首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
测绘学   2篇
大气科学   10篇
地球物理   3篇
地质学   9篇
海洋学   4篇
天文学   2篇
自然地理   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1998年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1973年   1篇
排序方式: 共有33条查询结果,搜索用时 62 毫秒
1.
Introducing a carbon tax is difficult, partly because it suggests that current generations have to make sacrifices for the benefit of future generations. However, the climate change externality could be corrected without such a sacrifice. It is possible to set a carbon value, and use it to create ‘carbon certificates’ that can be accepted as part of commercial banks’ legal reserves. These certificates can be distributed to low-carbon projects, and be exchanged by investors against concessional loans, reducing capital costs for low-carbon projects. As the issuance of carbon certificates would increase the quantity of money, it will either lead to accelerated inflation or induce the Central Bank to raise interest rates. Low-carbon projects will thus have access to cheaper loans at the expense of either ‘regular’ investors (in case of higher interest rates) or of lenders and depositors (in case of accelerated inflation). Within this scheme, mitigation expenditures are compensated by a reduction in regular investments, so that immediate consumption is maintained. It uses future generation wealth to pay for a hedge against climate change. This framework is not as efficient as a carbon tax but is politically easier to implement and represents an interesting step in the trajectory towards a low-carbon economy.  相似文献   
2.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
3.
4.
Brazil's nationally determined contribution (NDC) pledged under the Paris Agreement has marked a new stage in its climate policy towards strengthening low-carbon economic development beyond the recent drastic cuts in emissions from deforestation. Brazil especially means to limit oil consumption driven by future economic growth and to increase energy efficiency and biofuel use in the transport sector. On the other hand, Brazil still aspires to become a major petroleum province given its huge reserves of ‘pre-salt’ oil. This article aims to clarify under what conditions low-carbon economic development and oil exploration can possibly be combined in Brazil and what would be the energy system, environmental and macroeconomic implications of enabling policies for doing so. To address these questions, an energy–economy computable general equilibrium (CGE) model of the Brazilian economy is used to simulate alternative scenarios up to 2030. The results first show that implementing the most recent energy plans, which take into account the new economic reality in Brazil, should lead to over 20% lower domestic CO2 emissions in 2030 than the indicative NDC target, and to the export of the bulk of newfound crude oil. Second, with the same level of oil production, deeper domestic decarbonization, triggered by additional carbon pricing and sustainable efficiency measures, appears achievable with very small gross domestic product (GDP) loss and maximum oil exports, while being aligned with a 2°C emission pathway. However, (i) extra oil exports may induce net additional emissions outside Brazil and be seen as a perverse incentive and (ii) the economic growth strategy based on high oil exports may hinder the necessary diversification of the Brazilian economy.

Key policy insights

  • Low-carbon development goals will strongly interact with oil policy in Brazil.

  • The 2030 NDC target should be easy to achieve considering the new economic reality in Brazil.

  • Deeper domestic decarbonization is achievable with very limited GDP loss and significant oil exports, while being aligned with a 2°C emission pathway.

  • A broad strategic vision is needed to reconcile climate policy, energy policy and other economic development objectives.

  相似文献   
5.
6.
Dating the magmatic events in the Montagne Noire gneiss dome is a key point to arbitrate between the different interpretations of the Late Carboniferous–Early Permian tectonics in this southern part of the Variscan belt. The Saint-Eutrope orthogneiss crops out along the northern flank of the dome. We show that the protolith of this orthogneiss is an Ordovician granite dated at 455 ± 2 Ma (LA-ICP-MS U-Pb dating on zircon). This age is identical to that previously obtained on the augen orthogneiss of the southern flank, strongly suggesting that both orthogneiss occurrences have the same Ordovician protolith. The Saint-Eutrope orthogneiss experienced intense shearing along the Espinouse extensional detachment at ca. 295 Ma (LA-ICP-MS U-Pb-Th on monazite), an age close to that determined previously on mica by the 39Ar-40Ar method and contemporaneous with the emplacement age of the syntectonic Montalet granite farther to the west. This normal sense shearing reworked previous fabrics related to Variscan thrusting that can be still observed in the augen orthogneiss of the southern flank, and is responsible for the spectacular “C/S-like” pattern of the Saint-Eutrope orthogneiss. This work also shows that care is needed when dealing with C/S-type structures, since they can develop not only in syntectonic intrusions, but also in orthogneisses affected by an intense secondary deformation, at decreasing temperature.  相似文献   
7.
Fog is an atmospheric phenomenon that has important environmental consequences related to visibility, air quality and climate change on local and regional scales. The formation of radiation fog results from a complex balance between surface radiative cooling, turbulent mixing in the surface layer, aerosol growth by deliquescence and activation of fog droplets. During the ParisFog field experiment, out of 16 events forecasted for radiation fog, activated fog materialized in seven events, while in five other events the visibility dropped to 1–2 km but haze particle size remained below the critical size of activation. To better understand the conditions that lead to or do not lead to sustained fog droplet activation, we performed a comparative study of dynamic, thermal, radiative and microphysical processes occurring between sunset and fog (or quasi-fog) onset. We selected two radiation fog events and two quasi-radiation fog events that occurred under similar large-scale conditions for this comparative study. We identified that aerosol growth by deliquescence and droplet activation actually occurred in both quasi-fog events, but only during <1 h. Based on ParisFog measurements, we found that the main factors limiting sustained activation of droplets at fog onset in the Paris metropolitan area are (1) lack of mixing in the surface layer (typically wind speed <0.5 ms?1), (2) relative humidity exceeding 90 % throughout the residual layer, (3) low cooling rate in the surface layer (typically less than ?1 °C per hour on average) due to weak radiative cooling (0 to ?30 Wm?2) and near zero sensible heat fluxes, and (4) a combination of the three factors listed above during the critical phase of droplet activation preventing the transfer of cooling from the surface to the liquid layer. In addition, we found some evidence of contrasted aerosol growth by deliquescence under high relative humidity conditions in the four events, possibly associated with the chemical nature of the aerosols, which could be another factor impacting droplet activation.  相似文献   
8.
SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450?C900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/2022, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5?C10?AU) from nearby stars (<25 pc) with masses ranging from a few Jupiter masses to Super Earths (??2 Earth radii, ??10 M??) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System.  相似文献   
9.
10.
There are considerable, well-recognized difficulties involved in the investigation of very low permeability rocks by conventional measurements of water potentials and spatial distribution of hydrological parameters such as permeability and effective porosity. Therefore, most studies of predictive behaviour are based on models which, when unconstrained by data, are often worse than no model at all. Geochemistry and environmental isotope geochemistry are techniques well suited for hydrological investigations of potential sites of nuclear waste isolation and for constraining predictive models. Stable isotopes constitutive of the water molecule (2H and 18O) may give information on the origin of the water, especially 2H which is practically uninvolved in isotope exchange with rock-forming minerals. Variations in stable isotope contents can be related to palaeohydrological and palaeoclimatic conditions whereas 3H is indicative of recent recharge. The 13C content of dissolved carbon is related to its origin(s) and the 14C activity gives a time-scale. However, the initial carbon isotope contents can be modified by various diagenetic effects such as precipitation/dissolution of secondary calcite and oxidation of reduced carbon. The heavy isotope content of the Total Dissolved Inorganic Carbon (TDIC) cannot be interpreted without a detailed knowledge of the carbon chemistry and of the mineralogy and isotope contents of secondary carbonates. Species of Dissolved Organic Carbon (DOC), with high molecular weights (HMW) can generally be attributed to soil derived compounds. Their 14C content may be measured by AMS (Accelerator Mass Spectrometry) thus providing an estimate of the time elapsed since recharge took place. Chlorine-36 is an interesting potential tool for dating old ground waters because of its long half-life (301 kyr) and its hydrophilic behaviour. It can be also produced in situ in significant amount if the rocks are rich (some tens of ppm) in U and Th. In such cases, this time dependent build-up provides a more systematic radiochronometer of CI- residence time in the rock than the decay of cosmic input 36CI, provided no Cl- is leached from the rock. The isotopic composition of aqueous sulphur compounds depends on their origin and on their diagenetic evolution. The redox reactions of SO2-4 reduction or of S2- oxidation are marked by strong isotope effects especially when generated by bacteria. Sulphate reduction by organic matter is a potential source of dissolved inorganic carbon and may thus interfere with 14C age interpretations. After discussion of the possible age and origin of waters and solutes, some scenarios of evolution of local and regional palaeohydrological conditions are proposed. Examples are given with special emphasis on detailed results from the Fennoscanian shield (Stripa project), and from northern Switzerland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号