two points in time (t=0,T 2) and a wave interrupted at one point in time followed by an exponential decay. The first case is illustrated by several numerical examples of a cosine current wave applied to a vertical electric dipole source. It is apparent that the method of the inverse aplace transform for the particular cases considered yields some simple mathematical formulas.  相似文献   

13.
Time domain reflectometry (TDR) is a highly accurate and automatable method for determination of porous media water content and electrical conductivity. Water content is inferred from the dielectric permittivity of the medium, whereas electrical conductivity is inferred from TDR signal attenuation. Empirical and dielectric mixing models are used to relate water content to measured dielectric permittivity. Clay and organic matter bind substantial amounts of water, such that measured bulk dielectric constant is reduced and the relationship with total water content requires individual calibration. A variety of TDR probe configurations provide users with site‐ and media‐specific options. Advances in TDR technology and in other dielectric methods offer the promise not only for less expensive and more accurate tools for electrical determination of water and solute contents, but also a host of other properties such as specific surface area, and retention properties of porous media. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Zilong  Li  Yoshiaki  Tainosho  Jun-Ichi  Kimura  Kazuyuki  Shiraishi 《Island Arc》2005,14(4):636-652
Abstract The Mefjell plutonic complex consists of 500–550‐Ma Pan‐African plutonic rocks, which intrude into the Precambrian crystalline basement in the Sør Rondane Mountains, East Antarctica, and forms part of the Sør Rondane Suture Zone. The complex comprises syenitic and granitic (mostly monzogranitic) rocks, and is characterized by the presence of iron‐rich hydrous mafic minerals and primary ilmenite, both of which imply its formation at high temperature and under low oxygen fugacity conditions. The syenitic rocks are metaluminous, and are high in alkalis, K2O/Na2O, Al2O3, FeOt/(FeOt + MgO) (0.88–0.98), K/Rb (800–1000), Ga (18–28 p.p.m.), Zr (up to 2100 p.p.m.) and Ba. They also have a low Mg? (Mg/[Mg + Fe2+]), Rb, Sr, Nb, Y and F, low to moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios and positive Eu anomalies in their rare earth element (REE) patterns. The granitic rocks are metaluminous to peraluminous, and have a high Rb content, high Sr/Ba and LREE/HREE ratios, low K/Rb and negative Eu anomalies. Most of the syenitic and granitic rocks have Y/Nb ratios greater than 1.2, and are depleted in Nb, Ti and Sr on the primitive mantle‐normalized spider diagrams, indicating a crustal origin with subduction zone signatures. We interpret both the syenitic and granitic rocks to be derived from an iron‐rich lower crustal source by dehydration melting induced by the heat of mantle‐derived basaltic intrusion, after which they then underwent limited fractional crystallization. The Mefjell plutonic complex has a high Zr content and tectonic discrimination diagram signatures indicative of normal A‐type granitic rocks. Both rock suites may have been generated under the same postorogenic tectonic setting. The Mefjell syenitic rocks are chemically comparable to charnockites in the Gjelsvikjella and western Mühlig‐Hofmannfjella areas of East Antarctica, whereas the granitic rocks are comparable to aluminous A‐type granitic rocks in South India, which were emplaced during formation and evolution of the Gondwanaland supercontinent.  相似文献   

15.
低频含水岩石介电高值成因及改进测量方法   总被引:1,自引:0,他引:1       下载免费PDF全文
含水岩石在低频下常常呈现高达104以上的介电常数值,数值模拟和实测结果都表明这是由于岩石中存在着传导电流,其具有与外场同相和正交的实、虚部,这二者通过与频率成反比的关系叠加在介电常数上.提出在平行板电容器一极板与被测岩石样品间夹入不导电薄膜的办法来消除传导电流的不利影响.对标准件的测量表明该方法的最大误差在4%以内.用该方法测量淡水饱和岩石样品,结果得到合理适中的介电常数值及清晰明了的介电极化谱.除湿岩石外,该方法还适用于冰、生物肌体等固态导电介质的介电谱研究.  相似文献   

16.
低阻区利用地回路标定航空TEM系统的理论研究   总被引:2,自引:2,他引:0       下载免费PDF全文
张爽  陈曙东  于群 《地球物理学报》2012,55(8):2779-2786
本文针对吊舱式航空TEM系统,建立了基于地回路的系统参数标定模型,并分别计算了自由空间模型响应(TLR)、均匀大地模型响应(TER)、地回路与大地耦合模型响应(TELR和TLER).由于TER响应表现为幅度沿测线不变,据此提出通过增加拟合参数的方法实现系统标定,消除了TER响应对标定的影响.TELR和TLER早期响应具...  相似文献   

17.
Shear‐wave statics in marine seismic exploration data are routinely too large to be estimated using conventional techniques. Near‐surface unconsolidated sediments are often characterized by low values of Vs and steep velocity gradients. Minor variations in sediment properties at these depths correspond to variations in the shear‐wave velocity and will produce significant static shifts. It is suggested that a significant proportion of the shear‐wave statics solution can be estimated by performing a separate high‐resolution survey to target near‐surface unconsolidated sediments. Love‐wave, shear‐wave refraction and geotechnical measurements were individually used to form high‐resolution near‐surface shear‐wave velocity models to estimate the shear‐wave statics for a designated survey line. Comparisons with predicted statics revealed that shear‐wave statics could not be estimated using a velocity model predicted by substituting geotechnical measurements into empirical relationships. Empirical relationships represent a vast simplification of the factors that control Vs and are therefore not sufficiently sensitive to estimate shear‐wave statics. Refraction measurements are potentially sensitive to short‐wavelength variations in sediment properties when combined with accurate navigational data. Statics estimated from Love‐wave data are less sensitive, and sometimes smoothed in appearance, since interpreted velocity values represent an average both laterally and vertically over the receiver array and the frequency–depth sensitivity range, respectively. For the survey site, statics estimated from near‐surface irregularities using shear‐wave refraction measurements represent almost half the total statics solution. More often, this proportion will be greater when bedrock relief is less.  相似文献   

18.
Abstract The Chi‐chi earthquake (MS = 7.7), which occurred in September 1999, seriously damaged central Taiwan. Approximately 2 years later (July 2001), the Toraji typhoon brought a heavy rainstorm (650 mm rain/day) and triggered widespread landslides in central Taiwan and parts of eastern Taiwan. Approximately 10 000 Chi‐chi earthquake‐induced landslides and 6000 Toraji typhoon‐related mass movements were delineated in an area of 2400 km2 using Satellite Pour l’Observation de la Terre (SPOT; French earth resource satellite) images. The landslide distribution could be closely related to the distribution of peak ground acceleration registered during the Chi‐chi earthquake. The study area was composed of Tertiary sedimentary and metamorphic rocks, whose age and induration increased eastward. The earthquake‐induced landslides were mostly distributed in the region between the Chelungpu Fault and the Lishan Fault to the east, whereas they were few in the region east of the Lishan Fault. The Toraji typhoon in 2001 severely damaged both regions that had been shattered by the Chi‐chi earthquake in 1999. The occurrence of earthquake‐induced landslides can be correlated with epicentral distance, and their occurrence has more influence from the rock type than from the ground motion.  相似文献   

19.
It is now believed that the negative transients observed in coincident-loop transient electromagnetic (TEM) measurements are caused by polarizable bodies (bodies whose conductivity increases as a function of frequency). Ordinarily the TEM response of polarizable bodies is obtained by calculating the frequency-domain response at many frequencies and transforming it to the time domain via Fourier, Laplace or Hankel transforms. This is normally a computationally laborious task. However, for some simple non-polarizable bodies the time-domain response is analytical and can be computed easily. When these simple bodies are weakly polarizable an approximate response can be obtained by convolving the easily-calculated, non-polarizable response with the impulse response of the polarization. The approximate response is found to be very similar to the exact response for the polarizabilities normally seen in geological materials.  相似文献   

20.
The aspect‐controlled variations in soil freezing within earth hummocks of eastern Lesotho (southern Africa) are analysed. Ground thermal data were measured for an earth hummock from late autumn to early spring in 1995 and 1996, using Tinytalk? data loggers. During 1995, ground temperatures were recorded at 15 and 20 cm depth on the hummock north, east, south and west aspects, whilst in 1996 temperatures were recorded at 1 cm, 5 cm and 10 cm on the north and south aspects. The data from 1995 indicate that soil freezing commences on the hummock southern aspects and gradually progresses towards the western and northern aspects, whilst the eastern aspect remained unfrozen throughout winter. The data from 1996 indicate that a thick snow cover almost nullifies the temperature differences between the hummock northern and southern aspects. However, given the relative absence of snow during contemporary winters, freeze intensity and duration is longest on the hummock southern and western aspects, which helps explain earth hummock deformation (elongation and coalescence) in a southwesterly direction on slope gradients ≤3°. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号