首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Analysis of mapped landslide locations using a high‐resolution (5‐m grid) digital elevation model (DEM) in the Tachia River basin, Taiwan, finds distinct differences in the topographic locations and size of landslides during the 1999 Chi‐Chi earthquake and the 2001 Toraji typhoon. Our analysis supports Densmore and Hovius' hypothesis that earthquake‐induced landslides cluster near ridgetops due to topographic amplification of ground shaking, and that typhoon‐induced landslides occur with greater frequency lower on slopes. In addition, the differing topographic locations of seismically‐induced and subsequent typhoon‐induced landslides shows no evidence of residual post‐earthquake influences on landslides during typhoon Toraji previously hypothesized for drainage basins closer to the earthquake epicenter. Our results support the interpretation that in this tectonically active landscape, seismically‐induced landslides help shatter and erode ridgetops but typhoon‐triggered landslides concentrate erosion farther downslope, with the combination acting to more uniformly lower upland terrain than either process does individually. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Landsliding induced by earthquakes and rainstorms in montane regions is not only a sculptor for shaping the landscape, but also a driver for delivering sediments and above‐ground biomass downstream. However, the terrain attributes of earthquake‐ and rainstorm‐induced landslides are less discussed comprehensively in Taiwan. As part of an island‐wide inventory, we here compare and contrast the landslide terrain attributes resulting from two catastrophic events: the Chi‐Chi earthquake (M w = 7.6, September 1999) and typhoon Morakot (rainfall >2500 mm, August 2009). Results show that the earthquake‐induced landslides are relatively small, round‐shaped and prone to occur primarily in middle and toe of slopes. In contrast, the rainstorm‐induced landslides are larger, horseshoe‐shaped and preferentially occurring in slope toes. Also, earthquake‐induced landslides, particularly large landslides, are usually found at steeper gradients, whereas rainstorm‐induced landslides aggregate at gradients between 25° and 40°. Lithologic control plays a secondary role in landsliding. From an island‐wide perspective, high landslide density locates in the region of earthquake intensity ≥ VI or one‐day rainfall ≥600 mm day?1. Through the landslide patterns and their terrain attributes, our retrospective approach sheds light on accessing the historical and remote events for close geophysical investigations. Finally, we should bear in mind that the landslide location, size, and terrain attributes varying with triggers may affect the landscape evaluation or biogeochemical processes in landslide‐dominated regions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
The Chi‐Chi earthquake (MW = 7.6) took place in central western Taiwan in 1999. The earthquake caused reactivation of the Chelungpu Fault and resulted in 100‐km‐long surface ruptures. The fault strikes mostly north–south to NNE–SSW; however, the northern tip of the southern segment of the surface ruptures rotates clockwise to define an east–west trend, then jumps to a shorter NNW‐trending rupture. The largest vertical displacement is recorded in the Shihkang area of the Shihkang–Shangchi Fault Zone, where vertical slips are up to 8–10 m. The Shihkang–Shangchi Fault Zone displays a complex fault pattern as a linkage damage zone between two fault segments with the greatest concentration of faults and fractures. Our new interpretation, based on recent published geometric, kinematic, and geophysical studies on the Chi‐Chi earthquake fault, suggests that the Shihkang–Shangchi Fault Zone is not a simple termination zone, but may be an ‘overstep zone’ or a ‘transfer zone’. Slip analysis along the surface ruptures indicates that they are composed of three fault segments and the amount of slip partly depends on the intersection angle between slip direction and fault strike. Our numerical modeling for the area indicates that Coulomb stress changes are mainly concentrated on tips and bends of the surface ruptures. Slip patterns indicate that the fault propagates toward the northeast. Therefore, this study suggests high potential for future earthquake activity along the unruptured Shangchi segment. Hence, future geohazard studies should focus on the Shangchi segment to evaluate potential earthquakes, determine recurrence intervals, and reduce future earthquake hazards.  相似文献   

4.
5.
This study proposes a sediment‐budget model to predict the temporal variation of debris volume stored in a debris‐flow prone watershed. The sediment‐budget is dominated by shallow landslides and debris outflow. The basin topography and the debris volume stored in the source area of the debris‐flow prone watershed help evaluating its debris‐flow susceptibility. The susceptibility model is applied to the Tungshih area of central western Taiwan. The importance of the debris volume in predicting debris‐flow susceptibility is reflected in the standardized coefficients of the proposed statistical discriminant model. The high prediction rate (0·874) for the occurrence of debris flows justifies the capability of the proposed susceptibility models to predict the occurrence of debris flows. This model is then used to evaluate the temporal evolution of the debris‐flow susceptibility index. The analysis results show that the numbers of watershed which are classified as a debris‐flow group correspond well to storage of sediment at different time periods. These numbers are 10 before the occurrence of Chi‐Chi earthquake, 13 after the occurrence of Chi‐Chi earthquake, 16 after the occurrence of landslides induced by Typhoon Mindulle (Typhoon M), and 14 after the occurrence of debris flows induced by Typhoon M. It indicates that the occurrence of 7·6 Chi‐Chi earthquake had significant impact on the debris flow occurrence during subsequent typhoons. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Many significantly strong earthquakes have occurred over the years in Taiwan, which have caused tremendous damage to primary and middle school buildings; the 921 Chi‐Chi earthquake was particularly devastating. According to statistics, 786 schools (1,958 classrooms) were damaged on September 21, 1999 during this earthquake event. The devastation showed that a lack of seismic performance is a common problem for existing school buildings in Taiwan. Therefore, the retrofit of existing school buildings has become an urgent issue in the prevention of possible damage in the future. The retrofit technique of adding sandwich columns to partition brick walls is proposed in this paper, and the feasibility of the proposed method was verified by in situ pushover tests of two real school buildings, one without and one with retrofit. The experimental and analytical results show that the sandwich column itself contributes significantly to the seismic capacity of the examined school building. Moreover, the analytical results yielded conservative capacity curves when compared with the experimental results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Landslide erosion is a dominant hillslope process and the main source of stream sediment in tropical, tectonically active mountain belts. In this study, we quantified landslide erosion triggered by 24 rainfall events from 2001 to 2009 in three mountainous watersheds in Taiwan and investigated relationships between landslide erosion and rainfall variables. The results show positive power‐law relations between landslide erosion and rainfall intensity and cumulative rainfall, with scaling exponents ranging from 2·94 to 5·03. Additionally, landslide erosion caused by Typhoon Morakot is of comparable magnitude to landslide erosion caused by the Chi‐Chi Earthquake (MW = 7·6) or 22–24 years of basin‐averaged erosion. Comparison of the three watersheds indicates that deeper landslides that mobilize soil and bedrock are triggered by long‐duration rainfall, whereas shallow landslides are triggered by short‐duration rainfall. These results suggest that rainfall intensity and watershed characteristics are important controls on rainfall‐triggered landslide erosion and that severe typhoons, like high‐magnitude earthquakes, can generate high rates of landslide erosion in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The largest and most disastrous earthquake in Taiwan (Mw: 7·3) in the 20th century, the Chi‐Chi earthquake, hit central Taiwan at 01:47 local time on September 21, 1999. The groundwater level changes were rapid at that time. Studies have found that the rapid change in groundwater levels was a co‐seismic phenomenon. This work analyzes the possibility that the abnormal change in groundwater levels may have occurred before the earthquake. Three well stations with a total of five wells are considered. They are all near the Che‐Lung‐Pu fault, which caused the Chi‐Chi earthquake. The time series decomposition method was applied to decompose the seasonal groundwater level, the trend in groundwater levels, and the period of the change in the groundwater level. Residual groundwater levels were found by subtracting the determined seasonal, trend and period data from corresponding data for the original groundwater level. The computed residual water levels in July, August and September of 1999, were transformed into a frequency spectrum by a Fourier method. Additionally, the effects of barometric pressures on the groundwater level changes were also evaluated. Analytical results show that the spectral density functions of the irregular groundwater level in the confined aquifer at the Chu‐Shan well in September behaved differently from those in July and August. We posit that a pre‐seismic hydrogeological anomaly may have existed before the Chi‐Chi earthquake, and can be considered in future studies of anomalies associated with earthquakes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The new inversion algorithm developed based on the recent progress in the nonlinear programming study by us is used to invert the earthquake source process of Chi Chi earthquake M w7.6, 20 Semptember, 1999, Taiwan. A curve fault model is constructed in our inversion to make the fault model close to the real rupturing fault to reduce the influence from the discrepancy between the constructed fault model and the real rupturing fault. The results show that (1) the rupture process of the Chi Chi earthquake source lasted about 32 seconds and the main faulting occurred between 6th to 21st second after the start of the ruptures and the high slip area were mainly located at the northern segment of the fault. (2) The slip was dominated by thrust faulting. The average rake angle was 64.5°, which was very consistent with those inverted by USGS, Harvard and CWB (Central Weather Bureau of Taiwan). The amount of the moment inverted in this paper was 7.76×1020 NM, which was a slightly bigger than those inverted by USGS and Harvard. (3) A clear nucleation step existed in the source faulting process and it lasted about 6 seconds. The moment release rate accelerated obviously at the end of the nucleation step. The faulting started from the southern segment and mainly occurred at the northern segment after 10 seconds. At the end of this paper, we analyzed the reliability of the inversion result via comparing with the GPS observations and discussed its scientific signification.  相似文献   

11.
Landsliding usually occurs on specific hillslope aspect, which may reflect the control of specific geo-environmental factors, triggering factors, or their interaction. To explore this notion, this study used island-wide landslide inventories of the Chi-Chi earthquake in 1999 (MW = 7.6) and Typhoon Morakot in 2009 in Taiwan to investigate the preferential orientation of landslides and the controls of landslide triggers and geological settings. The results showed two patterns. The orientations of earthquake-triggered landslides were toward the aspect facing away from the epicenter in areas with peak ground acceleration (PGA) ≥ 0.6 g and landslide ratio ≥ 1%, suggesting that the orientations were controlled by seismic wave propagation. Rainfall-triggered landslides tended to occur on dip slopes, instead of the windward slopes, suggesting that geological settings were a more effective control of the mass wasting processes on hillslope scale than the rainfall condition. This study highlights the importance of the endogenic processes, namely seismic wave and geological settings, on the predesigned orientation of landslides triggered by either earthquake or rainfall, which can in turn improve our knowledge of landscape evolution and landslide prediction. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
The destructive 1999 Chi–Chi earthquake (Mw 7.5) was the largest inland earthquake in Taiwan in the 20th century. Several observations witness the non-linear seismic soil response in sediments during the earthquake. In fact, large settlements as well as evidence of liquefaction attested by sand boils and unusual wet ground surface were observed at some sites. In this paper, we present a seismic response simulation performed with CyberQuake software on a site located within the Chang-Hwa Coastal Industrial Park during the 1999 Chi–Chi earthquake in Taiwan. A non-linear multi-kinematic dynamic constitutive model is implemented in the software. Computed NS, EW and UP ground accelerations obtained with this model under undrained and two-phase assumptions, are in good agreement with the corresponding accelerations recorded at seismic station TCU117, either for peak location, amplitudes or frequency content. In these simulations, liquefaction occurs between depths 1.3 and 11.3 m, which correspond to the observed range attested by in place penetration tests and other liquefaction analyses. Moreover, the computed shear wave velocity profile is very close to post-earthquake shear wave velocity profile derived from correlations with CPT and SPT data. Finally, it is shown that in non-linear computations, even though a 1D geometry is considered, it is necessary to take into account the three components of the input motion.  相似文献   

13.
The 1999 earthquakes in Turkey and Taiwan, offering a variety of case histories with structures subjected to large tectonic displacements, have refueled the interest of the earthquake engineering community on the subject. While several structures were severely damaged or even collapsed, there were numerous examples of satisfactory performance. Even more astonishingly, in specific cases the surface fault rupture was effectively diverted due to the presence of a structure. For the purpose of developing deeper insights into the main mechanisms controlling this fascinating interplay, this article documents selected field case histories of fault rupture–foundation interaction from (a) the Mw 7.4 Kocaeli (August 17) 1999 earthquake in Turkey, (b) the Mw 7.1 Düzce-Bolu (November 12) 1999 earthquake in Turkey, (c) the Mw 7.6 Chi–Chi (September 21) 1999 earthquake in Taiwan, and (d) surface faulting in Mount Etna. A subset of the case histories presented herein is analysed numerically, using the methods developed in the companion paper. It is shown that relatively “heavy” or stiff structures supported by continuous and rigid foundations may divert the fault rupture. Such structures are subjected to rigid body rotation, without substantial structural distress. In contrast, structures on structurally–resilient foundation systems or on isolated supports are prone to substantial damage.  相似文献   

14.
在2016年新西兰凯库拉MW 7.8地震中,北东—北东东向科科仁古断裂水平右旋位移量最大,为10—12m;北北西—近南北向帕帕提断裂垂直位移量最大,达到5—6m。对直接坐落在这2条地震地表破裂带或变形带之上的建筑物的破坏现场调查表明,尽管房屋出现歪斜,但上部主体部分基本完整,没有出现倒塌或部分倒塌现象,避免了人员伤亡。在无法回避活动断裂及其大震危险性的情况下,隔震系统的广泛采用可以有效地提高建筑物抵御地震灾害的能力。此次地震触发了数万个滑坡体,最大滑坡体可达数百万立方米。对沃罗村北边2处边坡失稳地带的考察结果表明,针对该地至少从2个方面进行了考虑和处置:一是在选址上,避开了突出山嘴等高陡坡地带;二是在房屋正对的山坡地带,种植或保护了茂密的树木,这既增加了山体的稳定性,又可以在地震中有效地减缓崩塌的石块对房屋的冲击。对比中国中东部一些大震,如1976年唐山7.8级地震和2008年汶川8.0级地震中触目惊心的巨大人员伤亡和财产损失,即使在人口密度与滑坡规模上存在明显不同,对新西兰凯库拉地震灾害现场的考察结果,还是在如何有效抵御地震灾害方面给我们提供了很好的启示。  相似文献   

15.
台湾9.21集集地震考察兼论强震发震断层   总被引:1,自引:0,他引:1       下载免费PDF全文
彭阜南  叶银灿 《地震地质》2004,26(4):576-585
1999年9月21日,台湾中部山麓带发生了M7.3的大地震,震源深度为8km,财产损失及人员伤亡是百年来台湾许多地震中损失及伤亡最大的1次,其震级也是台湾本岛陆上所发生的地震级别最大的。震源机制属低角度逆冲断层成因,余震在平面上围绕着北港高基底作半圆状分布,在垂向上,则分布在逆冲断层的上盘。与此相应,地面变形及上部结构物的破坏,以车笼埔发震断层上盘最为激烈,下盘几乎不受影响。此外,地震断裂的北端,水平位移量高达9.8m,垂直抬升达10m,比主震区要大;其地面加速度峰值,亦高达水平为502gal,垂直为519gal。这些特点表明,地震是受到地下深处侏罗型叠瓦状构造的控制。此外,3个诱发地震中心均受当地的地质构造与地貌条件的控制。文中还叙述了震害及工程结构物破坏的特点,尤其是水工结构物的震害  相似文献   

16.
The relationships between the spectral characteristics of earthquake ground motions and those of micro‐tremors are investigated using the observed data from a dense strong‐motion network consisting of 108 stations in the Yun‐Li, Chia‐Yi and Tai‐Nan areas in southwestern Taiwan. Many high‐quality recordings, including those of the 921 Chi‐Chi earthquake (Mw=7.6), the 1022 Chia‐Yi mainshock (ML=6.4), the 1022 major aftershock (ML=6.0), as well as some weak motion events are selected to evaluate site responses. Microtremor measurements are also performed at most ground motion stations. With many stations in the area located on an alluvium structure, however, it is difficult to find good reference stations on rock sites, which therefore necessitates the calculation of single‐station H/V ratios. The predominant frequencies obtained from H/V ratios are consistent with those from spectral ratios. The site characteristics between the strong and weak events are different, however. This implies that a nonlinear effect probably occurred with the strong‐motion events. The main peak in the H/V spectra of the microtremors is in good agreement with the first peak obtained from the spectra of earthquake ground motions. It is reasonable to claim that the main peak reflects the deep underground structure. On the basis of the H/V ratios of the microtremors, it is concluded that the lower predominant frequencies appear in the plain area, while the higher values are near the mountainous region. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Summary statistics derived from the frequency–area distribution (FAD) of inventories of triggered landslides allows for direct comparison of landslides triggered by one event (e.g. earthquake, rainstorm) with another. Such comparisons are vital to understand links between the landslide‐event and the environmental characteristics of the area affected. This could lead to methods for rapid estimation of landslide‐event magnitude, which in turn could lead to estimates of the total triggered landslide area. Previous studies proposed that the FAD of landslides follows an inverse power‐law, which provides the basis to model the size distribution of landslides and to estimate landslide‐event magnitude (mLS), which quantifies the severity of the event. In this study, we use a much larger collection of earthquake‐induced landslide (EQIL) inventories (n=45) than previous studies to show that size distributions are much more variable than previously assumed. We present an updated model and propose a method for estimating mLS and its uncertainty that better fits the observations and is more reproducible, robust, and consistent than existing methods. We validate our model by computing mLS for all of the inventories in our dataset and comparing that with the total landslide areas of the inventories. We show that our method is able to estimate the total landslide area of the events in this larger inventory dataset more successfully than the existing methods. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
The 1999 Chi‐Chi earthquake significantly altered the landscape of central Taiwan. Surface deformation produced by the earthquake along the trace of the Chelungpu thrust can be classified into two styles: (1) uplift without significant surface rupture, and (2) uplift accompanied by surface rupture. Here we examine areas that exhibited the first style of deformation (e.g. Wufeng). Seismic stress at the time of the main shock may have been relieved by high pore‐fluid pressure in a 300‐m‐thick sand and gravel aquifer. Along the thrust fault, frictional heating of these sediments resulted in thermal expansion and an increase in pore‐fluid pressure. High pore‐fluid pressure damped seismic‐wave energy and enhanced intergranular slips of unconsolidated sandy and gravel sediments, which were possibly assisted by sulphuric acid corrosion, leading to a high sulphate content in the groundwater (c. 70 mg L?1). These changes permitted surface folding and terrace‐style uplifting to occur without significant rupture. In contrast, other areas in which the second style of deformation is dominant (e.g. Fengyuen‐Shihkang) have thin (0–10 m) sand and gravel deposits and lower concentrations of sulphate (c. 30 mg L?1) in groundwater. In these areas, sediments were heated but not sufficiently to produce significant thermal expansion and increase in pore‐fluid pressure; accumulation of stress in these locations led to rupture at the ground surface, with the formation of steep fault scarps. The areas exhibiting the first deformation style are characterized by the presence of high pore‐fluid pressure, frictional heat conduction, and possibly chemical corrosion related to sulphuric acid attack and formation of sulphate, in contrast to those involving significant uplift and surface rupture. The areal distribution of these two surface deformation styles suggests that the aforementioned fluid‐related subsurface processes may have altered the characteristics of sediments and caused diverse responses to the quake. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Large magnitude earthquakes generated at source–site distances exceeding 100km are typified by low‐frequency (long‐period) seismic waves. Such induced ground shaking can be disproportionately destructive due to its high displacement, and possibly high velocity, shaking characteristics. Distant earthquakes represent a potentially significant safety hazard in certain low and moderate seismic regions where seismic activity is governed by major distant sources as opposed to nearby (regional) background sources. Examples are parts of the Indian sub‐continent, Eastern China and Indo‐China. The majority of ground motion attenuation relationships currently available for applications in active seismic regions may not be suitable for handling long‐distance attenuation, since the significance of distant earthquakes is mainly confined to certain low to moderate seismicity regions. Thus, the effects of distant earthquakes are often not accurately represented by conventional empirical models which were typically developed from curve‐fitting earthquake strong‐motion data from active seismic regions. Numerous well‐known existing attenuation relationships are evaluated in this paper, to highlight their limitations in long‐distance applications. In contrast, basic seismological parameters such as the Quality factor (Q‐factor) could provide a far more accurate representation for the distant attenuation behaviour of a region, but such information is seldom used by engineers in any direct manner. The aim of this paper is to develop a set of relationships that provide a convenient link between the seismological Q‐factor (amongst other factors) and response spectrum attenuation. The use of Q as an input parameter to the proposed model enables valuable local seismological information to be incorporated directly into response spectrum predictions. The application of this new modelling approach is demonstrated by examples based on the Chi‐Chi earthquake (Taiwan and South China), Gujarat earthquake (Northwest India), Nisqually earthquake (region surrounding Seattle) and Sumatran‐fault earthquake (recorded in Singapore). Field recordings have been obtained from these events for comparison with the proposed model. The accuracy of the stochastic simulations and the regression analysis have been confirmed by comparisons between the model calculations and the actual field observations. It is emphasized that obtaining representative estimates for Q for input into the model is equally important.Thus, this paper forms part of the long‐term objective of the authors to develop more effective communications across the engineering and seismological disciplines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
2022年1月8日发生的门源M6.9地震诱发了崩塌、滑坡、砂土液化、地裂缝等多种同震地质灾害。通过对门源M6.9地震地质灾害进行现场调查,得出了地质灾害的分布特征和各类型地质灾害的主要特点,分析了地震地质灾害不发育的原因,并对地震地质灾害的长期效应进行了分析预测。研究结果表明:门源地震诱发地质灾害主要分布在震中附近;崩塌、落石总体规模较小,滑坡多为岩质滑坡,且以冰碛物和表层岩土体的溜滑为主。受表层土体冻结和孔隙水压力消散的影响,饱和砂土液化沿较窄的地裂缝呈串珠状分布,喷出物多为粉细砂。地震形成了4条左旋左阶斜列的地表破裂带,并在极震区内形成了大量的地裂缝。断层破碎带对地震动的阻隔作用、覆盖层薄、地表土冻结可能是造成本次地震地质灾害总体不发育的主要原因;地震产生的大量地裂缝导致斜坡和堆积体的稳定性减弱,在耦合集中降雨、冻融作用等因素后可能诱发滑坡灾害,松散堆积于沟床处的崩滑物作为物源,可能会增加地震影响区泥石流灾害的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号