首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geodinamica Acta》2013,26(5):363-374
Granitoid rocks of the southern Menderes Massif, SW Turkey include widespread possibly Ediacaran high-grade granitic orthogneisses and younger (Tertiary) sheets, sills and/or dikes of variably deformed tourmaline-bearing leucogranites. The latter are confined to the immediate footwall of the regional-scale ductile southern Menderes shear zone. Although both sets of granitoid rocks are essentially calc-alkaline and peraluminous, the syn- to post-collisional tourmaline-bearing leucogranites are chemically distinguishable from both the granitoid orthogneisses and from two sets of mostly sodic siliceous dyke rocks. The leucogranites were generated by partial melting induced by shear heating during the waning stages of the Eocene main Menderes metamorphism and associated top-to-the-NNE thrusting along the southern Menderes ductile shear zone, which transported schists northwards over the granitoid orthogneisses of the core Menderes complex. Upward migration and emplacement of leucogranitic melt weakened formerly sheared rocks, so that when thrust-related deformation ceased it facilitated rapid crustal extension along the shear zone. The emplacement of leucogranites, in turn, promoted the reactivation of the southern Menderes shear zone as a top-to-the-SSW extensional feature. Continued extensional deformation affected the leucogranites which became parallel to the shear-zone foliation; local S-C fabrics were also generated. The additional occurrence of less or almost undeformed leucogranites suggests that the latest stages of extension might have induced adiabatic decompressional melting. Hence the leucogranite melt generation and emplacement in the southern Menderes Massif occurred in pulses. Both compressional and extensional processes played key roles in melt generation, emplacement, deformation and exhumation of the massif.

A clear distinction may also be made between the composition of granite-hosted tourmalines and those from metasedimentary schists. Tourmalines from a pebble of uncertain provenance in the Gökçay metaconglomerate plotted with schist-hosted tourmalines, suggesting that it was unlikely to be derived from granitoid gneiss. This crucial piece of evidence suggests that the presence of a major (Pan-African) unconformity at the so-called “core (orthogneiss)-cover (schist)” boundary in the southern Menderes Massif is unnecessary.  相似文献   

2.
The central Menderes Massif (western Turkey) is characterized by an overall dome-shaped Alpine foliation pattern and a N-NNE-trending stretching lineation. A section through the southern flank of the central submassif along the northern margin of Büyük Menderes graben has been studied. There, asymmetric non-coaxial fabrics indicate that the submassif has experienced two distinct phases of Alpine deformation: a top-to-the N-NNE contractional phase and a top-to-the S-SSW extensional event. The former fabrics are coeval with a regional prograde Barrovian-type metamorphism at greenschist to upper-amphibolite facies conditions. This event, known as the main Menderes metamorphism, is thought to be the result of internal imbrication of the Menderes Massif rocks along south-verging thrust sheets during the collision of the Sakarya continent in the north and the Anatolide-Tauride platform in the south across the Gzmir-Ankara suture during the (?)Palaeocene-Eocene. Top-to-the S-SSW fabrics, represented by a well-developed ductile shear band foliation associated with inclined and/or curved foliation, asymmetric boudins, and cataclasites, were clearly superimposed on earlier contractional fabrics. These fabrics are interpreted to be related to a low-grade (greenschist?) retrogressive metamorphism and a continuum of deformation from ductile to brittle in the footwall rocks of a south-dipping, presently low-angle normal fault that accompanied Early Miocene orogenic collapse and continental extension in western Turkey. A similar tectono-metamorphic history has been documented for the northern flank of the dome along the southern margin of the Gediz graben with top-to-the N-NNE extensional fabrics. The exhumation of the central Menderes Massif can therefore be attributed to a model of symmetric gravity collapse of the previously thickened crust in the submassif area. The central submassif is thus interpreted as a piece of ductile lower-middle crust that was exhumed along two normal-sense shear zones with opposing vergence and may be regarded as a typical symmetrical metamorphic core complex. These relationships are consistent with previous models that the Miocene exhumation of the Menderes Massif and Cycladic Massif in the Aegean Sea was a result of bivergent extension.  相似文献   

3.
Deformation fabrics in Proterozoic/Cambrian granitic rocks of the Çine nappe, and mid-Triassic granites of the Bozdag nappe constrain aspects of the tectonometamorphic evolution of the Menderes nappes of southwest Turkey. Based on intrusive contacts and structural criteria, the Proterozoic/Cambrian granitic rocks of the Çine nappe are subdivided into older orthogneisses and younger metagranites. The deformation history of the granitic rocks documents two major deformation events. An early, pre-Alpine deformation event (DPA) during amphibolite-facies metamorphism affected only the orthogneisses and produced predominantly top-to-NE shear-sense indicators associated with a NE-trending stretching lineation. The younger metagranites are deformed both by isolated shear zones, and by a major shear zone along the southern boundary of the Çine submassif. We refer to this Alpine deformation event as DA3. DA3 shear zones are associated with a N-trending stretching lineation, which formed during greenschist-facies metamorphism. Kinematic indicators associated with this stretching lineation reveal a top-to-south sense of shear. The greenschist-facies shear zones cut the amphibolite-facies structures in the orthogneisses. 207Pb/206Pb dating of magmatic zircons from a metagranite, which crosscuts orthogneiss containing amphibolite-facies top-to-NE shear-sense indicators, shows that DPA occurred before 547.2ǃ.0 Ma. Such an age is corroborated by the observation that mid-Triassic granites of the Çine and Bozdag nappes lack DPA structures. The younger, top-to-south fabrics formed most likely as a result of top-to-south Alpine nappe stacking during the collision of the Sakarya continent with Anatolia in the Eocene.  相似文献   

4.
5.
《Geodinamica Acta》2013,26(3-4):299-316
Western Anatolia (Turkey) is a region of widespread active N-S continental extension that forms the eastern part of the Aegean extensional province. The extension in the region is expressed by two distinct/different structural styles, separated by a short-term gap: (1) rapid exhumation of metamorphic core complexes along presently low-angle ductile-brittle normal faults commenced by the latest Oligocene-Early Miocene period, and; (2) late stretching of crust and, consequent graben evolution along Plio-Quaternary high-angle normal faults, cross-cutting the pre-existing low-angle normal faults. However, current understanding of the processes (tectonic quiescence vs N-S continental compression) operating during the short-time interval is incomplete. This paper therefore reports the results of recent field mapping and structural analysis from the NE of Küçük Menderes Graben—Kiraz Basin—that shed lights on the processes operating during this short-time interval. The data includes the thrusting of metamorphic rocks of the Menderes Massif over the Mio-Pliocene sediments along WNW-ESE-trending high-angle reverse fault and the development of compressional fabrics in the metamorphic rocks of the Menderes Massif. There, the metamorphic rocks display evidence for four distinct phases of deformation: (1) southfacing top-N ductile fabrics developed at relatively high-grade metamorphic conditions, possibly during the Eocene main Menderes metamorphism (amphibolite facies) associated with top-N thrust tectonics (D1); (2) top-S and top-N ductile gentle-moderatley south-dipping extensional fabrics formed at relatively lower-grade metamorphic (possibly greenschist facies) conditions associated with the exhumation of Menderes Massif along presently low-angle normal fault plane that accompanied the first phase of extension (D2); (3) moderately north-dipping top-S ductile-brittle fabrics, present configuration of which suggest a thrust-related compression (D3); and (4) south-facing approximately E-W-trending brittle high-angle normal faults (D4) that form the youngest structures in the region. It is interpreted that D4 faults are time equivalent of graben-bounding major high-angle normal faults and they correspond to the second phase of extension in western Anatolia. The presence of thrust-related D3 compressional fabrics suggests N-S compression during the time interval between the two phases of extension (D2 and D4). The results of the present study therefore support the episodic, two-stage extension model in western Anatolia and confirm that a short-time, intervening N-S compression separated the two distinct phases.  相似文献   

6.
In the eastern part of the Strandja Massif constituting the east end of the Rhodope Massif, the amphibolite facies basement rocks intruded by Permian metagranites are juxtaposed against the greenschist facies cover metasediments of Triassic-Middle Jurassic protolith age. The distinct metamorphic break between the basement and cover rocks requires a missing metamorphic section. The boundary between the two groups of rocks is a ductile to brittle extensional shear zone with kinematic indicators exhibiting a top to the E/NE shear sense. Footwall rocks are cut by weakly metamorphosed and foliated granite bodies which are clearly distinguished from the Permian metagranites by their degree of deformation, cross-cutting relations and syn-tectonic/kinematic character. Also, hangingwall rocks were intruded by unmetamorphosed and weakly foliated leucogranites. 40Ar/39Ar data indicate that the ductile deformation from 156.5 to 143.2 Ma (Middle Oxfordian-Earliest Berriasian) developed during the syn-tectonic plutonism in the footwall. Deformation, and gradual/slower cooling-exhumation survived until to 123 Ma (Barremian). The mylonitic and brittle deformation in the detachment zone developed during Oxfordian-Earliest Berriasian time (155.7–142.6 Ma) and Early Valanginian-Aptian time (136–118.7 Ma), respectively. Our new field mapping and first 40Ar/39Ar ages demonstrate the existence of an extensional core complex of Late Jurassic-Early Cretaceous age not previously described in the Rhodope/Strandja massifs.  相似文献   

7.
The Menderes Massif is a large area of dominantly Tertiary metamorphic rocks in western Turkey. It is bordered in the west by the Cycladic Metamorphic Complex with Eocene high-pressure/low-temperature (HP/LT) metamorphism. In the Central Menderes the AydLn mountains are made up of a thrust stack of Eocene age. At the base of the thrust stack, greenschist-facies Paleozoic metasediments of the Menderes Massif form an inverted stratigraphic sequence. The Barrovian-type metamorphism is also inverted with garnet-bearing metapelites lying over the lower-grade biotite-bearing metapelites. The P-T conditions in the garnet zone are estimated as 530°C and 8 kbar. This schist sequence of the central Menderes Massif is interpreted as the inverted lower limb of a major southward closing recumbent fold, with the southern Menderes Massif representing a section from the near hinge of this fold. The Paleozoic metamorphic rocks of the central Menderes Massif are tectonically overlain by gneiss klippen possibly originating from the sheared and southward translated core of the Menderes fold. Lying also tectonically over the Paleozoic metamorphic rocks is a major thrust sheet belonging to the Cycladic metamorphic complex. It consists of garnet micaschist, Mesozoic marble, serpentinite and amphibolitised eclogite. Although it has a highly sheared internal structure, it probably represents an initially coherent sequence that has undergone HP/LT metamorphism during the Eocene. The AydLn mountains are dominated by contractional structures with subordinate extensional structures.  相似文献   

8.
The Menderes Massif is a major polymetamorphic complex in Western Turkey. The late Neoproterozoic basement consists of partially migmatized paragneisses and metapelites in association with orthogneiss intrusions. Pelitic granulite, paragneiss and orthopyroxene-bearing orthogneiss (charnockite) of the basement series form the main granulite-facies lithologies. Charnockitic metagranodiorite and metatonalite are magnesian in composition and show calc-alkalic to alkali-calcic affinities. Nd and Sr isotope systematics indicate homogeneous crustal contamination. The zircons in charnockites contain featureless overgrowth and rim textures representing metamorphic growth on magmatic cores and inherited grains. Charnockites yield crytallization age of ~590 Ma for protoliths and they record granulite-facies overprint at ~ 580 Ma. These data indicate that the Menderes Massif records late Neoproterozoic magmatic and granulite-facies metamorphic events. Furthermore, the basement rocks have been overprinted by Eocene Barrovian-type Alpine metamorphism at ~42 Ma. The geochronological data and inferred latest Neoproterozoic–early Cambrian palaeogeographic setting for the Menderes Massif to the north of present-day Arabia indicate that the granulite-facies metamorphism in the Menderes Massif can be attributed to the Kuunga Orogen (600–500 Ma) causing the final amalgamation processes for northern part of the Gondwana.  相似文献   

9.
Augen gneisses, mica schists, and marbles of the Menderes Massif and its sedimentary cover rocks are exposed south of the Gediz graben. The augen gneisses form the structurally lowest part of the studied lithological sequence, and are overlain by a schist complex. The structurally highest part is formed by a series of marbles. The ages of this lithological sequence range from Precambrian to Early Paleocene. Furthermore, this sequence records the tectonic evolution since the Precambrian. The sedimentary cover of the Menderes Massif consists of two groups of sediments from Early Miocene to Quaternary. The lower group, the Alayehir group, consists of Early- to mid-Miocene-aged fluvial and limnic sediments which form the lower and the upper parts, respectively. The Alayehir group is overlain by mainly fluvial sediments of the Gediz group. Both the Alayehir and the Gediz groups are separated by an angular unconformity. Six deformational phases could be distinguished within the metamorphic rocks of the Menderes Massif and its Tertiary cover. The structures which were interpreted to belong to deformational events predating the Paleocene are summarized as deformational phase D1. D1 structures were nearly completely overprinted by the subsequent deformation events. The second deformational phase D2 occurred between Early Eocene and Early Oligocene. D2 occurred contemporaneously with a Barrovian-type regional metamorphism. The third deformational phase D3 is characterized by folding of the axial planes which formed at the end of Early Oligocene. The deformational event D4 occurred during the Late Oligocene and is related to an extensional period. The deposition of the sedimentary rocks which belong to the Tertiary cover of the Menderes Massif that started in the Early Miocene was interrupted by a compressional phase (D5) during the Late Miocene. Sediments which were deposited since the Early Pliocene record structures which were related to a young extensional phase (D6). This extensional phase has continued to the Present.  相似文献   

10.
《Geodinamica Acta》1999,12(1):25-42
The Early Eocene to Early Oligocene tectonic history of the Menderes Massif involves a major regional Barrovian-type metamorphism (M1, Main Menderes Metamorphism, MMM), present only in the Palaeozoic-Cenozoic metasediments (the so-called “cover” of the massif), which reached upper amphibolite faciès with local anatectic melting at structurally lower levels of the cover rocks and gradually decreased southwards to greenschist facies at structurally higher levels. It is not present in the augen gneisses (the so called “core” of the massif), which are interpreted as a peraluminous granite deformed within a Tertiary extensional shear zone, and lie structurally below the metasediments. A pronounced regional (S1) foliation and approximately N-S trending mineral lineation (L1) associated with first-order folding (F1) were produced during D1 deformation coeval with the MMM. The S1 foliation was later refolded during D2 by approximately WNW-ESE trending F2 folds associated with S2 crenulation cleavage. It is now commonly believed that the MMM is the product of latest Palaeogene collision across Neo-Tethys and the consequent internal imbrication of the Menderes Massif area within a broad zone along the base of the Lycian Nappes during the Early Eocene-Early Oligocene time interval. However, the meso- and micro-structures produced during D1 deformation, the asymmetry and change in the intensity and geometry of the F2 folds towards the Lycian thrust front all indicate an unambiguous non-coaxial deformation and a shear sense of upper levels moving north. This shear sense is incompatible with a long-standing assumption that the Lycian Nappes were transported southwards over the massif causing its metamorphism. It is suggested here that the MMM results from burial related to the initial collision across the Neo-Tethys and Tefenni nappe emplacement, whereas associated D1 deformation and later D2 deformation are probably related to the northward backthrusting of the Lycian nappes.  相似文献   

11.
Dating the magmatic events in the Montagne Noire gneiss dome is a key point to arbitrate between the different interpretations of the Late Carboniferous–Early Permian tectonics in this southern part of the Variscan belt. The Saint-Eutrope orthogneiss crops out along the northern flank of the dome. We show that the protolith of this orthogneiss is an Ordovician granite dated at 455 ± 2 Ma (LA-ICP-MS U-Pb dating on zircon). This age is identical to that previously obtained on the augen orthogneiss of the southern flank, strongly suggesting that both orthogneiss occurrences have the same Ordovician protolith. The Saint-Eutrope orthogneiss experienced intense shearing along the Espinouse extensional detachment at ca. 295 Ma (LA-ICP-MS U-Pb-Th on monazite), an age close to that determined previously on mica by the 39Ar-40Ar method and contemporaneous with the emplacement age of the syntectonic Montalet granite farther to the west. This normal sense shearing reworked previous fabrics related to Variscan thrusting that can be still observed in the augen orthogneiss of the southern flank, and is responsible for the spectacular “C/S-like” pattern of the Saint-Eutrope orthogneiss. This work also shows that care is needed when dealing with C/S-type structures, since they can develop not only in syntectonic intrusions, but also in orthogneisses affected by an intense secondary deformation, at decreasing temperature.  相似文献   

12.
The orientation, asymmetry and cross-cutting relationships of the structures along the contact zone between the Lycian nappes and the Menderes Massif suggest the presence of three deformation phases in the Milas region of southwest Turkey. The first deformation phase (D1) is characterized by a ductile deformation with top-to-the-NE sense of shear. Structural data of the first deformation measured along the uppermost part of the Menderes Massif and the base of the Lycian nappes suggest that the lowermost unit of the Lycian nappes was emplaced initially from southwest to northeast onto the Menderes Massif during the Early Eocene. The second deformation phase (D2) is also ductile in nature and is characterized by an E–W-trending stretching lineation with a bivergent sense of shear, which is probably related to the load of the overlying nappes. A third deformation phase (D3) is characterized by south-dipping normal faults with top-to-the-S sense of movement. This third deformation phase can be related to southward movement of the Lycian nappes along a low-angle décollement zone. The tectonic contact between the Menderes Massif and the Lycian nappes and their strongly-deformed rocks are unconformably covered by approximately flat-lying, coal-bearing Early–Middle Miocene sedimentary rocks, which constrains the upper time limit for all three deformation phases.  相似文献   

13.
Kilometer-scale lenses of quartz-rich metasedimentary rocks crop out in a discontinuous belt along the southern margin of the Menderes Massif, Turkey, and preserve evidence for high-pressure–low-temperature (HP–LT) metamorphism related to subduction of a continental margin during Alpine orogeny. Kyanite schist, quartzite, and quartz veins contain kyanite + phengite + Mg-chlorite, and the veins also contain magnesiocarpholite. A deformed carbonate metaconglomerate juxtaposed with the quartzite-dominated unit does not contain HP index minerals, and likely represents the tectonized boundary of the siliceous rocks with adjacent marble. The HP–LT rocks (10–12 kbar, 470–570 °C) record different pressure conditions than the adjacent, apparently lower pressure Menderes metasedimentary sequence. Despite this difference there is disagreement as to whether these HP–LT rocks are part of the Menderes sequence or are related to the tectonically overlying Cycladic blueschist unit. If the former, the entire southern Menderes Massif experienced HP–LT metamorphism but the evidence has been obliterated from most rocks; if the latter, rocks recording different metamorphic-kinematic conditions experienced different tectonic histories and were tectonically juxtaposed during thrusting. Based on observations and data in this study, the second model better accounts for the differences in PT-deformation histories of the southern Menderes Massif rocks, and suggests that the HP–LT rocks are not part of the Menderes cover sequence.  相似文献   

14.
The Permo–Triassic collision of the North and South China blocks caused the development of the Dabie–Sulu Orogen in China and Songrim Orogen in the Korean Peninsula. Extension after this collision is known from the Dabie–Sulu Orogen, but post-orogenic extension is not well defined in the Korean Peninsula. Extensional deformation along the southern boundary of the Gyeonggi Massif in Korea is characterized by top–down-to-the-south ductile shearing and subsequent brittle normal faulting, and was predated by regional metamorphism and north-vergent contractional deformation. Extension occurred between ~220 and 185 Ma based on the ages of pre-extensional regional metamorphism and post-extensional pluton emplacement. 40Ar/39Ar dating of syn-extensional muscovite in quartz–mica mylonite yields an age of 187.8 ± 5.6 (2σ) Ma, in agreement with constraints from structural relationships. Together with the extensional deformation identified along the northern boundary of the Gyeonggi Massif (~226 Ma), the extension along the southern boundary is probably related to the exhumation of the massif during late-orogenic or post-orogenic extension associated with the Songrim Orogeny of the Korean Peninsula and forms an important event in the Phanerozoic crustal evolution of East Asia.  相似文献   

15.
《International Geology Review》2012,54(16):2060-2082
The Kazda?? Massif was previously considered as the metamorphic basement of the Sakarya Zone, a microcontinental fragment in NW Anatolia. Our new field mapping, geochemical investigations, and radiometric dating lead to a re-evaluation of previous suggested models of the massif. The Kazda?? metamorphic succession is subdivided into two major units separated by a pronounced unconformity. The lower unit (the Tozlu metaophiolite) is a typical oceanic crust assemblage consisting of ultramafic rocks and cumulate gabbros. It is unconformably overlain by a thick platform sequence of the upper group (the Sar?k?z unit). The basement ophiolites and overlying platform strata were subjected to a single stage of high-temperature metamorphism under progressive compression during the Alpine orogeny, accompanied by migmatitic metagranite emplacement. Radiometric age data obtained from the Kazda?? metamorphic succession reveal a wide range of ages. Metagranites of the Kazda?? metamorphic succession define a U–Pb discordia upper intercept age of ca. 230 Ma and a lower intercept age of 24.8 ± 4.6 Ma. This younger age agrees with 207Pb/206Pb single-zircon evaporation ages of 28.2 ± 4.1 to 26 ± 5.6 Ma. Moreover, a lower intercept age of 28 ± 10 Ma from a leucocratic metagranite supports the Alpine ages of the massif within error limits. Reconnaissance detrital zircon ages constrain a wide range of possible transport and deposition ages of the metasediments in the Sar?k?z unit from ca. 120 to 420 Ma. Following high-temperature metamorphism and metagranite emplacement, the Kazda?? sequence was internally imbricated by Alpine compression, and the lowermost Tozlu ophiolite thrust southward onto the Sar?k?z unit. Field mapping, internal stratigraphy, and new radiometric age data show that the Sar?k?z unit is the metamorphic equivalent of the Mesozoic platform succession of the Sakarya Zone. The underlying metaophiolites are remnants of the Palaeo tethys Ocean, which closed during the early Alpine orogeny. After strong deformation attending nappe emplacement, the unmetamorphosed Miocene Evciler and Kavlaklar granites intruded the tectonic packages of the Kazda?? Massif. During Pleistocene time, the Kazda?? Massif was elevated by EW trending high-angle normal faults dipping to Edremit Gulf, and attained its present structural and topographic position. Tectonic imbrication, erosion and younger E–W-trending faulting were the main cause of the exhumation of the massif.  相似文献   

16.
Pan-African basement rocks and a Paleozoic cover series, which were intruded by the protoliths of leucocratic orthogneisses, have been recognized in the Menderes Massif, located in the western part of the Alpine orogenic belt of Turkey. This geochemical and geochronological study focuses on the evolution of the Menderes Massif at the end of Paleozoic time. Geochemical data suggest that the crustally derived leucocratic orthogneisses have chemical composition typical of calc-alkaline and S-type granite. Zircon grains which are euhedral with typical igneous morphologies were dated by the 207Pb/206Pb evaporation method. Single-zircon dating of three samples yielded mean 207Pb/206Pb ages of 246LJ, 241LJ and 235Lj Ma. These ages are interpreted as the time of protolith emplacement in Triassic. Geological and geochronological data suggest that leucocratic granites were emplaced in a period following a metamorphic event related to the closure of the Paleo-Tethys. The leucocratic granites were metamorphosed during the Alpine orogenesis and transformed into orthogneisses. The similar Triassic magmatic event at 233DŽ Ma was also occurred, using single-zircon evaporation method, from granitic gneisses which rest upon the migmatites with tectonic contacts in Naxos, Cycladic complex. This indicates that the Menderes Massif and Cycladic complex had a common pre-Early Triassic magmatic evolution.  相似文献   

17.
The Menderes Massif, exposed in western Anatolia, is a metamorphic complex cropping out in the Alpine orogenic belt. The metamorphic rock succession of the Massif is made up of a Precambrian basement and overlying Paleozoic-early Tertiary cover series. The Pan-African basement is composed of late Proterozoic metasedimentary rocks consisting of partially migmatized paragneisses and conformably overlying medium- to high-grade mica schists, intruded by orthogneisses and metagabbros. Along the southern flank of the southern submassif, we recognized well-preserved primary contact relationship between biotite and leucocratic tourmaline orthogneisses and country rocks as the orthogneisses represent numerous large plutons, stocks and vein rocks intruded into a basement of garnet mica schists. Based on the radiometric data, the primary deposition age of the precursors of the country rocks, garnet mica schist, can be constrained between 600 and 550?Ma (latest Neoproterozoic). The North Africa–Arabian-Nubian Shield in the Mozambique Belt can be suggested as the possible provenance of these metaclastics. The intrusion ages of the leucocratic tourmaline orthogneisses and biotite orthogneisses were dated at 550–540?Ma (latest Neoproterozoic–earliest Cambrian) by zircon U/Pb and Pb/Pb geochronology. These granitoids represent the products of the widespread Pan-African acidic magmatic activity, which can be attributed to the closure of the Mozambique Ocean during the final collision of East and West Gondwana. Detrital zircon ages at about 550?Ma in the Paleozoic muscovite-quartz schists show that these Pan-African granitoids in the basement form the source rocks of the cover series of the Menderes Massif.  相似文献   

18.
The Massif Central, like the southern part of the Massif Armoricain, belongs to the north Gondwana margin. The Massif Central consists of a stack of nappes resulting from six main tectonic-metamorphic events. The first, D0, is coeval with a Late Silurian (ca 415 Ma) high-pressure (HP) (or ultra high-pressure) metamorphism for which the associated structures are poorly documented. The Early Devonian D1 event, responsible for top-to-the-southwest nappe displacement, is coeval with migmatization and the exhumation of HP rocks around 385–380 Ma. In the northern part of the Massif Central, metamorphic rocks with retrogressed eclogites are covered by Late Devonian undeformed sedimentary rocks. The Late Devonian-Early Carboniferous D2 event involves top-to-the-northwest shearing, coeval with an intermediate pressure-temperature metamorphism dated around 360–350 Ma. The Visean D3 event is a top-to-the-south ductile shearing, which is widespread in the southern Massif Central. Coevally, in the northern Massif Central, the D3 event corresponds to the onset of synorogenic extension. The next two events, D4 and D5, of Early and Late Carboniferous age, correspond to the syn- and late orogenic extensional tectonic regimes, respectively. The former is controlled by NW–SE stretching whereas the latter is accommodated by NNE–SSW stretching. These structural and metamorphic events are reconsidered in a geodynamic evolution model. The possibilities of one or two cycles involving microcontinent drifting, rewelding and collision are discussed.  相似文献   

19.
Field, structural, and metamorphic petrology investigations of Mabja gneiss dome, southern Tibet, suggest that contractional, extensional, and diapiric processes contributed to the structural evolution and formation of the domal geometry. The dome is cored by migmatites overlain by sillimanite-zone metasedimentary rocks and orthogneiss; metamorphic grade diminishes upsection and is defined by a series of concentric isograds. Evidence for three major deformational events, two older penetrative contractional and extensional events and a younger doming event, is preserved. Metamorphism, migmitization, and emplacement of a leucocratic dike swarm were syntectonic with the extensional event at mid-crustal levels. Metamorphic temperatures and pressures range from 500 °C and 150–450 MPa in chloritoid-zone rocks to 705±65 °C and 820±100 MPa in sillimanite-zone rocks. We suggest that adiabatic decompression during extensional collapse contributed to development of migmatites. Diapiric rise of low density migmatites was the driving force, at least in part, for the development of the domal geometry. The structural and metamorphic histories documented in Mabja Dome are similar to Kangmar Dome, suggesting widespread occurrence of these events throughout southern Tibet.  相似文献   

20.
In the Variscan French Massif Central, the South Limousin area consists of low- to medium-grade metamorphic rocks intruded by two granitic bodies. The structural and textural analyses of these plutons undertaken in parallel with the structural analysis of their host rocks allow us to characterize and to date different stages in the tectonic evolution of this area. This study shows that the South Limousin area experienced successivelly two strike-slip events along two geographically distinct shear zones, from north to south the left-lateral Estivaux and the right-lateral South Limousin strike-slip faults, respectively. These ductile faults subdivide the South Limousin into three structural units, from north to south they are the Upper Gneiss unit, Thiviers-Payzac unit .and Génis unit. The two granitic bodies intrude the Thiviers-Payzac unit only. The younger Estivaux granite is a syntectonic pluton which emplaced during left-lateral wrenching. 40Ar/39Ar dates from biotites indicate an Early Carboniferous age (346 ± 3 Ma). The older granite is a pretectonic body. It is the Ordovician Saut du Saumon augen orthogneiss in which detailed structural analyses show the polyphase nature of the solid-state deformation. Our microtectonic data indicate that the right-lateral motions overprint the left-lateral ones and produce apparently symmetrical fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号