首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Age-depth modeling using Bayesian statistics requires well-informed prior information about the behavior of sediment accumulation. Here we present average sediment accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic setting, and we examine the variability across space (intra- and inter-lake) and time (late Holocene). The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone gradients in subarctic Canada. There are four to twenty-five radiocarbon dates per core, depending on the length and character of the sediment records. Deposition times were calculated at 100-year intervals from age-depth models constructed using the ‘classical’ age-depth modeling software Clam. Lakes in boreal settings have the most rapid accumulation (mean DT 20 ± 10 yr/cm), whereas lakes in tundra settings accumulate at moderate (mean DT 70 ± 10 yr/cm) to very slow rates, (>100 yr/cm). Many of the age-depth models demonstrate fluctuations in accumulation that coincide with lake evolution and post-glacial climate change. Ten of our sediment cores yielded sediments as old as c. 9000 cal BP (BP = years before AD 1950). From between c. 9000 cal BP and c. 6000 cal BP, sediment accumulation was relatively rapid (DT of 20–60 yr/cm). Accumulation slowed between c. 5500 and c. 4000 cal BP as vegetation expanded northward in response to warming. A short period of rapid accumulation occurred near 1200 cal BP at three lakes. Our research will help inform priors in Bayesian age modeling.  相似文献   

2.
Melt generation and extraction along the Hawaiian volcanic chain should be largely controlled by the thermal structure of the Hawaiian swell and the heat source underneath it. We simulate numerically the time- and space-dependent evolution of Hawaiian volcanism in the framework of thermal evolution of the Hawaiian swell, constrained by residual topography, geoid anomalies, and anomalous heat flow along the Hawaiian volcanic chain. The transient heat transfer problem with melting relationships and variable boundary conditions is solved in cylindrical coordinates using a finite difference method. The model requires the lithosphere to be thinned mechanically by mantle plume flow. Melting starts quickly near the base of the plate when the hotspot is encountered. Thermal perturbation and partial melting are largely concentrated in the region where the original lithosphere is thinned and replaced by the mantle flow. The pre-shield Loihi alkalic and tholeiitic basalts are from similar sources, which are a mixture of at least three mantle components: the mantle plume, asthenosphere, and the lower lithosphere. The degree of partial melting averages 10–20%, with a peak value of 30% near the plume center. As a result of continuous compaction, melts are extracted from an active partial melting zone of about 10–20 km thickness, which moves upwards and laterally as the heating and compaction proceed. The rate of melt extraction from the swell increases rapidly to a maximum value of 1 × 105 km3/m.y. over the center of the heat source, corresponding to eruption of large amounts of tholeiitic lavas during the shield-building stage. This volume rate is adequate to account for the observed thickness of the Hawaiian volcanic ridge. Melts from direct partial melting of the mantle plume at depth may be important or even dominant at this stage, although the amount is uncertain. At the waning stage, mixing of melts from the mantle flow pattern with those from low-degree partial melting of the lithosphere may produce postshield alkalic basalts. After the plate moves off the heat source, continuous conductive heating can cause very low degree partial melting (less than 1%) of the lithosphere at shallow depths for about one million years. This process may be responsible for producing post-erosional alkalic basalts. The extraction time for removing such small amount of melts is about 0.4–2 m.y., similar to the time gap between the eruption of post-erosional alkalic lavas and the shield-building stage. Our results show that multi-stage Hawaiian volcanism and the general geochemical characteristics of Hawaiian basalts can be explained by a model of plume-plate interaction.  相似文献   

3.
Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298 ± 25 ka and 310 ± 31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Remains of prehistoric human activity in the Qinghai-Tibetan Plateau (QTP) were often found exposed in the surface due to strong erosion. Thus, archaeological sites containing continuous and integral cultural remains within stratigraphic layers are rare in the plateau. The Jiangxigou site, located in the south of Qinghai Lake basin and in the northeastern margin of the plateau, are such a site with ages ranging from the early to late Holocene, i.e. from the Paleolithic to the Neolithic. Our excavation disclosed remains including more than 700 pieces of microliths, 14 pottery pieces, and other cultural relics. The oldest pottery fragments were found at the depth of 75 cm in the section, and in particular, a painted pottery piece was found at the depth of 61 cm. In this study, both luminescence (TL and OSL) and radiocarbon dating were employed to establish the chronology for these remains. Two pieces of pottery were dated using thermoluminescence (TL), another two pieces of pottery were dated by OSL, and three charcoal samples by AMS 14C. TL age of pottery piece P14 from the depth of 75 cm is 7.06 ± 0.51 ka, making it the earliest pottery in the Tibetan Plateau. The AMS 14C age of charcoals from the same depth of 75 cm is 6805 ± 95 Cal a BP, in agreement with TL age of P14. OSL age of pottery P12 from the depth of 60–70 cm is 6.50 ± 0.47 ka, and OSL age of pottery P9 from 54 cm is 4.97 ± 0.25 ka. Thus, the age of the painted pottery piece at the depth of 61 cm should be ∼5.50 ka by interpolation, making it the earliest painted pottery in the QTP. The pottery P14 has many common features similar to that of the Yangshao culture in China. We suggest that, before 7 ka, hunters using microlithic had been living in the northeastern margin of the QTP. Since 7 ka, these native microlithic hunters had been affected by the Neolithic Yangshao culture from the Loess Plateau, which was characterized by well-developed pottery. Agricultural growers migrated from the lower elevation of the Loess Plateau to the east of the QTP, leading to profound cultural exchanges with highland native microlithic hunters.  相似文献   

5.
87Sr/86Sr ratios of 15 samples of basalt dredged from Loihi Seamount range from 0.70334 to 0.70368. The basalt types range from tholeiite to basanite in composition and can be divided into six groups on the basis of abundances of K2O, Na2O, Rb and Sr and 87Sr/86Sr ratio. The isotopic data require that the various basalt types be derived from source regions differing in Sr isotopic composition. The Loihi basalts may be produced by mixing of isotopically distinct sources, but the tholeiites and alkalic basalts from Loihi do not show a well-developed inverse trend between Rb/Sr and 87Sr/86Sr that is characteristic of the later stages of Hawaiian volcanoes such as Haleakala and Koolau.  相似文献   

6.
 Samples of basalt were collected during the Rapid Response cruise to Loihi seamount from a breccia that was probably created by the July to August 1996 Loihi earthquake swarm, the largest swarm ever recorded from a Hawaiian volcano. 210Po–210Pb dating of two fresh lava blocks from this breccia indicates that they were erupted during the first half of 1996, making this the first documented historical eruption of Loihi. Sonobuoys deployed during the August 1996 cruise recorded popping noises north of the breccia site, indicating that the eruption may have been continuing during the swarm. All of the breccia lava fragments are tholeiitic, like the vast majority of Loihi's most recent lavas. Reverse zoning at the rim of clinopyroxene phenocrysts, and the presence of two chemically distinct olivine phenocryst populations, indicate that the magma for the lavas was mixed just prior to eruption. The trace element geochemistry of these lavas indicates there has been a reversal in Loihi's temporal geochemical trend. Although the new Loihi lavas are similar isotopically and geochemically to recent Kilauea lavas and the mantle conduits for these two volcanoes appear to converge at depth, distinct trace element ratios for their recent lavas preclude common parental magmas for these two active volcanoes. The mineralogy of Loihi's recent tholeiitic lavas signify that they crystallized at moderate depths (∼8–9 km) within the volcano, which is approximately 1 km below the hypocenters for earthquakes from the 1996 swarm. Taken together, the petrological and seismic evidence indicates that Loihi's current magma chamber is considerably deeper than the shallow magma chamber (∼3–4 km) in the adjoining active shield volcanoes. Received: 21 August 1997 / Accepted: 15 February 1998  相似文献   

7.
The study applies the improved cloud‐free moderate resolution imaging spectral radiometer daily snow cover product (MODMYD_MC) to investigate the snow cover variations from snow hydrologic year (HY) HY2000 to HY2013 in the Amur River basin (ARB), Northeast Asia. The fractions of forest cover were 38%, 63%, and 47% in 2009 in China (the southern ARB), Russia (the northern ARB), and ARB, respectively. Validation results show that MODMYD_MC has a snow agreement of 88% against in situ snow depth (SD) observations (SD ≥ 4 cm). The agreement is about 10% lower at the forested stations than at the nonforested stations. Snow cover durations (SCDs) from MODMYD_MC are 20 days shorter than ground observations (SD ≥ 1 cm) at the forested stations, whereas they are just 8 days shorter than ground observations (SD ≥ 1 cm) at the nonforested stations. Annual mean SCDs from MODMYD_MC in the forested areas are 21 days shorter than those in the nearby farmland in the Sanjiang Plain. This indicates forest has a complex influence on the snow accumulation and melting processes and even on optical satellite snow cover mapping. Meanwhile, SCD and mean snow cover are negatively correlated with air temperature in ARB, especially in the snow melting season, when mean air temperature in March and April can explain 86% and 74% of the mean snow cover variations in China ARB and Russia ARB, respectively. From 1961 to 2015, the annual mean air temperature presented an increased trend by 0.33 °C/decade in both China ARB and Russia ARB, whereas it had a decrease trend from HY2000 to HY2013. The decrease of air temperature led to an increase of snow cover, which is different from the global decrease trend of snow cover variations. SCD and snow cover had larger increase rates in China ARB than in Russia ARB, and they were larger in the forested areas than in the nearby farmland in the Sanjiang Plain.  相似文献   

8.
Seven deep-sea sediment cores recovered in the central equatorial Pacific collectively span a magneto- and biostratigraphically determined age interval ranging from about 0.1 to 21 m.y. B.P. Measured values of paleomagnetic inclination and their systematic variation with depth in these cores denote relative motion between the central Pacific lithosphere and the magnetic field of the earth. Assuming that the position of the earth's dipole field remained essentially parallel to the present spin axis during the interval, the data provide evidence of a marked decrease in the northward rate of plate motion from about 11 cm/yr to about 6 cm/yr at approximately 12 m.y. B.P. This date of change of motion as well as the northward direction and overall average rate of about 8 cm/yr throughout the last 21 m.y., agree reasonably well with results of other studies of the tectonic history of the Pacific plate and ridge system. More significantly, however, these preliminary results demonstrate the usefulness of the paleomagnetic record in deep-sea sediment cores spanning sufficiently long intervals of time as an aid in reconstructing plate motions.  相似文献   

9.
Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated “primary” magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred original helium isotopic signatures.  相似文献   

10.
Kutch (northwest India) experienced lithospheric thinning due to rifting and tholeiitic and alkalic volcanism related to the Deccan Traps K/T boundary event. Alkalic lavas, containing mantle xenoliths, form plug-like bodies that are aligned along broadly east–west rift faults. The mantle xenoliths are dominantly spinel wehrlite with fewer spinel lherzolite. Wehrlites are inferred to have formed by reaction between transient carbonatite melts and lherzolite forming the lithosphere. The alkalic lavas are primitive (Mg# = 64–72) relative to the tholeiites (Mg# = 38–54), and are enriched in incompatible trace elements. Isotope and trace element compositions of the tholeiites are similar to what are believed to be the crustally contaminated Deccan tholeiites from elsewhere in India. In terms of Hf, Nd, Sr, and Pb isotope ratios, all except two alkalic basalts plot in a tight cluster that largely overlap the Indian Ridge basalts and only slightly overlap the field of Reunion lavas. This suggests that the alkalic magmas came largely from the asthenosphere mixed with Reunion-like source that welled up beneath the rifted lithosphere. The two alkalic outliers have an affinity toward Group I kimberlites and may have come from an old enriched (metasomatized) asthenosphere. We present a new model for the metasomatism and rifting of the Kutch lithosphere, and magma generation from a CO2-rich lherzolite mantle. In this model the earliest melts are carbonatite, which locally metasomatized the lithosphere. Further partial melting of CO2-rich lherzolite at about 2–2.5 GPa from a mixed source of asthenosphere and Reunion-like plume material produced the alkalic melts. Such melts ascended along deep lithospheric rift faults, while devolatilizing and exploding their way up through the lithosphere. Tholeiites may have been generated from the main plume head further south of Kutch.  相似文献   

11.
《Geofísica Internacional》2014,53(3):333-341
Escollos Alijos is a large seamount located in the NE Pacific Ocean about 300 km off the Baja California Peninsula. Geochronology and geochemical analysis of volcanic rocks capping the seamount indicate recent magmatism that resulted from extensive differentiation of a mildly alkalic basalt parent magma.Escollos Alijos is located towards the eastern edge of a long-wavelength geoid undulation minimum, of up to -47 m with respect of the WGS84 ellipsoid, which extends over the northeastern Pacific Ocean. Subtracting from the geoid undulation its long-wavelength component and the undulation due to the seamount topography itself, a negative undulation anomaly persists that indicates a mass deficit at depth. Linear inversion of the undulation anomaly yields a region characterized by a negative density contrast, localized under the seamount at a depth between 9 and 13 km.The age and chemical composition of Escollos Alijos, and the inferred mass deficit suggest magma trapped between the oceanic crust and the uppermost mantle, which explains the magmatic activity in recent times.  相似文献   

12.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   

13.
Dust depositions are critical archives for understanding interior aridification and westerly climatic changes in Central Asia. Accurate and reliable dating of loess is very important for interpreting and correlating environmental records. There remains a disparity between luminescence ages and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia. In this study, we establish a closely spaced quartz optically stimulated luminescence (OSL) chronology for the 20.5-m-thick Nilka loess section in the Ili Basin. Based on OSL ages, two intervals of higher mass accumulation rate occurred at 49–43 ka and 24–14 ka. We further compare these OSL ages with 23 accelerator mass spectrometry (AMS) 14C ages of bulk organic matter. The results indicate that the OSL and radiocarbon ages agree well for ages younger than ca. 25 14C cal ka BP. However, beyond 30 cal ka BP, there is no consistent increase in AMS 14C age with depth, while the OSL ages continue to increase. These differences confirm the observation that the AMS 14C ages obtained using conventional acid–base–acid (ABA) pretreatment are severely underestimated in other terrestrial deposits in Central Asia, which could be due to 2–4% modern carbon contamination. However, OSL dating is applicable for constructing an accurate chronology beyond 30 cal ka BP. We suggest caution when interpreting paleoenvironmental changes based on radiocarbon ages older than 25 cal ka BP.  相似文献   

14.
The Krafla rifting episode, which occurred in North Iceland in 1975–1984, was followed by inflation of a shallow magma chamber until 1989. At that time, gradual subsidence began above the magma chamber and has continued to the present at a declining rate. Pressure decrease in a shallow magma chamber is not the only source of deformation at Krafla, as other deformation processes are driven by exploitation of two geothermal fields, together with plate spreading. In addition, deep-seated magma accumulation appears to take place, with its centre ∼ 10 km north of the Krafla caldera. The relative strength of these sources has varied with time. New results from a levelling survey and GPS measurements in 2005 allow an updated view on the deformation field. Deformation rates spanning 2000–2005 are the lowest recorded in the 30-year history of geodetic studies at the volcano. The inferred rate of 2000–2005 subsidence related to processes in the shallow magma chamber is less than 0.3 cm/yr whereas it was ∼ 5 cm/yr in 1989–1992. Currently, the highest rate of subsidence takes place in the Leirbotnar area, within the Krafla caldera, and appears to be a result of geothermal exploitation.  相似文献   

15.
An experiment was designed to assess the relative importance of sediment accumulation and bioturbation in determining the vertical distribution of nuclides in estuarine sediments. A diver-collected core, 120 cm long, was raised from central Long Island Sound and analyzed down its length for:210Pb and226Ra;239, 240Pu; and Mn, Zn, Cu, and Pb. Sampling for chemical analysis was guided by X-radiography of the core. Excess210Pb (relative to226Ra) is roughly homogeneous in the top 2–4 cm of the core, then decreases quasi-exponentially to zero at (or above) 15 cm.239, 240Pu and excess Zn, Cu, and Pb, relative to background values at greater depths in the core, are distributed like excess210Pb in the top 10–15 cm. The absence of Mn enrichment at the top of the core, in contrast to other cores raised from this station, suggests that 1–3 cm of sediment was lost by erosion at the site of this core sometime prior to sampling. Below 15 cm excess210Pb and excess Zn, Cu, and Pb are found only in the bulk sample from 25 to 30 cm and in clearly identifiable burrow fillings dissected from 70 cm and 115 cm depth. Infilling of large burrows, excavated and then abandoned by crustaceans, is therefore a mechanism for transfer of surficial material to depth in these sediments.The bioturbation rate in the top several centimeters at this station has been determined previously using234Th (24-day half-life). The distribution of239, 240Pu can be used to estimate a bioturbation rate for the underlying layer (to ~10 cm depth); this rate is found to be 1–3% of the maximum mixing rate for the top 2–3 cm. Using these two mixing rates in a composite-layer, mixing + sedimentation model, the distribution of excess210Pb in the top 15 cm was used to constrain the sediment accumulation rate, ω. While the apparent rate of sediment accumulation (assuming no mixing below 2–4 cm) is 0.11 cm/yr, the model requires ω < 0.05 cm/yr. Thus in an area of slow sediment accumulation, a low rate of bioturbation below the surficial zone of rapid mixing causes an increase of at least a factor of two in apparent accumulation rate.  相似文献   

16.
Large-scale vegetation restoration has been helpful to prevent serious soil erosion, but also has aggravated water scarcity and resulted in soil desiccation below a depth of 200 cm in the Loess Plateau of China. To understand the dynamic mechanism of soil desiccation formation is very important for sustainable development of agriculture in the Loess Plateau. Based on natural and simulated rainfall, the characteristics of soil water cycle and water balance in the 0–400 cm soil layer on a steep grassland hillslope in Changwu County of Shaanxi Loess Plateau were investigated from June to November in 2002, a drought year with annual rainfall of 460 mm. It was similarly considered to represent a rainy year with annual rainfall of 850 mm under simulated rainfall conditions. The results showed that the temporal variability of water contents would decrease in the upper 0–200 cm soil layer with the increase in rainfall. The depth of soil affected by rainfall infiltration was 0–200 cm in the drought year and 0–300 cm in the rainy year. During the period of water consumption under natural conditions, the deepest layer of soil influenced by evapotranspiration (ET) rapidly reached a depth of 200 cm on July 21, 2002, and soil water storage decreased by 48 mm from the whole 0–200 cm soil layer. However, during the same investigation period under simulated rainfall conditions, soil water storage in the 0–400 cm soil layer increased by only 71 mm, although the corresponding rainfall was about 640 mm. The extra-simulated rainfall of 458 mm from May 29 to August 10 did not result in the disappearance of soil desiccation in the 200–400 cm deep soil layer. Most infiltrated rainwater retained in the top 0–200 cm soil layer, and it was subsequently depleted by ET in the rainy season. Because very little water moved below the 200 cm depth, there was desiccation in the deep soil layer in drought and normal rainfall years.  相似文献   

17.
Optically stimulated luminescence (OSL) dating was performed on Late Quaternary deltaic sequences from a 55-m-long core sampled from the Nakdong River estuary, Korea. OSL ages obtained from chemically separated fine (4–11 μm) and coarse (90–212 μm) quartz grains ranged from 29.4 ± 2.6 to 0.4 ± 0.04 ka, revealing clear consistency between the grain-size fractions. The De values from the standardized growth curve (SGC) are consistent with those from the single-aliquot regenerative-dose (SAR) procedure, which suggests that the SGC is valid for the Nakdong deltaic sediments. The 14C ages of shells and wood fragments ranged from 11 to 2.9 ka, demonstrating reasonable agreement with the OSL ages, within the error range. However, the limited number and random sampling interval of the 14C age data (10 ages) result in a simple linear and exponential trend in the depth–age curve. In contrast, OSL ages obtained by high-resolution sampling show down-section variations in the depth–age curve, indicating the occurrence of rapid changes in sedimentation rate. It is suggested that the high-sampling-resolution OSL ages provide a more realistic and detailed depth–age curve and sedimentation rate. The Nakdong deltaic sediments were divided into five units based on sedimentation rate. The lowest (unit 5) shows a break in sedimentation between the last glacial maximum (LGM) and the Holocene. The sedimentation rate increased in units 4 and 3, presumably corresponding to the early to middle Holocene sea level rise and high stand. Unit 2 shows a gradually decreasing sedimentation rate following the regression of the shoreline, until about 2 ka. The progradation of the Nakdong River delta resulted in the rapid accumulation of unit 1 during the last 2000 years.  相似文献   

18.
Clinoform mechanics in the Gulf of Papua, New Guinea   总被引:1,自引:0,他引:1  
The largest islands of the Indo-Pacific Archipelago are estimated to account for 20–25% of the global sediment discharge to the ocean, and much (>50%) of this sediment is supplied to wide (>150 km) continental shelves. These conditions are conducive to creation of large-scale morphologic features known as clinoforms—sigmoidal-shaped deposits on the continental shelf. The Gulf of Papua (GOP) receives 3.84 ×108 tons of sediment annually from three principal sediment suppliers, the Fly, Kikori and Purari Rivers, and its prograding clinoform is the focus of this study. During three research cruises, 80 cores and 37 CTD/optical backscatter casts were collected, and an instrumented tripod was deployed twice. Sedimentological and radiochemical results indicate that the GOP clinoform has characteristics similar to those seaward of other major rivers (e.g., Amazon, Ganges–Brahmaputra), specifically sand/mud interbedding on the topset, rapidly accumulating muds on the foreset, and siliciclastic mud mixed with carbonate sand on the bottomset.Using core data and field observations, the mechanics of clinoform progradation are examined. Discrete, large sedimentation events are identified as processes building the clinoform feature. X-radiographs from foreset cores reveal thick beds (>5 cm) between bioturbated sections. Detailed 210Pb and grain-size data indicate that low activities and increased clay contents are associated with these beds. They are hypothesized to be formed by fluid–mud deposition in response to periods of large wave-tide bed shear stresses, more likely during the SE-tradewind season, and their regular occurrence produces high rates of mean accumulation (4 cm/y). Bed preservation is determined by the rates of sediment accumulation and bioturbation.To assess the influence of physical oceanographic factors on clinoform shape, bottom shear stresses from tides and surface waves were calculated using available wave and tripod data. This effort reveals that the depth range (25–40 m) of the clinoform rollover point (seaward edge of the topset region) is roughly consistent with the sediment-transport regime. Furthermore, calculations corroborate the core data that suggest possible seasonal sediment storage in the inner topset region (<15-m water depth, during the NW-monsoon winds) with subsequent transfer to foreset beds (more probable during SE-tradewind conditions).A 100-yr sediment budget created with accumulation rate data suggests approximately 20% of the total sediment supplied to the GOP accumulates on the clinoform (creating the clinoform morphology). Less than 5% is believed to escape to the adjacent slope, and much of the remaining 75% is likely trapped on the inner-topset region (<20 m water depth) and within the mangrove forests and flood/delta plains of the northern GOP.  相似文献   

19.
Excess210Pb measurements and varve chronology were used to establish a sediment accumulation rate of 0.19 cm/yr in a 95-cm-long box core raised from the Gulf of California. Varve thickness is unchanged over the entire length of the core, indicating a constant rate of sediment accumulation. The32Si specific activity of biogenic silica shows an exponential decrease with depth in this core. The half life of32Si, calculated from these data and the 0.19-cm/yr sediment accumulation rate, is276 ± 32 years. As most of the silica and32Si supplied to the Gulf of California is a result of upwelling of deep ocean water, this half life determination should be relatively insensitive to secular variations in the atmospheric supply of32Si.  相似文献   

20.
The wide variety of basalt types, tholeiitic to basanite, dredged from Loihi Seamount have minor and trace element abundances that are characteristic of subaerial Hawaiian basalts, thereby confirming that Loihi Seamount is a manifestation of the Hawaiian “hot spot”. Within the Loihi sample suite there are well-defined positive correlations among abundances of highly incompatible elements (P, K, Rb, Ba, Nb, light REE and Ta) and moderately incompatible elements (Sr, Ti, Zr and Hf) and between MgO, Ni and Cr. However, within the Loihi suite abundance ratios of geochemically similar elements (Zr/Hf, Nb/Ta and La/Ce) vary by factors of 1.2–1.5 and abundance ratios of highly incompatible elements such as P/Ce, P/Th, K/Rb, Ba/Th and La/Nb vary by factors of 1.2–2.5. These abundance ratios are not readily changed by different degrees of fractionation and melting. Therefore, we conclude that these samples are not genetically related by different degrees of melting of a compositionally homogeneous source.On the basis of K/P, K/Ti, P/Ce, Zr/Nb, Th/P and La/Sm abundance ratios, the twelve samples studied in detail can be divided into six geochemical groups. Samples within each group are similar in 87Sr/86Sr [1], and intra-group compositional variations may reflect low-pressure fractionation and different degrees of melting. In addition, crossing chondrite-normalized REE patterns within the alkalic basalt groups reflect equilibration of the magmas with garnet. In ratio-ratio plots involving abundance ratios of highly incompatible elements, e.g., La/P, Nb/P, K/P, Rb/P, Ba/P and Th/P, the geochemical groups define linear arrays suggestive of mixing. However, these data combined with the isotopic data are not consistent with two-component mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号