首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Responses of autotrophic and heterotrophic processes to nutrients and trace elements were examined in a series of experimental estuarine food webs of increasing trophic complexity using twenty 1-m3 mesocosms. Nutrients (nitrogen and phosphorus) and trace elements (a mix of arsenic, copper, cadmium) were added alone and in combination during four experimental runs spanning from spring 1997 to spring 1998. Diel changes in dissolved oxygen were used to examine whole system gross primary production (WS-GPP), respiration (WS-RESP), and net ecosystem metabolism (NEM). Nutrient and trace element additions had the greatest effect on WS-GPP, WS-RESP, and NEM; trophic complexity did not significantly affect any of these parameters (p>0.3). Effects of trophic complexity were detected in nutrient tanks where bivalves significantly (p=0.03) reduced WS-GPP. Nutrient additions significantly enhanced WS-GPP and to a lesser extent WS-RESP during most mesocosm runs. The system shifted from net heterotrophy (−17.2±1.8 mmol C m−3 d−1) in the controls to net autotrophy (29.1±7.6 mmol C m−3 d−1) in the nutrient tanks. The addition of trace elements alone did not affect WS-GPP and WS-RESP to the same extent as nutrients, and their effects were more variable. Additions of trace elements alone consistently made the system more net heterotrophic (−24.9±1.4 mmol C m−3 d−1) than the controls. When trace elements were added in combination with nutrients, the nutrient-enriched system became less autotrophic (1.6±3.1 mmol C m−3 d−1). The effects of trace elements on NEM occurred primarily through reductions in WS-GPP rather than increases in WS-RESP. Our results suggest that autotrophic and heterotrophic processes respond differently to these stressors.  相似文献   

2.
Biogeochemical interactions between a suite of trace elements and nutrients were examined in a series of experimental mesocosm experiments to understand how multiple stressors affect estuarine environments and how these effects are modified by the complexity of the system used to examine them. Experimental treatment included additions of nutrients and trace elements separately and combined, along with a gradient in experimental system complexity. Eight mesocosm experiments were carried out from 1996 through 1998. Increased nutrients generally decreased dissolved trace element concentrations, in large part through an increase in phytoplankton biomass, but also by increasing the concentration of metals in the particles. Trace element additions increased dissolved nutrients by decreasing phytoplankton biomass. The presence of sediments reduced both dissolved trace element and nutrient concentrations. Other complexity treatments had weaker effects on both dissolved nutrients and trace elements. Many of the observed effects appeared to be seasonal, occurring only in spring, or their magnitude was greater in spring. This may be linked to a change from phosphorus to nitrogen limitation that often occurs in the Patuxent River estuary in the late spring or early summer period.  相似文献   

3.
Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal, production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa,Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.  相似文献   

4.
We examined individual and interactive effects of two stressors—nutrients (nitrogen [N] and phosphorus [P]) and trace elements (a mix of arsenic [As], copper [Cu], and cadmium [Cd], and in a second experiment also zinc [Zn] and nickel [Ni])—on phytoplankton of the mesohaline Patuxent River, a tributary of Chesapeake Bay. Experiments were conducted in twenty 1-m3 mesocosms. Four mesocosm runs used two levels of nutrient loadings (0.7–1.0 × ambient N loading and enriched to 1.3–1.6 × ambient N loading) crossed with two levels of trace elements (ambient and enriched approximately 2–5 × higher than ambient concentrations) crossed with five progressive levels of ecosystem complexity. To examine seasonal patterns of responses to stressors, data from these experiments were combined with results of a similar experiment conducted during 1996 (Breitburg et al. 1999a). A second mesocosm experiment examined effects of individual and mixed trace elements, both alone and in combination with nutrients, to further examine which nutrient-trace element interactions were important. Nutrients consistently increased phytoplankton productivity and biomass. Most of the increased biomass was created by large centric diatoms, which increased the mean cell size of the phytoplankton community. Trace element additions decreased phytoplankton productivity and biomass, as well as the contribution of large centric diatoms to phytoplankton biomass. When both trace elements and nutrients were added, trace elements reduced nutrient stimulation. Although the magnitude of the response to nutrient additions tended to be somewhat greater in spring, the seasonal patterns of trace element effects, and nutrient-trace element interactions were far more striking with significant responses restricted to spring mesocosm runs. The second experiment indicated that both As and Cu were more inhibitory to phytoplankton in spring than in summer, but As was more inhibitory in the low nutrient treatments and Cu was more inhibitory in the nutrient enrichment treatments. The potential for strong seasonal patterns and high temporal variability in stressor effects and multiple stressor interactiosn will require close attention in the design and interpretation of management-relevant research and monitoring and may indicate the need for seasonally varying management strategies.  相似文献   

5.
We determined fluxes of oxygen and nutrients between water and sediments at 21 sites primarily in Virginia and North Carolina estuaries, over the past 15 yr. These sites represented broad ranges in salinity, tidal amplitude, hydrology, nutrient availability, turbidity, light availability, depth, sediment grain size, and anthropogenic disturbance. In general, we found that heterotrophically dominated sediments had the potential to degrade water quality, whereas photoautotrophy in the sediments ameliorated this impact. We propose a benthic trophic state index as a management tool to make general assessments of the degree to which sediments support ecological processes related to photoautotrophy. The index can be based on simple measurements of metabolic parameters. We also evaluated the relative significance of variability in the index across a number of spatial and temporal scales. Reduced photoautotrophy and/or enhanced heterotrophy tended to be associated with finer-grained, organic-rich sediments. This sediment type was common in oligohaline areas at water depths exceeding 2 m. Temporally, autotrophy declined from winter to spring particularly at sandy sites, while interannual variability was more pronounced for mud sites. *** DIRECT SUPPORT *** A01BY074 00011  相似文献   

6.
Benthic dissolved organic carbon (DOC) flux rates and changes in DOC isotope ratios, along with nutrient fluxes, phospholipid fatty acids concentration and carbon isotope ratios were measured in productive estuarine sediments over a diel cycle to determine the mechanisms driving benthic-pelagic coupling of DOC. There was uptake of DOC during the dark and efflux during the light at all sites. DOC uptake rates were related to benthic respiration (dark O2 uptake) and effluxes were coupled to the trophic status (ratio of production to respiration) of the sediments. Highest uptake and efflux rates were observed at two high nutrient concentration sites. The DOC:DON ratio of water column dissolved organic matter (DOM) decreased during the dark and increased during the light indicating preferential uptake and release of carbon rich dissolved organic matter. The calculated carbon isotope ratio of the DOC taken up by the benthos was significantly more depleted than the bulk water column DOC pool, suggesting preferential uptake of selected components of the water column DOC pool. Generally the isotope ratio of the DOC released during the light was more enriched than that taken up during the dark, which suggests that the benthos has the potential to significantly alter the estuarine DOC pool. Uptake and efflux were coupled to respiration and algal grazing/mineralization, therefore increased nutrient loading may shift the composition of the estuarine DOC pool through changes in the magnitude of benthic DOC fluxes. A combination of biological (diel shifts in DOC production and consumption) and abiotic processes (flocculation) appear to be driving the observed benthic DOC dynamics at the study sites. This study was the first to measure carbon isotopic changes in the water column DOC pool due to benthic processes, and shows that the benthos can alter the estuarine DOC pool through diel differences in DOC uptake and efflux.  相似文献   

7.
The role of labile organic material and macrofaunal activity in benthic respiration and nutrient regeneration have been tested in sublittoral fine sand sediments from the Gulf of Valencia (northwestern Mediterranean Sea). Three experimental setups were made using benthic chambers. One experiment was performed in-situ through the annual cycle in a well-sorted fine sand community. The remaining experiments were carried out with mesocosms under laboratory conditions: one with different concentrations of organic enrichment (mussel meat and concentrated diatoms culture), and the other adding two different densities of the endofaunal bivalve Spisula subtruncata. Biochemical variables in surface sediment and changes in oxygen consumption and nutrient fluxes throughout incubation period were studied in each experiment. In the in situ incubations, dissolved oxygen (DO) fluxes showed a strong correlation with sedimentary biopolymeric fraction of organic carbon. Organic enrichment in the laboratory experiments was responsible for increased benthic respiration. However, sediment response (expressed as DO uptake and dissolved inorganic nitrogen—DIN—release) between oligotrophic and eutrophic conditions was more intense than between eutrophic and hypertrophic conditions. S. subtruncata abundances close to 400 and 850 ind m?2 also intensified benthic metabolism. DO uptake and DIN production in mesocosms with added fauna were between 60 and 75 % and 65–100 % higher than in the control treatment respectively. The results of these three experiments suggest that the macrobenthic community may increase the benthic respiration by roughly a factor of two in these bottoms, where S. subtruncata is one of the dominant species. Both organic enrichment and macrobenthic community in general, and S. subtruncata in particular, did not seem to have a relevant role in P and Si cycles in these sediments.  相似文献   

8.
Benthic nutrient recycling is a significant source of dissolved nitrogen for south Texas coastal waters in the region of the Corpus Christi Bay estuary. Studies indicate that 90% of the dissolved nitrogen supply for phytoplankton production is derived from sediments in the upper-estuary, whereas benthic regeneration supplies only 33% of the dissolved nitrogen required for primary production outside the barrier island in coastal waters (15 m depth). In the upper-estuary relationships were observed between fluvial flow, water-column dissolved nitrogen, and phytoplankton productivity. In the middle-estuary relationships were observed between sediment recycling rates and water-column dissolved nitrogen. Beyond the barrier island, relationships were observed between fluvial flow and water-column dissolved nitrogen during high flow periods, while benthic regeneration appeared to be the major nutrient source during low flow periods. We suggest that combined effects from new and recycled nutrient sources buffer south Texas coastal productivity against long periods of low nutrient input from fluvial flow. The comparison of biological responses at several trophic levels to temporal variability in nitrogen recycling and fluvial flow indicated the importance of freshwater nitrogen inputs in stimulating primary production. Freshwater nitrogen inputs also appeared to sustain long-term productivity by replacing nutrients lost from the system by extended reliance upon recycling.  相似文献   

9.
Benthic exchange of nutrients in Galveston Bay, Texas   总被引:4,自引:0,他引:4  
Nutrient regeneration rates were determined at three sites increasing in distance from the Trinity River, the main freshwater input source, to Galveston Bay, Texas, from 1994 through 1996. Diffusive fluxes generally agreed in direction with directly measured benthic fluxes but underestimated the exchange of nutrients across the sediment-water interface. While the fluxes of ammonium and phosphate were directed from the sediment into the overlying waters, the fluxes of silicate and chloride changed in both magnitude and direction in response to changing Trinity River flow conditions. Oxygen fluxes showed benthic production during both summer 1995 and winter 1996, while light-dark deployments showed production-consumption, respectively. Benthic inputs of nutrients were higher at either the middle or outer Trinity Bay regions, most likely due to a higher quality and quantity of the autochthonous organic matter deposited. This feature is consistent with and gives evidence for previously observed non-conservative mixing behaviors reported for nutrients in this region of Galveston Bay. Calculated turnover times, between 7 to 135 d for phosphate, 4 to 56 d for silicate, and 0.3 to 10 d for ammonium were significantly shorter than the average Trinity Bay water residence time of 1.5 yr for the period September 1995 through October 1996. During periods of decreased Trinity River flow and increased residence times, benthic inputs of ammonium and phosphate were 1 to 2 orders of magnitude greater than Trinity River inputs and were the dominant input source of these nutrients to Trinity Bay. The sediments, a sink for silicate when overlying water column concentrations of silicate were elevated, became a source of silicate to the overlying waters of Trinity Bay under reduced flow, high salinity conditions.  相似文献   

10.
The spatial and temporal variation in water-column respiration, estimated from enzymatic respiratory electron-transport-system activity, was measured monthly on a cross-shelf transect on the Louisiana shelf from May through October 1991. In July 1991, water-column respiration was also determined on an alongshore transect, and in situ benthic respiration and photosynthesis rates were determined at jour stations on the cross-shelf transect. Bottom waters were persistently hypoxic (O2<2 mg 1?1) at most stations in July and August and sporadically hypoxic at other times. Water-column respiration rates were in the same range as earlier, less extensive studies and not unusually high for coastal and estuarine waters. They were highest in summer, decreased with distance offshore and depth, and increased with temperature. Their variation with pigment and oxygen concentrations were complex functions of season and depth. Oxygen depletion below the oxycline could occur within days to months, depending on the season and location. In July, benthic respiration rates were also not unusually high in comparison with other shallow sediments, although the ratio of benthic: total (water column+benthic) respiration was high. Combined water-column and benthic respiration could deplete the bottom water oxygen in approximately 1 mo. Because the system rarely goes anoxic (defined as observing sulfide), some mechanism(s) must exist to reaerate bottom waters. Most physical mechanisms are unlikely to provide significant reaeration at this time of year. Measured benthic and conservatively estimated bottom-water photosynthesis could resupply 23% of the oxygen lost daily by respiration. Although this is too limited a dataset from which to draw conclusions about the relative importance of bottom-water and benthic respiration and photosynthesis in determining bottom-water oxygen concentrations, it does suggest that all these processes must be considered.  相似文献   

11.
Benthic foraminiferal assemblages were analyzed from three black shale intervals in the upper Aptain to lower Albian of the Vocontian Basin, SE France based on Q-mode principal component analyses. Variations in the distribution patterns of benthic foraminifera around these events suggest differences in the origin of the black shales. Differences between faunas of bioturbated marly and laminated black shale facies have been observed in the Niveau Paquier, Oceanic Anoxic Event (OAE) 1b and Niveau Leenhardt. Here, the faunal composition and plankton/benthos ratios suggest eutrophic conditions during the deposition of organic-rich sediments leading to black shales. No major variations have been observed in black shales of the upper Aptain Niveau Jacob. Benthic assemblages and low plankton/benthos ratios indicate mesotrophic conditions. Third order sea-level changes are believed to control mainly the origin of the investigated black shale levels.  相似文献   

12.
In situ measurements of the exchange of ammonia, nitrate plus nitrite, phosphate, and dissolved organic phosphorus between sediments and the overlying water column were made in a shallow coastal lagoon on the ocean coast of Rhode Island, U.S.A. The release of ammonia from mud sediments in the dark (20–440 μmol per m2 per h) averaged ten times higher than from a sandy tidal flat (0–60 μmol per m2 per h), and while mud sediments also released nitrate and phosphate, sandy sediments took up these nutrients. Fluxes of nutrients from mud sediments, but not from sandy areas, markedly increased with temperature. Ammonia release rates for mud sediments in the light (0–350 μmol per m2 per h) were lower than those in the dark and it is estimated that some 25% of the ammonia released to the water column on an annual basis may be intercepted by the benthic microfloral community. Estimates of the annual net exchange of nutrients across the sediment-water interface, weighted by sediment type for the lagoon as a whole, showed a release of 450 mmol per m2 of ammonia, 5 mmol per m2 of phosphate, 5 mmol per m2 of dissolved organic phosphorus, and an uptake of 80 mmol per m2 of nitrate. Although rates of ammonia and nitrate exchange were comparable to those described for the deeper heterotrophic bottom communities of nearby Narragansett Bay, rates of benthic phosphate release were significantly lower. On an annual basis the Bay benthos released approximately 20 times more inorganic phosphate per unit area than did the lagoon benthos. As a result., the N/P ratio for the flux from the sediments was 74∶1 in the lagoon, compared with 16∶1 in “average” marine plankton and 8∶1 for the benthic flux from Narragansett Bay. The lack of remineralized phosphate in the lagoon, is reflected in water, column phosphate concentrations (always <1 μm) and water column N/P ratios (annual N/P=27) and suggests that the lagoon may show phosphate limitation rather than the nitrogen limitation commonly associated with marine systems.  相似文献   

13.
As a result of human activities, coastal waters can be exposed to multiple stressors that affect primary producers and their interactions with higher trophic levels. Mesocosm experiments were conducted during spring and summer 1996–1998 to investigate the responses of natural populations of primary producers to multiple stressors and the potential for these responses to be transmitted to higher trophic levels (i.e., copepods, bivalves, anemones, and fish). The effects of two stressors, elevated nutrient and trace element loadings, were examined individually and in combination. Nutrient additions had a positive effect on biomass, productivity, and abundance of primary producers (Breitburg et al. 1999; Riedel et al. 2003). Growth or abundance of consumers increased with nutrient additions, but the magnitude of the response was reduced relative to that of their prey. Responses to trace element additions varied seasonally and among taxa. The responses of zooplankton and bivalves to stressor additions were affected by the biomass and changes in species composition of phytoplankton assemblages. The presence of fish predators did not alter zooplankton responses to stressor additions. These results suggest that the extent to which nutrient and trace element effects are transmitted from primary producers to higher trophic levels depends on the capacity of consumers to respond to stressor-induced changes in abundance and species composition of prey, on the absolute abundance of prey, and on the ability of predators to feed on alternative prey. The magnitude of the effects of stressors on estuarine food webs may depend on seasonal variability in species composition of phytoplankton assemblages, whether sensitive species dominate, and whether these species are important prey for secondary consumers. Because spatial and temporal patterns in nutrient and trace element loadings to the estuary can affect species composition of primary producers, it is critically important to examine the magnitude, timing, and spatial relationships of loadings of multiple stressors to coastal waters in order to understand the impacts of these stressors on higher trophic levels.  相似文献   

14.
A combination of field studies and mathematical modeling was used to examine the role of subtidal benthic algae in the eutrophication processes in two shallow estuarine systems. Field measurements indicated uptake by benthic algae retained ammonium and phosphate in the sediments when light at the sediment surface exceeded ≈150 μE m2 s?1. The measurements were used to calibrate a newly developed model of benthic algal activity. The benthic algal model was coupled with a hydrodynamic model, a eutrophication model, and a sediment diagenesis model. In the simulated ecosystem, benthic algae had a major influence in the intra-annual cycling of nitrogen and phosphorus. When nutrients were abundant in the water column (late winter and spring) they were transferred to the sediments through algal activity. Diagenesis released these nutrients to the water column in summer when nutrients were scarce. As a result of the nutrient transfer, annual primary production in the water column, in the presence of benthic algae, exceeded production in the absence of the algae.  相似文献   

15.
Top-down effects of predators and bottom-up effects related to resource availability can be important in determining community structure and function through both direct and indirect processes. Their relative influence may vary among habitats. We examined the effects of nutrient enhancement and predation in southeastern North Carolina to determine relative effects on benthic macrofaunal communities. Short-term nutrient additions and predator exclusions were conducted in two estuaries to examine main and interactive effects on benthic microalgae and infauna. This experimental approach was complemented by comparisons of microalgal biomass, infaunal abundance and composition, predator abundance and predator exclusion among four estuarine systems that varied in background nutrient levels. In the short-term experiments, nutrient enhancement induced increased microalgal biomass but had limited effects on abundances or sizes of infauna. Predator exclusion increased the density of sedentary and near-surface dwelling fauna, but we did not observe interactions between predation and responses to nutrient additions as might be predicted from a simple cascade model. General patterns of abundance were explained to a larger extent by interannual and amongestuary pattems. These results indicate a lack of simple trophic cascade responses for this community over a short time scale and little evidence for local interactive effects. The lack of interactive effects may reflect the opportunistic nature of the dominant infaunal species and potentially different time and spatial scales for the effects of predation and resource controls.  相似文献   

16.
The Poplar Island Dredged Material Placement Site in Talbot County, Maryland is proposed to be used for the restoration of Poplar Island and for the creation of desirable habitats lost through erosion of Poplar Island by the beneficial use of clean and uncontaminated dredged material from the Chesapeake Bay approach channels to the Port of Baltimore. The Poplar Island baseline environmental assessment studies included among others, seasonal water quality, benthic community, and benthic tissue contaminants, that were carried out by the Maryland Department of the Environment, in cooperation with the University of Maryland, from September 1995 to July 1996. The purpose of the study was to document the present-day levels of nutrients, trace metals, and organic contaminants in the area to establish a baseline against which subsequent levels and biological responses may be compared. The overall results of the study indicate that Poplar Island and vicinity areas are non-impacted in terms of water quality and benthic tissue contamination. The nutrient levels in the water column were below average for this region of Chesapeake Bay, while the trace metals and organic contamination in the benthic tissues were comparable to other sites within Chesapeake Bay that are not impacted by direct inputs. Concentrations were equivalent or lower than those found at Hart-Miller Island, a disposal facility outside Baltimore Harbor, Maryland containing dredged material.  相似文献   

17.
Dissolved organic carbon (DOC) flux dynamics were examined in the context of other biogeochemical cycles in intertidal sediments inhabited by benthic microalgae. In August 2003, gross oxygenic photosynthetic (GOP) rates, oxygen penetration depths, and benthic flux rates were quantified at seven sites along the Duplin River, GA, USA. Sediments contained abundant benthic microalgal (BMA) biomass with a maximum chlorophyll a concentration of 201 mg chl a m?2. Oxygen microelectrodes were used to determine GOP rates and O2 penetration depth, which were tightly correlated with light intensity. Baseline and 15N-nitrate amended benthic flux core incubations were employed to quantify benthic fluxes and to investigate the impact of BMA on sediment water exchange under nitrogen (N)-limited and N-replete conditions. Unamended sediments exhibited tight coupling between GOP and respiration and served as a sink for water column dissolved inorganic nitrogen (DIN) and a source of silicate and dissolved inorganic carbon (DIC). The BMA response to the N addition indicated sequential nutrient limitation, with N limitation followed by silicate limitation. In diel (light–dark) incubations, biological assimilation accounted for 83% to 150% of the nitrate uptake, while denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) accounted for <7%; in contrast, under dark conditions, DNF and DNRA accounted for >40% of the NO3 ? uptake. The N addition shifted the metabolic status of the sediments from a balance of autotrophy and heterotrophy to net autotrophy under diel conditions, and the sediments served as a sink for water column DIN, silicate, and DIC but became a source of DOC, suggesting that the increased BMA production was decoupled from sediment bacterial consumption of DOC.  相似文献   

18.
Nutrient limitation of the rhizophytic macroalgaPenicillus capitatus found associated with subtropical seagrass meadows in Bermuda was determined from enrichment assays and subsequent tissue analyses. The photosynthetic response ofP. capitatus to additions of inorganic nitrogen (N) or phosphorus (P), measured as oxygen evolution in closed incubation chambers, increased significantly in both the 16 h and 6 d experiments only with nitrogen enrichment. The average photosynthetic response for all treatments was virtually identical in the two experiments, indicating that there was not a significant time lag in nutrient uptake and that the short term (16 h) assay accurately reflected the longer term (6 d) photosynthetic response to nutrient enrichment. Average tissue nitrogen levels for the nitrogen-treated algae were 29% higher than the phosphorus-treated algae and 18% greater than the controls, corroborating the results from the photosynthesis assay.P. capitatus may acquire nutrients directly from sediment sources via rhizoid holdfasts. Ratios of total dissolved nitrogen (TN) to total dissolved phosphorus (TP) in pore water at 10 and 20 cm depths (6.1 and 4.5, respectively) indicate a nitrogen-limited nutrient pool. These low pore water TN:TP ratios may be a function of a limited sorptive capacity of the calcium carbonate sediments for phosphate, anthropogenic nutrient inputs, or high rates of denitrification, all of which would induce N rather than P limitation in these carbonate-rich sediments.  相似文献   

19.
Complex links between the top-down and bottom-up forces that structure communities can be disrupted by anthropogenic alterations of natural habitats. We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem.  相似文献   

20.
古海洋生产力指标研究进展   总被引:20,自引:1,他引:19  
寻求反映古海洋生产力变化的指标是古海洋学研究的重要内容。生物沉积物、营养元素、微量元素和同位素、古生物资料等与古海洋生产力具有一定的关系,常用于古海洋生产力的重建工作:(1)生物沉积物主要包括有机碳、生物碳酸盐和生物硅质沉积等,其埋藏速率在很大程度上受到古海洋生产力的控制,常常用作古海洋生产力的替代性指标;(2)在地质时间尺度上,古海洋生产力主要受到大洋中营养元素可利用程度的控制,因此营养元素的相关记录可以提供古海洋生产力状况的重要信息;(3)海洋中某些微量元素的地球化学行为或者与有机质的改造有关,或者受到氧化还原条件变化的控制,或者受到某种浮游生物的生长的影响,从而能够直接或者间接地指示古海洋生产力的变化;(4)海相碳酸盐和有机质的碳同位素记录,海相有机物的氮同位素比值也用以再造古生产率等古海洋学参数;(5)可以利用对微体化石丰度值及其组合反映古生产力的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号