首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighty-two palaeomagnetic samples of calcareous and jaspilitic grainstones (iron-formation or ‘taconite’) and chert carbonate were collected from the 1.88-Ga Gunflint Formation at 22 sites in the Thunder Bay area, Ontario. Twenty clasts of Gunflint taconite also were sampled from the basal conglomerate of the overlying Mesoproterozoic Sibley Group. Anisotropy of magnetic susceptibility measurements indicate the Gunflint Formation in the sampling area has not experienced regional dynamic metamorphism. Analyses by variable-field translation balance and X-ray diffraction show that the predominant magnetic mineral is hematite but a small amount of magnetite also is present in some samples. Altogether, 213 Gunflint specimens and 59 Sibley conglomerate specimens were subjected to stepwise thermal demagnetisation and 74 Gunflint specimens to stepwise alternating-frequency demagnetisation. The following components were isolated for the taconites:
• Gunflint magnetite: normal declination D=293.4°, inclination I=30.8°, α95=7.2°, n=21; reverse D=86.7°, I=–54.6°, α95=5.8°, n=29.
• Gunflint hematite: normal D=243.6°, I=23.6°, α95=6.0°, n=11; reverse D=70.3°, I=–51.4°, α95=3.2°, n=79.
• Sibley clasts magnetite: normal D=282.7°, I=33.4°, α95=7.6°, n=20.
• Sibley clasts hematite: normal D=254.5°, I=56.2°, α95=8.4°, n=13; reverse D=110.6°, I=–55.7°, α95=8.3°, n=11.
None of these sets passed the reversal test, with the normal component generally being the shallower. Fold tests were negative or inconclusive and the conglomerate test also was negative. Chert carbonate at one other site appears to have acquired a remanence carried by magnetite (D=97.3°, I=−78.2°, α95=6.3°, n=18) prior to folding related to Keweenawan (1.1 Ga) Logan diabase sill emplacement. Most of the components we identified match components for Keweenawan sills, volcanic rocks, intrusions and baked contact rocks in the Thunder Bay area, indicating that Keweenawan magmatism caused widespread chemical remagnetisation of the Proterozoic country rock in our sampling area. Although others have argued that asymmetry was a feature of the Keweenawan geomagnetic field, the declinations of our Gunflint and Sibley hematite and magnetite components are different, suggesting that the components were acquired at significantly different times. We conclude that the reversal asymmetry shown by our Gunflint and Sibley data may best be ascribed to apparent polar wander during Keweenawan times.  相似文献   

2.
This paper presents new paleomagnetic results on Cenozoic rocks from northern central Asia. Eighteen sites were sampled in Pliocene to Miocene clays and sandy clays of the Zaisan basin (southeastern Kazakhstan) and 12 sites in the upper Oligocene to Pleistocene clays and sandstones of the Chuya depression (Siberian Altai).Thermal demagnetization of isothermal remanent magnetization (IRM) showed that hematite and magnetite are the main ferromagnetic minerals in the deposits of the Zaisan basin. Stepwise thermal demagnetization up to 640–660 °C isolated a characteristic (ChRM) component of either normal or reverse polarity at nine sites. At two other sites, the great circles convergence method yielded a definite direction. Measurements of the anisotropy of magnetic susceptibility showed that the hematite-bearing sediments preserved their depositional fabric. These results suggest a primary origin of the ChRM and were substantiated by positive fold and reversal tests. The mean paleomagnetic direction for the Zaisan basin (D=9°, I=59°, k=19, α95=11°) is close to the expected direction derived from the APW path of Eurasia [J. Geophys. Res. 96 (1991) 4029] and shows that the basin did not rotated relative to stable Asia during the Tertiary.In the upper Pliocene–Pleistocene sandstones of the Chuya depression, a very stable ChRM carried by hematite was found. Its mean direction (D=9°, I=46°, k=25, α95=7°) is characterized by declination close to the one excepted for early Quaternary, whereas inclination is lower. In the middle Miocene to lower Pliocene clays and sandstones, a stable ChRM of both normal and reverse polarities carried by magnetite was isolated. Its mean direction (D=332°, I=63°, k=31, α95=4°) is deviated with respect to the reference direction and implies a Neogene, 39±8° counterclockwise rotation of the Chuya depression relative to stable Asia. These results and those from the literature suggest that the different amount of rotation found in the two basins is related to a sharp variation in their tectonic style, predominantly compressive in the Zaisan basin and transpressive in the Siberian Altai. At a larger scale, the pattern of vertical axis rotations deduced from paleomagnetic data in northern central Asia is consistent with the hypothesis of a large left-lateral shear zone running from the Pamirs to the Baikal. Heterogeneous rotations, however, indicate changes in style of faulting along the shear zone and local effect for the domains with the largest rotations.  相似文献   

3.
A virtual geomagnetic pole position for the uppermost Vindhyan sediments in Central India, probably correlative with the Cambrian of the Salt Range (W. Pakistan), was obtained from 43 oriented cores (7 sites) drilled from the Upper Bhander sandstones in the Great Vindhyan basin.Alternating field and thermal demagnetization resulted in a mean direction: D = 207.5°, I = +9.5° (k = 137.5, α95 = 5.5°) and a virtual geomagnetic northpole position: 146.5° W48.5°N (dp = 3°, dm = 5.5°).This pole position disagrees with the Cambrian palaeomagnetic results from the Salt Range. Implications of this disagreement for the pre-drift configuration of Gondwanaland, based on palaeomagnetc results, are discussed.  相似文献   

4.
For a detailed palaeomagnetic research on Upper Permian red beds in the Wardha Valley (Central India) 265 samples from 47 sites at 6 localities were investigated.The samples from 3 localities (17 sites) appeared to be completely remagnetized during Early Tertiary times by the vast Deccan Trap flood basalts effusions. The samples from 22 sites of the other three localities (results from 8 sites rejected) could become cleaned from hard secondary Deccan Trap components by detailed thermal demagnetization.The resulting primary magnetization component reveals a mean direction (regardless of polarity, 7 sites normal, 15 sites reversed): D = 101.5°, I = +58.5°, α95 = 6.5°, N = 3. This mean direction corresponds to a pole position at 129° W 4° N (dp = 7°, dm = 9.5°). This pole position fits well with other acceptable Late Permian—Early Triassic pole positions for the Indian subcontinent. From these acceptable results, a mean Permo-Triassic pole for the Indian subcontinent was computed at: 125° W 6°N. This Indian Permo-Triassic pole position, when compared with data from other Gondwanaland continents, suggests the hypothesis of an early movement between India and Africa before Permo-Triassic times.The partial or total remagnetization of some Indian red beds, mainly of Gondwana age, during Deccan Trap times is explained as acquisition of viscous Partial Thermoremanent Magnetization. This mechanism was advanced by Briden (1965), Chamalaun (1964) and Irving and Opdyke (1965).  相似文献   

5.
The volcano-sedimentary formations from the southern Vosges are subdivided in two main series: a lower Visean series characterized by a volcanism of spilite-keratophyre type, and an upper Visean series which includes a normal volcanic association of shoshonitic tendency. Paleomagnetic study of 50 sites sampled in both series, but mostly in the upper one, yields three types of directions of characteristic magnetizations. The first type corresponds to Tertiary and Quaternary remagnetizations with low apparent blocking temperatures (350°–500°C, titano-maghemites?). The second group is formed by remagnetizations which have taken place during late Carboniferous-early Permian times, and which show high blocking temperatures of magnetite and mostly titano-haematites. The mean direction is D = 16°, I = 7°, α95 = 9° for 13 sites, (λ = 43°N, φ = 165°E). The last group is represented by primary magnetizations of latest Visean age and post-Sudetic remagnetizations, with blocking temperatures of magnetite and haematite. The mean direction D = 323°, I = −17°, α95 = 9° for 18 sites, (λ = 25°N, φ = 228°E), deviates from about 60° from the theoretical direction, calculated with the early Carboniferous, European pole position. This deviation is interpreted as resulting from a counterclockwise rotation of the southern Vosges between late Visean and Westphalian times. One consequence may be the formation of the variscan “V”, due to the anticlockwise rotation of the eastern branch of the chain. The northwesterly directions show a variation of the inclinations which may indicate that the rotation was preceded by a relatively significant drift of the Vosges to the north.

Résumé

Les terrains volcano-sédimentaires des Vosges méridionales se subdivisent en deux séries principales: la série du Viséen inférieur caractérisée par un volcanisme du type spilite-kératophyre et la série du Viséen supérieur qui comporte une association volcanique normale à tendance shoshonitique. L'étude paléomagnétique de 50 sites échantillonnés dans les deux séries, avec une prédominance dans la série supérieure, met en évidence trois types de directions d'aimantations caractéristiques, Le premier type correspond à des réaimantations d'áge Tertiaire à Quaternaire, à températures de blocage apparentes basses (350°–500°C, titano-maghemites?). Le second groupe est f'orme par des réaimantations mises en place au Carbonifère supérieur-Permien inférieur, à température de blocage haute de magnétite et surtout de titanohématites. La direction moyenne est D = 16°, I = 7°, α95 = 9° pour 13 sites. (λ = 43°N, φ = 165°E). Le dernier groupe est représenté par des aimantations primaires, d'âge Viséen supérieur et des réaimantations post phase Sudète II, à température de blocage de magnetite et d'hématite. La direction moyenne D = 323°, I = −17°, α95 = 9° pour 18 sites (λ = 25 °N, φ = 228°E), dévie de prés de 60° de la direction théorique calculée à partir du pôle européen au Carbonifère inférieur. Cette déviation est interprétée comme résultant d'une rotation antihoraire des Vosges méridionales entre le Viséen supérieur et le Westphalien. Une des conséquences en serait la formation du “V” varisque. par suite de la rotation antihoraire de la branche orientale de la chaîne. Les directions nord-ouest présentent une variation en inclinaison qui semble indiquer que la rotation antihoraire était précédée par une dérive relativement importante des Vosges vers le Nord.  相似文献   

6.
Detailed palaeomagnetic and rock magnetic analyses provide improved palaeomagnetic results from 23 sites in the Borgmassivet intrusions in the Ahlmannryggen region of Dronning Maud Land, East Antarctica. These intrusions are of similar age to their host, the ca. 1130 Ma Ritscherflya Supergroup (RSG). A mean direction of D=235.4°, I=−7.6° with k=45.9 and α95=4.5° was obtained from this study. When combined with previously reported results from 11 sites in the same region, including sites from the Ritscherflya Supergroup, it gives an overall mean direction for 34 sites from the igneous suite with D=236.5°, I=−3.6°, k=27.9 and α95=4.8°. Isothermal remanent magnetization (IRM) experiments on several specimens suggest magnetite or titanomagnetite as the primary remanence carrier, while high temperature magnetic susceptibility experiments indicate the presence of single domain particles. These observations, together with field evidence and the high coercivities and unblocking temperatures, support a primary origin for the observed characteristic remanence. The Borgmassivet palaeomagnetic pole lies at 54.5°E, 8.3°N with A95=3.3°. If Antarctica is moved to its Gondwanan position adjacent to southeast Africa, the Borgmassivet pole (BM) coincides with that of the African well-established, well-dated (1100 Ma) Umkondo Large Igneous Province pole, supporting the hypothesis that the Grunehogna craton of Dronning Maud Land was part of the Kalahari craton of southern Africa at ca. 1100 Ma.  相似文献   

7.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   

8.
C.T. Klootwijk   《Tectonophysics》1974,21(3):181-195
From alternating-field and thermal demagnetization studies on two dolerite “Traps” in the Gwalior Series (Central India), dated at 1830 ±200 m.y., three different palaeomagnetic directions could be distinguished. The characteristic magnetization component, which is considered as the primary magnetization, has a mean direction: D=78°, I=+34.5°, α95=5°, k=369, N=4 (Pole): 155.5°E19°N, dp=3°, dm=5.5°.A comparison of the presented data with other Precambrian and Phanerozoic data from the Indian subcontinent might suggest that the Indian subcontinent underwent a continuous anticlockwise rotational movement during the last 1800 m.y.  相似文献   

9.
The platform limestones of Apulia (Italy) outcropping in the Gargano peninsula have been restudied. Paleomagnetic research has been carried out on Upper Cretaceous, Lower Cretaceous and Jurassic rocks. Despite the low intensities of the NRM (10–100 μA/m), all samples (268) could be cleaned by stepwise A.F. and/or thermal demagnetization treatments. NRM directions could be determined accurately and reproducibly for 85% of the samples, using a ScT cryogenic magnetometer and double precision measuring procedures. NRM of the Jurassic limestone is carried by secondary haematite and the results are therefore rejected from further consideration. The Upper and Lower Cretaceous limestones have an NRM carried by magnetite. Minor bedding tilt corrections improve the grouping of the site-mean results. The Upper Cretaceous “Scaglia” limestone (Turonian-Senonian) reveals a characteristic mean direction of decl. = 327.7°, incl. = 38.2°, α95 = 4.3° (21 sites), while the Lower Cretaceous “Maiolica” limestone (Neocomian-Aptian/Albian) reveals a characteristic mean direction of decl. = 303.1°, incl. = 35.1°, α95 = 8.7° (8 sites). The Cretaceous results show a post-Aptian/Albian counterclockwise rotation of about 25°, which is expressed by the smeared distribution of the Late Cretaceous site-mean results and a post-Senonian (i.e. Tertiary) counterclockwise rotation of the same amount with respect to the pole. These results are in excellent agreement with contemporaneous paleomagnetic results from other peri-Adriatic regions. A Tertiary counterclockwise rotation of all the stable Adriatic block is strongly supported by the new results.  相似文献   

10.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   

11.
Paleomagnetic samples of Paleocene–Eocene red sandstones were collected at 36 sites from the Jiangdihe-4 and Zhaojiadian formations around the Yongren (26.1°N, 101.7°E) and Dayao areas (25.7°N, 101.3°E). These areas are located in the Chuxiong basin of the Chuan Dian Fragment, southwestern part of the Yangtze block. After stepwise thermal demagnetization, a high-temperature component with unblocking temperature of about 680 °C is isolated from 26 sites. The primary nature of this magnetization is ascertained through positive fold and reversal tests at 95% confidence level. The tilt-corrected mean paleomagnetic directions for the Yongren and Dayao areas are D=17.2°, I=26.6° with α95=5.8° and D=16.5°, I=31.1° with α95=4.8, respectively. Easterly deflected declinations from this study are consistent with those reported from other areas of the Chuxiong basin, indicating its wide presence in the Cretaceous–Eocene formations of the said basin. Comparison with declination values expected from the Cretaceous–Eocene APWP of Eurasia indicates that the magnitude of clockwise rotation systematically increases toward the southeast within the Chuxiong basin as well as in the Chuan Dian Fragment. This trend of the differential tectonic rotation in the Chuan Dian Fragment is consistent with curvature of the Xianshuihe–Xiojiang fault system. Deformation of the Chuxiong basin can fairly be associated with the formation of eastward bulge in the southern part of the Chuan Dian fragment. During southward displacement, the Chuan Dian Fragment was probably subjected to tectonic stresses as a result interaction with the Yangtze and Indochina blocks, which resulted into east–west extension and north–south shortening.  相似文献   

12.
A paleomagnetic study has been conducted on a formation dated as Autunian in the Nekheila area (31.4°N, 1.5°W) in the Mezarif basin. ChRM was thermally isolated in 117 samples from seven sites. This ChRM (D = 131.8°, I = 15.7°, k = 196, α95 = 3.8° after dip correction; corresponding pole 29.3°S, 56.4°E) is very similar to that obtained in the neighboring Abadla basin from a formation of the same age. Fold tests associated with progressive unfolding applied to the full merged data from the dated formations of these two basins clearly indicate that the magnetization acquisition predates the deformation, which is attributed to the last phase of the late-Hercynian. The magnetization in these basins is therefore primary or acquired just after deposition. For the African Apparent Polar Wander Path, the age of the paleomagnetic poles of the Autunian part is now confirmed by paleomagnetic test.  相似文献   

13.
280 core samples were collected from Upper Jurassic, Cretaceous and Eocene sediments outcropping in the Istria peninsula (Yugoslavia). Due to the very low intensities of the initial natural remanent magnetizations, more than 50% of the collection, consisting mainly of rock samples of Jurassic and Eocene sediments, was not suitable for paleomagnetic studies.The Cretaceous samples yield a mean paleomagnetic pole (lat. 53°, long. 275° and α95 = 4.8°), which is significantly different from the African and European paleomagnetic poles of the same age. The position of the Istria peninsula on the autochthonous Adriatic platform allows the result to be interpreted as applicable to all the autochthonous Periadriatic region. This new paleomagnetic result indicates that the autochthonous Adriatic platform rotated counterclockwise over an angle of about 30° with respect to Africa in post-Mesozoic times.  相似文献   

14.
A palaeomagnetic study has been carried out in the Tethyan Himalaya (TH; the northern margin of Greater India). Twenty-six palaeomagnetic sites have been sampled in Triassic low-grade metasediments of western Dolpo. Two remanent components have been identified. A pyrrhotite component, characterized by unblocking temperatures of 270–335 °C, yields an in situ mean direction of D=191.7°, I=−30.9° (k=29.5, α95=5.7°, N=23 sites). The component fails the fold test at the 99% confidence level (kin situ/kbed=6.9) and is therefore of postfolding origin. For reason of the low metamorphic grade, this pyrrhotite magnetization is believed to be of thermo-chemical origin. Geochronological data and inclination matching indicate an acquisition age around 35 Ma. The second remanence component has higher unblocking temperatures (>400 °C and up to 500–580 °C range) and resides in magnetite. A positive fold test and comparison with expected Triassic palaeomagnetic directions suggest a primary origin.The postfolding character of the pyrrhotite component, and its interpreted age of remanence acquisition, implies that the main Himalayan folding is older than 35 Ma in the western Dolpo area. This study also suggests that the second metamorphic event (Neo-Himalayan) was more significant in the Dolpo area than the first (Eo-Himalayan) one.A clockwise rotation of 10–15° is inferred from the pyrrhotite component, which is compatible with oroclinal bending and/or rotational underthrusting models. This rotation is also supported by the magnetite component, indicating that no rotation of the Tethyan Himalaya relative to India took place before 35 Ma.  相似文献   

15.
A palaeomagnetic re-examination of the basal strata of the Caithness Old Red Sandstone has given results that are fully compatible with previous palaeomagnetic findings in this region. After structural correction the dominant remanence component has D = 205°, I = +3°, α95 = 6.4° (N = 27). The existence of this shallow inclined magnetization in the Middle Devonian strata of Caithness invalidates the model, proposed by Van der Voo and Scotese (1981), involving a ca. 2000 km sinistral offset along the Great Glen Fault in the Carboniferous. However, the available data are in favour of a few hundred kilometres sinistral movement along this fracture zone. However, the possibility of there having been a much larger transcurrent shift between Europe and North America in late/post-Devonian times, accumulated along various fracture zones within the Caledonian fold belt, is discussed. On the basis of an inferred overprinted magnetization, it is tentatively concluded that the tectonic deformation of the Old Red Sandstone of Caithness has a mid-Jurassic or younger age.  相似文献   

16.
A paleomagnetic study of subsurface core samples from dolomitized carbonates of two producing reservoirs in the Upper Ordovician Trenton Formation, collected from four wells in southwestern Ontario yielded a paleomagnetic direction of D = 152.3°, I = − 12.3° (N = 49, α95 = 8.7). This characteristic remanent magnetization (ChRM) direction was azimuth-corrected by aligning the viscous remanence magnetization (VRM) with the present Earth's magnetic field direction. A drilling-induced magnetization (VRMdi) was present in less than half the specimens sampled in this study. In addition, where the VRM correction could not be made, a paleolatitudinal arc calculated from the inclination-only mean of I = − 9.0° (N = 34, α95 = 3.0°) intersected the apparent polar wander path in the Late Permian–Early Triassic. These paleodirections are similar to the paleomagnetic directions observed in Ordovician Trenton carbonates from the Michigan Basin and New York State, U.S.A., suggesting a related regional late Paleozoic remagnetization.  相似文献   

17.
The Devonian Winnepegosis and Duperow Formations were examined in well 4-27-11-22W1, located in at the eastern edge of the Williston Basin in Manitoba. The variation in characteristic remanent magnetization (ChRM) direction and magnetic mineral carrier is obvious: the older Winnepegosis Formation has a primary or early post-depositional magnetization held in magnetite or pyrrhotite (n = 15; D = 324.1°, I = − 27.3°, α95 = 10.4°, k = 15.7), whereas the younger Duperow Formation magnetizations are carried by hematite and could be as late as Early Jurassic. The variability may be attributable to the intervening Prairie Evaporite acting as an aquitard to fluid migration.  相似文献   

18.
A detailed palaeomagnetic and magnetostratigraphic study of the Permian–Triassic Siberian Trap Basalts (STB) in the Noril'sk and Abagalakh regions in northwest Central Siberia is presented. Thermal (TH) and alternating field (AF) demagnetisation techniques have been used and yielded characteristic magnetisation directions. The natural remanent magnetisation of both surface and subsurface samples is characterised by a single component in most cases. Occasionally, a viscous overprint can be identified which is easily removed by TH or AF demagnetisation.The resulting average mean direction after tectonic correction for the 95 flows sampled in outcrops is D=93.7°, I=74.7° with k=19 and α95=3.3°. The corresponding pole position is 56.2°N, 146.0°E.Unoriented samples from four boreholes cores in the same regions have also been studied. They confirm the reversed–normal succession found in outcrops. The fact that only one reversal of the Earth's magnetic field has been recorded in the traps can be taken as evidence for a rather short time span for the major eruptive episode in this region. However, there is evidence elsewhere that the whole volcanic activity associated with the emplacement of the STB was much longer and lasted several million years.  相似文献   

19.
The Juiz de Fora Complex is mainly composed of granulites, and granodioritic-migmatite gneisses and is a cratonic basement of the Ribeira belt. Paleomagnetic analysis on samples from 64 sites widely distributed along the Além Paraíba dextral shear zone (SE Brazil, Rio de Janeiro State) yielded a northeastern, steep downward inclination direction (Dm=40.4°, Im=75.4, a95=6.0°, K=20.1) for 30 sites. The corresponding paleomagnetic pole (RB) is situated at 335.2°E; 0.6°S (a95=10.0°; K=7.9). Rock magnetism indicates that both (titano)magnetite and titanohematite are the main magnetic minerals responsible for this direction. Anisotropy of low-field magnetic susceptibility (AMS) measurements were used to correct the ChRM directions and consequently its corresponding paleomagnetic pole. This correction yielded a new mean ChRM (Dm = 2.9°, Im = 75.4°, a95 = 6.4°, K = 17.9) whose paleomagnetic pole RBc is located at 320.1°E, 4.2° N (a95=10.3°, K=7.5). Both mean ChRM and paleomagnetic pole obtained from uncorrected and corrected data are statistically different at the 95% confidence circle. Geological and geochronological data suggest that the age of the Juiz de Fora Complex pole is probably between 535–500 Ma, and paleomagnetic results permit further constraint on these ages to the interval 520–500 Ma by comparison with high quality paleomagnetic poles in the 560–500 Ma Gondwana APW path.  相似文献   

20.
Samples collected from folded carbonate rocks of the Early Permian Copacabana Group exposed in the Peruvian Subandean Zone have been subjected to detailed palaeomagnetic analysis. Thermal demagnetisation of most samples yield stable high unblocking temperature directions dominantly carried by titanomagnetite minerals. This remanence, identified in 32 samples (43 specimens), is exclusively of reverse polarity consistent with the Permian–Carboniferous Reversal Superchron (PCRS). The overall directions pass the fold test at the 99% confidence level and are considered as being a pre-folding remanence acquired in Early Permian times. The Copacabana Group yields an overall mean direction of D = 166°, I = +49° (α95 = 4.5°, k = 131.5, N = 9 sites) in stratigraphic coordinates and a corresponding palaeosouth pole position situated at λ = 68°S,  = 321°E (A95 = 5.2°, K = 100). Combining this pole with the coeval high quality data from South America, Africa and Australia results in a mean pole for Gondwana situated at λ = 34.4°S,  = 065.6°E (A95 = 4.9°, K = 73.6, N = 13 studies) in African coordinates. This pole position supports a Pangaea B palaeogeography in Early Permian times. In contrast, the combined pole for Gondwana diverges from the coeval Laurasian mean pole when assuming the Pangaea A-type configuration. Poor quality of the Gondwana dataset and inclination shallowing in sediments seem to play no role in the misfit between the Permian–Triassic poles from Gondwana and Laurasia in Pangaea A reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号