首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 580 毫秒
1.
We present optical identifications for a sample of 20 previously unknown X-ray/radio sources that are present both in the source catalogue of ROSAT PSPC pointed observations ( ROSAT SRC) and in the NRAO VLA Sky Survey (NVSS). The optical spectroscopy was carried out with the 2.1-m telescope at San Pedro Martir (Mexico) during 1995 April and September. We have identified 15 active galactic nuclei [including 12 broad-emission-line (FWHM >1000 km s−1) objects, one bona fide BL Lac, one BL Lac candidate and one narrow-line (FWHM < 1000 km s−1) radio galaxy] and five radio galaxies. We derive the X-ray fluxes and luminosities by analysing the PSPC exposures, and show the radio morphology from the NVSS maps.  We find that the correlation between the monochromatic X-ray luminosity at 2 keV and the core radio luminosity at 5 GHz for the radio galaxies in our sample follows that found for the 3CR radio galaxies, suggesting a possible nuclear origin for the X-ray emission in these sources. This correlation is weaker in the case of broad-line objects, indicating the presence of another (unbeamed) mechanism for the X-ray emission only weakly related to the radio emission.  相似文献   

2.
We have surveyed 188 ROSAT Position Sensitive Proportional Counter (PSPC) fields for X-ray sources with hard spectra ( α <0.5); such sources must be major contributors to the X-ray background at faint fluxes. In this paper we present optical identifications for 62 of these sources: 28 active galactic nuclei (AGN) which show broad lines in their optical spectra (BLAGN), 13 narrow emission line galaxies (NELGs), five galaxies with no visible emission lines, eight clusters and eight Galactic stars.
The BLAGN, NELGs and galaxies have similar distributions of X-ray flux and spectra. Their ROSAT spectra are consistent with their being AGN obscured by columns of 20.5< log( N H/cm−2)<23 . The hard spectrum BLAGN have a distribution of X-ray to optical ratios which is similar to that found for AGN from soft X-ray surveys (1< α OX<2) . However, a relatively large proportion (15 per cent) of the BLAGN, NELGs and galaxies are radio loud. This could be because the radio jets in these objects produce intrinsically hard X-ray emission, or if their hardness is caused by absorption, it could be because radio-loud objects are more X-ray luminous than radio-quiet objects. The eight hard sources identified as clusters of galaxies are the brightest, and softest group of sources and hence clusters are unlikely to be an important component of the hard, faint population.
We propose that BLAGN are likely to constitute a significant fraction of the faint, hard, 0.5–2 keV population and could be important to reproducing the shape of the X-ray background, because they are the most numerous type of object in our sample (comprising almost half the identified sources), and because all our high redshift ( z >1) identified hard sources have broad lines.  相似文献   

3.
We combine Chandra and XMM–Newton X-ray data from our previous papers with new X-ray observations and with Spitzer mid-infrared (mid-IR) data in order to study the nature of the nuclei of radio galaxies and radio-loud quasars with   z < 1.0  from the 3CRR sample. The significant increase in sample size over our previous work, the reduction of bias in the sample as a result of new observations and the availability of more mid-IR data allow us to show conclusively that almost all objects classed as low-excitation radio galaxies in optical spectroscopic studies lack a radiatively efficient active nucleus. We show that the distribution of absorbing columns in the narrow-line radio galaxies differs from the population of X-ray-selected radio-quiet type 2 quasars and from that in local Seyfert 2s. We comment on the current evidence for the nature of the soft X-ray component in radio-galaxy nuclear spectra, concluding that a jet origin for this component is very hard to evade. Finally, we discuss the recently discovered 'fundamental plane' of black hole activity, showing that care must be taken when placing radio-loud active galactic nucleus (AGN) on such diagnostic diagrams.  相似文献   

4.
We have performed a statistical study of the properties of the broadband continuum of Narrow Line Seyfert 1 galaxies (NLS1s) by collecting ratio,infrared, optical and X-ray continuum data from various databases and comparedthe results with control samples of Broad Line Seyfert 1 galaxies (BLSls). We findthat the fraction (~ 6%) of Radio Loud (RL) NLSls is significantly less than thatof BLS1s (~ 13%), which is caused by the lack of radio-very-loud sources in theformer. The rarity of RL NLS1s, especially radio-very-loud ones, is consistent withthe scenario of small black hole and high accretion rate for NLSls. Six new radio loudNLSls are found and five RL NLS1 candidates are presented. In comparison withthe BLS1s, the NLS1s tend to have stronger far infrared emission, cooler infraredcolors and redder B- K color, which suggests that NLS1s are hosted by dust-richernuclei. The NLS1s also show steeper soft X-ray spectrum and large soft X-rayto optical flux ratio, while a significant fraction show fiat soft X-ray spectra. Atleast two factors can account for this, absorption and spectral variability. We alsoperform a correlation analysis between various broad band data. It is found thatmost correlations identified for NLS1s are also valid for radio quiet BLS1s: (1) theoptical colors are anti-correlated with X-ray spectral index; (2) higher optical, X-ray and NIR luminosity objects show bluer optical colors and red H - K color; (3)higher luminosity objects show warmer IRAS color; (4) the radio loudness correlateswith B - K and X-ray to optical flux ratio. Radio loud objects behave somewhatdifferently in a few correlations.  相似文献   

5.
We present results for the first three low-power radio galaxies from the B2 bright sample to have been observed with Chandra . Two have kiloparsec-scale radio jets, and in both Chandra resolves jet X-ray emission, and detects soft X-ray core emission and an X-ray-emitting galaxy-scale atmosphere of luminosity a few ×1041 erg s−1. These are the first detections of X-ray jets in low-power radio galaxies more distant than Centaurus A and M87. The cooling time of the galaxy-scale gas implies mass infall rates of the order of 1 M yr−1. The gas pressure near the jets is comparable to the minimum pressure in the jets, implying that the X-ray-emitting gas may play an important role in jet dynamics. The third B2 radio galaxy has no kiloparsec-scale radio jet, and here only soft X-ray emission from the core is detected. The ratio of X-ray to radio flux is similar for the jets and cores, and the results favour a synchrotron origin for the emission. Kiloparsec-scale radio jets are detected in the X-ray in ∼7-ks exposures with Chandra more readily than in the optical via Hubble Space Telescope snapshot surveys.  相似文献   

6.
A sample of 47 faint Gigahertz Peaked Spectrum (GPS) radio sources selected from the Westerbork Northern Sky Survey (WENSS) has been imaged in the optical and near-infrared, resulting in an identification fraction of 87 per cent. The R  −  I R  −  K colours of the faint optical counterparts are as expected for passively evolving elliptical galaxies, assuming that they follow the R -band Hubble diagram as determined for radio-bright GPS galaxies. We find evidence that the radio spectral properties of the GPS quasars are different from those of GPS galaxies. The observed distribution of radio spectral peak frequencies for GPS sources optically identified with bright stellar objects (presumably quasars) is shifted compared with GPS sources identified with faint or extended optical objects (presumably galaxies), in the sense that a GPS quasar is likely to have a higher peak frequency than a GPS galaxy. This means that the true peak frequency distribution is different for the GPS galaxies and quasars, because the sample selection effects are independent of optical identification. The correlation between peak frequency and redshift that has been suggested for bright sources has not been found in this sample; no correlation exists between R magnitude (and therefore redshift) and peak frequency for the GPS galaxies. We therefore believe that the claimed correlation is actually caused by the dependence of the peak frequency on optical host, because the GPS galaxies are generally at lower redshifts than the quasars. The difference in the peak frequency distributions of the GPS galaxies and quasars is further evidence against the hypothesis that they form a single class of object.  相似文献   

7.
Intermediate BL Lac objects   总被引:1,自引:0,他引:1  
The 200-mJy sample, defined by Marchã et al., contains about 60 nearby, northern, flat-spectrum radio sources. In particular, the sample has proved effective at finding nearby radio-selected BL Lac objects with radio luminosities comparable to those of X-ray-selected objects, and low-luminosity flat-spectrum weak emission-line radio galaxies (WLRGs). The 200-mJy sample contains 23 BL Lac objects (including 6 BL Lac candidates) and 19 WLRGs. We will refer to these subsamples as the 200-mJy BL Lac sample and the 200-mJy WLRG sample, respectively. We have started a systematic analysis of the morphological pc-scale properties of the 200-mJy radio sources using VLBI observations.
This paper presents VLBI observations at 5 and 1.6 GHz of 14 BL Lac objects and WLRGs selected from the 200-mJy sample. The pc-scale morphology of these objects is briefly discussed. We derive the radio beaming parameters of the 200-mJy BL Lac objects and WLRGs and compare them with those of other BL Lac samples and with a sample of FR I radio galaxies. The overall broad-band radio, optical and X-ray properties of the 200-mJy BL Lac sample are discussed and compared with those of other BL Lac samples, radio- and X-ray-selected. We find that the 200-mJy BL Lac objects fill the gap between HBL and LBL objects in the colour–colour plot, and have intermediate α XOX as expected in the spectral energy distribution unification scenario. Finally, we briefly discuss the role of the WLRGs.  相似文献   

8.
We have recently shown that X-ray observations of the population of 'low-excitation' radio galaxies, which includes most low-power, Fanaroff–Riley class I sources as well as some more powerful Fanaroff–Riley class II objects, are consistent with a model in which the active nuclei of these objects are not radiatively efficient at any waveband. In another recent paper, Allen et al. have shown that Bondi accretion of the hot, X-ray emitting phase of the intergalactic medium (IGM) is sufficient to power the jets of several nearby, low-power radio galaxies at the centres of clusters. In this paper, we combine these ideas and suggest that accretion of the hot phase of the IGM is sufficient to power all low-excitation radio sources, while high-excitation sources are powered by accretion of cold gas that is in general unrelated to the hot IGM. This model explains a number of properties of the radio-loud active galaxy population, and has important implications for the energy input of radio-loud active galactic nuclei into the hot phase of the IGM: the energy supply of powerful high-excitation sources does not have a direct connection to the hot phase.  相似文献   

9.
In previous papers we have discussed high-resolution observations of a large sample of powerful radio galaxies with z  < 0.3. Jets are detected in up to 80 per cent of the sample, and radio cores in nearly all the objects; in addition, we are able to resolve the hotspots in most sources. In this paper we present measurements of the radio properties of these components.   The prominences of the jets detected do not appear to be a function of radio luminosity, providing the clearest evidence yet that the reported low detection rate of jets in radio galaxies has been an artefact of low-sensitivity observations. We find a positive correlation between the total source length and core prominence in the narrow-line radio galaxies. We have found evidence for a relationship between hotspot size and total source size, but few other significant relationships between hotspot properties and those of the jets or lobes. We compare our measurements with those of Bridle et al., based on observations of a sample of quasars, and argue that the results are consistent with a modification of the unified model in which the broad-line radio galaxies are the low-luminosity counterparts of quasars, although the situation is complicated by contamination with low-excitation radio galaxies which appear to have radio properties different from the high-excitation objects. We discuss the classes of empirical model that can be fitted to the data set.  相似文献   

10.
This paper presents a detailed analysis of the radio properties for the sample of faint radio sources introduced by Magliocchetti et al. in 2000. The sample comprises mainly intrinsically low-power sources, the majority of which (≳70 per cent) are FR I radio galaxies. These objects show some degree (at 1 σ confidence level) of luminosity evolution, which is also needed to reproduce correctly the total number and shape of the counts distribution at 1.4 GHz. Analysis of the de-evolved local radio luminosity function shows a good agreement between data and model predictions for this class of sources. Particular care has been devoted to the issue of 'lined' galaxies (i.e. objects presenting in their spectra a continuum typical of early-type galaxies plus emission lines of different nature), which appear as an intermediate class of sources between AGN-dominated and starburst galaxies. Different evolutionary behaviour is seen in the two subpopulations of lined and non-lined low-power radio galaxies, the first class indicating a tendency for the radio luminosity to decrease with look-back time, the second one showing positive evolution. We note that different evolutionary properties also seem to characterize BL Lacs selected in different bands, so that one might envisage an association between lined FR I and the subclass of BL Lacs selected in the X-ray band. Lastly, we find evidence for a negligible contribution of starburst galaxies at these low flux levels.  相似文献   

11.
We present the Spitzer Space Telescope Infrared Array Camera observations for a sample of local elliptical galaxies to study later stages of active galactic nucleus (AGN) activity. A sample of 36 elliptical galaxies is selected from the Palomar spectroscopic survey. We detect nuclear non-stellar infrared emission in nine of them. There is unambiguous evidence of circumnuclear dust in these nine galaxies in their optical images. We also find a remarkable correlation between the infrared excess emission and the nuclear radio/X-ray emission, suggesting that infrared excess emission is tightly related to nuclear activity. The possible origin of infrared excess emission from hot dust heated by the central AGN is supported by the spectral indices of the infrared excess emission.  相似文献   

12.
We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff–Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu–Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.  相似文献   

13.
We report on ROSAT HRI observations of the nearby powerful radio galaxies 3C 33 and 111, which both have detected optical hotspots. We find nuclear X-ray sources in both objects, but no X-ray emission from the hotspots. This confirms the presence of a high-energy cut-off in the spectrum of synchrotron-emitting electrons. Since these electrons necessarily scatter the synchrotron photons by the inverse Compton process, our upper limits on the X-ray fluxes of the hotspots allow us to set lower limits of a few nanotesla on their magnetic flux density, close to or greater than the fields implied by equipartition of energy between radiating particles and magnetic field.  相似文献   

14.
We present accurate measurements of the physical conditions in five powerful radio galaxies, as derived from deep, long-slit spectroscopic observations. All five objects show prominent extended line emission, and have X-ray luminosities similar to those of isolated elliptical galaxies. The data are high enough quality that the electron density and temperature can be measured at several positions across the emission-line nebulae.
We subtract a model continuum comprising a combination of a 15-Gyr stellar template, a young stellar template and a power law, so as to be better able to measure faint diagnostic lines. Electron temperatures measured from the [O  iii ](4959+5007)/4363 line ratio are in the range  10 000< T e<20 000 K  , whilst  [S  ii ](6716/6731)  densities fall between  100–500 cm-3.  Using these values, we find pressures within the line-emitting clouds a factor of  10–100  times higher than expected for pressure balance with the hot X-ray haloes of the host galaxies.
Previous studies of sources that show significant evidence of jet–cloud interactions, both in terms of their kinematics and ionization, have concluded that the overpressure is a result of the warm, line-emitting gas being compressed by the radio cocoon; however, there is no evidence that the radio jet is influencing the emission-line regions in four of our five objects.
We suggest that it is plausible that the line-emitting clouds have not yet relaxed into pressure equilibrium from their initial photoionization by the central active galactic nucleus.  相似文献   

15.
Deep and high-resolution radio observations of the Hubble Deep Field and flanking fields have shown the presence of two distant edge-darkened FR I radio galaxies, allowing for the first time an estimate of their high-redshift space density. If it is assumed that the space density of FR I radio galaxies at     is similar to that found in the local Universe, then the chance of finding two FR I radio galaxies at these high radio powers in such a small area of sky is < 1 per cent. This suggests that these objects were significantly more abundant at     than at present, effectively ruling out the possibility that FR I radio sources undergo no cosmological evolution. We suggest that FR I and FR II radio galaxies should not be treated as intrinsically distinct classes of objects, but that the cosmological evolution is simply a function of radio power with FR I and FR II radio galaxies of similar radio powers undergoing similar cosmological evolutions. Since low-power radio galaxies have mainly FR I morphologies and high-power radio galaxies have mainly FR II morphologies, this results in a generally stronger cosmological evolution for the FR IIs than the FR Is. We believe that additional support from the V / V max test for evolving and non-evolving population of FR IIs and FR Is respectively is irrelevant, since this test is sensitive over very different redshift ranges for the two classes.  相似文献   

16.
In this paper, the third and final of a series, we present complete K -band imaging and some complementary I -band imaging of the filtered 6C* sample. We find no systematic differences between the K – z relation of 6C* radio galaxies and those from complete samples, so the near-infrared properties of luminous radio galaxies are not obviously biased by the additional 6C* radio selection criteria (steep spectral index and small angular size). The 6C* K – z data significantly improve delineation of the K – z relation for radio galaxies at high redshift ( z >2) . Accounting for non-stellar contamination, and for correlations between radio luminosity and stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity of radio galaxies increases significantly at z >2 . In a particular spatially flat universe with a cosmological constant (ΩM=0.3 and ΩΛ=0.7) , the most luminous radio sources appear to be associated with galaxies with a luminosity distribution with a high mean (≈5  L *), and a low dispersion ( σ ∼0.5 mag) which formed their stars at epochs corresponding to z ≳2.5 . This result is in line with recent submillimetre studies of high-redshift radio galaxies and the inferred ages of extremely red objects from faint radio samples.  相似文献   

17.
Summary Recent years have seen an amazing development in our knowledge of the magnetic fields in the universe. The last ten years were crucial in our realization of the importance of the magnetic fields in galaxies. While a lot of the earlier data on our Galaxy depended on optical observations, the bulk of the recent results depend on radio measurements. The radio Zeeman effect gave us new information on magnetic fields in molecular clouds. The mapping of galaxies at several radio frequencies resulted in new knowledge about the large-scale magnetic fields in these basic building blocks of the universe. These exciting observations have led to new theoretical developments. In particular, the dynamo theory of flat objects received much attention since the observed large-scale structures can best be explained through the action of the dynamo effect. This review will attempt to summarise the observational evidence and to give viable explanations for the magnetic fields in galaxies.  相似文献   

18.
Continuum radiation from active galactic nuclei   总被引:1,自引:0,他引:1  
Summary Active galactic nuclei (AGN) can be divided into two broad classes, where the emitted continuum power is dominated either by thermal emission (radio-quiet AGN), or by nonthermal emission (blazars). Emission in the 0.01–1 m range is the primary contributor to the bolometric luminosity and is probably produced through thermal emission from an accretion disk, modified by electron scattering and general relativistic effects. The 1–1000 m continuum, the second most important contributor to the power, is generally dominated by thermal emission from dust with a range of temperatures from 40 K to 1000–2000 K. The dust is probably reemitting 0.01–0.3 m continuum emission, previously absorbed in an obscuring cone (or torus) or an extended disk. The 1–10 keV X-ray emission is rapidly variable and originates in a small region. This emission may be produced through Compton scattering by hot thermal electrons surrounding an accretion disk, although the observations are far from being definitive. The weak radio emission, which is due to the nonthermal synchrotron process, is usually elongated in the shape of jets and lobes (a core may be present too), and is morphologically distinct from the radio emission of starburst galaxies.In the blazar class, the radio through ultraviolet emission is decidedly non-thermal, and apparently is produced through the synchrotron process in an inhomogeneous plasma. The plasma probably is moving outward at relativistic velocities within a jet in which the Lorentz factor of bulk motion (typically 2–6) increases outward. This is inferred from observations indicating that the opening angle becomes progressively larger from the radio to the optical to the X-ray emitting regions. Shocks propagating along the jet may be responsible for much of the flux variability. In sources where the X-ray continuum is not a continuation of the optical-ultraviolet synchrotron emission, some objects show variability consistent with Compton scattering by relativistic electron in a large region (in BL Lacertae), while other objects produce their X-ray emission in a compact region, possibly suggesting pair production.When orientation effects are included, all AGN may be decomposed into a radio-quiet AGN, a blazar, or a combination of the two. Radio-quiet AGN appear to have an obscuring cone or torus containing the broad emission line clouds and an ionizing source. Most likely, the (non-relativistic) directional effects of this obscuring region give rise to the difference between Seyfert 1 and 2 galaxies or narrow and broad line radio galaxies. For different orientations of the nonthermal jet, relativistic Doppler boosting can produce BL Lacertae objects or FR I radio galaxies, or at higher jet luminosities, flat-spectrum high-polarization quasars or FR II radio galaxies.  相似文献   

19.
Chandra ACIS observations of PKS 0521−365 find that the X-ray emission of this BL Lac object consists of emission from an unresolved core, a diffuse halo and a 2-arcsec jet feature coincident with the inner radio/optical jet. A comparison with a new ATCA 8.6-GHz map also finds X-ray emission from the bright hotspot south-east of the nucleus. The jet spectrum, from radio to X-ray, is probably synchrotron emission from an electron population with a broken power-law energy distribution, and resembles the spectra seen from the jets of low-power (FR I) radio galaxies. The hotspot X-ray flux is consistent with the expectations of synchrotron self-Compton emission from a plasma close to equipartition, as seen in studies of high-power (FR II) radio galaxies. While the angular structure of the halo is similar to that found by an analysis of the ROSAT High Resolution Imager image, its brightness is seen to be lower with Chandra , and the halo is best interpreted as thermal emission from an atmosphere of similar luminosity to the haloes around FR I radio galaxies. The X-ray properties of PKS 0521−365 are consistent with it being a foreshortened, beamed, radio galaxy.  相似文献   

20.
We present optical spectra of the nuclei of seven luminous ( P 178 MHz≳1025 W Hz−1 Sr−1) nearby ( z <0.08) radio galaxies, which mostly correspond to the FR II class. In two cases, Hydra A and 3C 285, the Balmer and λ 4000-Å break indices constrain the spectral types and luminosity classes of the stars involved, revealing that the blue spectra are dominated by blue supergiant and/or giant stars. The ages derived for the last burst of star formation in Hydra A are between 7 and 40 Myr, and in 3C 285 about 10 Myr. The rest of the narrow-line radio galaxies (four) have a λ 4000-Å break and metallic indices consistent with those of elliptical galaxies. The only broad-line radio galaxy in our sample, 3C 382, has a strong featureless blue continuum and broad emission lines that dilute the underlying blue stellar spectra. We are able to detect the Ca  ii triplet in absorption in the seven objects, with good quality data for only four of them. The strengths of the absorptions are similar to those found in normal elliptical galaxies, but these values are consistent both with stellar populations of roughly similar ages (as derived from the Balmer absorption and break strengths) and with mixed young+old populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号