首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to assess the impact of metal pollution on Porites skeletons taken from the Gulf of Thailand since the 1980s. The collection period coincided with a series of laws enacted by the Thai government to curb environmental pollution. The extent of metal pollution by riverine input, including aerosol deposits, was assessed by comparing the metal/Ca (Me/Ca) ratios in the Thai corals to the ratios of another colony of corals sampled from Rukan-sho, a relatively unpolluted coral reef located in Okinawa, Japan. In this comparison, high riverine inputs of Ba, V, Cd and Pb were observed in the Thai coral samples. Higher V/Ca ratios found in the Thai corals compared to the Rukan-sho coral suggest anthropogenic V inputs due to fuel oil pollution in the Gulf since the late 1990s. The levels of Cd in the coral suggest a gradual decrease in the Gulf in the late 1990s, with a drastic drop in concentration from the 1980s. The historical variation in Pb/Ca ratios recorded in the coral skeletons suggests that exposure to anthropogenic Pb was a result of discharge from urbanized areas from 1984 to 1998, which has been gradually reduced since Thailand prohibited the use of leaded gasoline in the late 1990s.  相似文献   

2.
In order to assess pollutants and impact of environmental changes along the Egyptian Red Sea coast, seven recent and Pleistocene coral species have been analyzed for Zn, Pb, Mn, Fe, Cr, Co, Ni, and Cu. Results show that the concentration of trace elements in recent coral skeletons is higher than those of Pleistocene counterpart except for Mn and Ni. In comparison with recent worldwide reefs, the present values are less than those of Central America coast (iron), Gulf of Aqaba, Jordan (lead, copper), Gulf of Mannar, India (chromium, zinc, manganese), Costa Rica, Panama (chromium, nickel), North-west coast of Venezuela and Saudi Arabia (copper). The present values are higher than those of Gulf of Aqaba, Jordan (iron, zinc, manganese), Gulf of Mannar, India (lead, cobalt, nickel), North-west coast of Venezuela (lead, zinc, chromium, manganese), Australia (copper, nickel, zinc, manganese). The highest values were recorded in Stylophora pistillata (iron, lead and copper), Acropora cytherea (cobalt), Pocillopora verrucosa (zinc) and the lowest concentrations were recorded in Goniastrea pectinata (iron, chromium, copper and nickel), Favites pentagona (lead, zinc and manganese), and Porites lutea (cobalt). The differences in metals content among the studied species are attributed to differences in microstructure and microarchitecture.  相似文献   

3.
Ability of corals to accumulate heavy metals,Northern Red Sea,Egypt   总被引:1,自引:1,他引:0  
The concentrations of six heavy metals (Fe, Mn, Ni, Cu, Pb and Zn) were studied in 11 hard and 4 soft common coral species collected from Hurghada, Wadi Al-Gemal and Gola’an along the Red Sea coast to assess the differential abilities of corals to concentrate and assimilate the heavy metals inside soft coral tissues and hard coral skeletons. These results reveal the order of Fe > Zn > Ni > Pb ≥ Mn > Cu. Fe recorded significant high concentrations in mushroom (funnel) forms of the soft corals at the different sites; 125.19, 101.71 and 90.44 ppm at Gola’an, Hurghada and Wadi Al-Gemal, respectively. The soft coral species recorded the highest average concentration of Mn, Ni, Cu and Zn than the hard corals, which were 13.22, 16.05, 13.08 and 148.17 ppm, respectively. Generally, soft corals show higher metal concentrations than the hard ones; moreover, Hurghada recorded a higher trend of metal concentrations in soft and hard corals than the other sites. The study concluded that many biological and local environmental factors influenced the metal occurrences and uptakes in both coral forms such as, the exposed surface area for metal uptake, turbidity, overlying mucus thickness and the ability of metals to substitute inside the crystal lattice of the hard corals.  相似文献   

4.
This study focuses on the diagenetic sequence under marine and meteoric conditions as well as isotopes and trace metals contamination in Quseir and Gebel Zeit areas along the Egyptian Red Sea coast through a series of modern and fossil corals, Porites lutea and Favites pentagona. The diagenetic sequence begins with deposition of thin fringes of syntaxial aragonite and micritic high-magnesian calcite in the modern corals to completely altered Porites and partially altered Favites to low-magnesium calcite in the oldest Pleistocene unit. Average δ18O and δ13C values of Pleistocene corals in the two studied areas were lower than those of modern corals. Values of modern corals and lower fossil unit indicated coralline limestone, while those of middle and upper fossil units indicated fresh water influences. Average values of trace metals in modern corals were higher than those of Pleistocene counterpart except for Mn. Modern coral samples recorded enrichment in the average values of Pb, Zn, and Mn at Quseir area and enrichment in Co, Cu, and Ni at Gebel Zeit area. This may be attributed mostly to different tourist activities, landfill due to increase urbanization and nearby of Quseir area from the old phosphate harbor at El Hamrawin area, as well as oil exploration and production activities in the Gulf of Suez area. Also, results indicated that most samples of Porites have high concentration of trace metals than in Favites, especially in Cu, Zn, Mn, and Pb. This may due to high amounts of intergranular porosity and high total surface area of Porites in contrast to Favites.  相似文献   

5.
The geochemistry of coral skeletons may reflect seawater conditions at the time of deposition and the analysis of fossil skeletons offers a method to reconstruct past climate. However the precipitation of cements in the primary coral skeleton during diagenesis may significantly affect bulk skeletal geochemistry. We used secondary ion mass spectrometry (SIMS) to measure Sr, Mg, B, U and Ba concentrations in primary coral aragonite and aragonite and calcite cements in fossil Porites corals from submerged reefs around the Hawaiian Islands. Cement and primary coral geochemistry were significantly different in all corals. We estimate the effects of cement inclusion on climate estimates from drilled coral samples, which combine cements and primary coral aragonite. Secondary 1% calcite or ∼2% aragonite cement contamination significantly affects Sr/Ca SST estimates by +1 °C and −0.4 to −0.9 °C, respectively. Cement inclusion also significantly affects Mg/Ca, B/Ca and U/Ca SST estimates in some corals. X-ray diffraction (XRD) will not detect secondary aragonite cements and significant calcite contamination may be below the limit of detection (∼1%) of the technique. Thorough petrographic examination of fossils is therefore essential to confirm that they are pristine before bulk drilled samples are analysed. To confirm that the geochemistry of the original coral structures is not affected by the precipitation of cements in adjacent pore spaces we analysed the primary coral aragonite in cemented and uncemented areas of the skeleton. Sr/Ca, B/Ca and U/Ca of primary coral aragonite is not affected by the presence of cements in adjacent interskeletal pore spaces i.e. the coral structures maintain their original composition and selective SIMS analysis of these structures offers a route to the reconstruction of accurate SSTs from altered coral skeletons. However, Mg/Ca and Ba/Ca of primary coral aragonite are significantly higher in parts of skeletons infilled with high Mg calcite cement. We hypothesise this reflects cement infilling of intraskeletal pore spaces in the primary coral structure.  相似文献   

6.
In order to monitor the heavy metals effect coming from both human activities and natural inputs on coral reef environments of the Egyptian Red Sea coast, metal concentrations in thirty- eight coral reef species and nearby sediment samples collected from seven studied sites were analyzed. Four sites represent impacted areas; included from south to north Hamrawein, Safaga and Hurghada Harbours and Ras El-Behar Area. Wadi El-Gemal represents natural input area while Qola'an and Kalawye Reefs are the control areas. Heavy metal contents were measured in both coral skeletons and nearby marine sediments. Both impact areas as well as natural inputs area recorded the highest values of metals compared with the control ones. However, heavy metal contents recorded high values in sediments of Hamrawein Harbour, while coral species recorded high values in Wadi El-Gemal area. Generally, metal variations in coral reef species reflect natural conditions and human activity. On the other hand, there are no clear relationships between concentrations of heavy metals in coral reef species and those in sediments.  相似文献   

7.
We investigated the effects of diagenetic alteration (dissolution, secondary aragonite precipitation and pore filling) on the distribution of U in live and Holocene coral skeletons. For this, we drilled into large Porites lutea coral-heads growing in the Nature Reserve Reef (NRR), northern Gulf of Aqaba, a site close to the Marine Biology Laboratory, Elat, Israel, and sampled the core material and porewater from the drill-hole. In addition, we sampled Holocene corals and beachrock aragonite cements from a pit opened in a reef buried under the laboratory grounds. We measured the concentration and isotopic composition of U in the coral skeletal aragonite, aragonite cements, coral porewater and open NRR and Gulf of Aqaba waters.Uranium concentration in secondary aragonite filling the skeletal pores is significantly higher than in primary biogenic aragonite (17.3 ± 0.6 compared to 11.9 ± 0.3 nmol · g−1, respectively). This concentration difference reflects the closed system incorporation of uranyl tri-carbonate into biogenic aragonite with a U/Ca bulk distribution coefficient (KD) of unity, versus the open system incorporation into secondary aragonite with KD of 2.4. The implication of this result is that continuous precipitation of secondary aragonite over ∼1000 yr of reef submergence would reduce the coral porosity by 5% and can produce an apparent lowering of the calculated U/Ca - SST by ∼1°C and apparent age rejuvenation effect of 7%, with no measurable effect on the calculated initial U isotopic composition.All modern and some Holocene corals (with and without aragonite cement) from Elat yielded uniform δ234U = 144 ± 5, similar to the Gulf of Aqaba and modern ocean values. Elevated δ234U values of ∼180 were measured only in mid-Holocene corals (∼5000 yr) from the buried reef. The values can reflect the interaction of the coral skeleton with 234U-enriched ground-seawater that washes the adjacent granitic basement rocks.We conclude that pore filling by secondary aragonite during reef submergence can produce small but measurable effects on the U/Ca thermometry and the U-Th ages. This emphasizes the critical importance of using pristine corals where the original mineralogy and porosity are preserved in paleooceanographic tracing and dating.  相似文献   

8.
We have used digital photography, image analysis and measurements in the field to determine the growth rates of Quaternary corals in the Wakatobi Marine National Park, Indonesia, and compared them to growth rates of similar corals in the same area. In the Quaternary deposits it was possible to measure the growth rates of two massive coral genera Porites and Favites. For each genus, the corals reworked from better‐illuminated upslope environments had higher growth rates than the in situ fossil corals. The calculated radial growth rates for the in situ Porites are slightly lower than, but of the same order of magnitude as, the modern Porites growing in 10 m water depth at Hoga (10.04 ± 3.34 mm yr?1 ± 1 s.d.; n = 3) and Kaledupa (15.26 ± 4.83 mm yr?1 ± 1 s.d.; n = 3). Sedimentation rates and underwater visibility are inferred to have been similar in the fossil site to that at the modern Kaledupa site. Decreasing light penetration due to increased water depth is inferred to have been a major influence on growth rates. The in situ massive corals with good growth banding are inferred to have grown in a comparable environment to modern Kaledupa and Hoga. The study highlights that it is possible to compare coral growth rates, and their influencing parameters, from modern and well‐preserved ancient examples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In this study we have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to produce a high resolution coral record of rare earth elements (REE), Mn and Ba from coastal Porites corals from the Great Barrier Reef of Australia. Validation of the LA-ICP-MS technique indicated that the method provides accurate and reproducible (RSD = 13-18%) analysis of low concentration REE in corals (∼1 to 100 ppb). The REE composition in coral samples was found to closely reflect that of the surrounding seawater and distribution coefficients of ∼1-2 indicated minimal fractionation of the series during incorporation into coral carbonate. To explore the idea that coral records of REE can be used to investigate dissolved seawater composition, we analyzed two coastal corals representing a total of ∼30 yr of growth, including a 10-yr overlapping period. Comparable results were obtained from the two samples, particularly in terms of elemental ratios (Nd/Yb) and the Ce anomaly. Based on this evidence and results from the determination of distribution coefficients, we suggest that useful records of seawater REE composition can be obtained from coral carbonates. When compared to the REE composition of a mid shelf coral, coastal corals showed a significant terrestrial influence, characterized by higher REE concentrations (greater than 10 times) and light REE enrichment. The REE composition of coastal seawater inferred from the coral record was dependent on seasonal factors and the influence of flood waters. REE fractionation displayed a strong seasonal cycle that correlated closely with Mn concentration. We suggest that higher Nd/Yb ratios and higher Mn concentrations in summer result from scavenging of heavy REE by particulate organic ligands and Mn reductive dissolution respectively, both processes displaying higher rates during periods of high primary productivity. The Ce anomaly also displayed a strong seasonal cycle showing an enhanced anomaly during summer and during flood events. This is consistent with the Ce anomaly being primarily controlled by the abundance of Ce oxidizing bacteria. Based on these arguments, we suggest that the coral record of dissolved REE and Mn may be regarded as a useful proxy for biological activity in coastal seawater.  相似文献   

10.
Laboratory experiments on the branching, symbiont-bearing coral genus Porites and Acropora have been carried out to determine the dependence of the skeletal boron isotopic composition (δ11B) on the pH of seawater. The results show a clear relationship similar to previously established empirical calibrations for planktonic foraminifera and inorganic calcite. A −0.6‰ offset exists between P. cylindrica and A. nobilis which is systematic over the pH range of 7.7-8.2. To test whether the δ11B of coral skeletons changes with physiological processes such as photosynthesis and respiration, corals were grown along a depth transect in their natural environment and under controlled conditions in the laboratory at varying light intensities and food supply. Although we also observe an isotopic offset between P. compressa and Montipora verrucosa, neither experimental treatment systematically changed the δ11B of the two species. These findings are encouraging for using the boron isotope paleo-pH proxy in corals, because it appears that seawater pH is the dominant control on the boron isotopic composition in corals.  相似文献   

11.
The pollution of water by heavy metals is one of the most serious problems in the developing countries, where watercourses play important roles in transport and economic activities. The aim of this study was to examine whether Hyposarcus pardalis, a fish species widespread in the freshwater environment in Indonesia, could be used as a biomarker for environmental pollution by metals. To this effect, the concentrations of metallothioneins and metals in the livers and kidneys of H. pardalis were measured. In addition, to clarify the relationship between metallothionein concentrations and metal exposure, the concentrations of metallothioneins and metals were determined in the liver and the kidney of fish exposed to 50 and 500 ppb Cu and 500 ppb Mn, compared with those kept in clean water. Sufficient concentrations of metallothionein were detected in fish captured from Lake Rawakalong located in an industrial area in the suburbs of Jakarta. The results of exposure experiments suggested that H. pardalis retained a history of pollution in its organs for a long duration, and the metals bound to metallothioneins in the liver and kidney could be replaced with Cu following exposure. In conclusion, the hepatic and renal metallothioneins in H. pardalis are a useful candidate biomarker for monitoring heavy metal contamination.  相似文献   

12.
Human-induced pollution in coastal areas can significantly increase the concentration of some trace elements in the marine environment. In the tropics, scleractinian corals incorporate these trace elements in their living parts and skeleton. The potential of corals to monitor pollution through time is reviewed in this contribution. The strength and weakness of corals as pollution indicators are discussed, and a few examples are shown. Although some progress should be made in the understanding of the processes ruling the incorporation of trace elements in coralline aragonite, it is concluded that large environmental changes are well recorded by coral skeletons.  相似文献   

13.
《Comptes Rendus Geoscience》2018,350(4):173-179
The aim of the present study was to test biomarker responses in an edible mollusk, Donax trunculus L. (Mollusca, Bivalvia) associated with environmental pollution in the Gulf of Annaba (northeastern Algeria). The biomarkers selected were glutathione S-transferase (GST), acetylcholinesterase (AChE) and metallothioneins (MTs). Samples were collected seasonally (September 2014, and January, April and July 2015) from two sites located over the Gulf of Annaba: El Battah and Sidi Salem. The results obtained reveal that autumn and winter were the two seasons that show an increase in GST activity, an inhibition of AChE activity and a high rate of MT. In addition, a decrease in AChE activity, an increase in both GST activity and MT levels in D. Trunculus collected from Sidi Salem in comparison with those of El Battah were observed. The biomarker responses at the Sidi Salem site reflect the presence of certain pro-oxidative compounds such as metals (Cd, Cu, Pb, Zn, Mn and Fe) determined in sediments in winter (January) 2015. Moreover, metal concentrations, except Fe, were higher at Sidi Salem than at El Battah. Overall, the Gulf of Annaba remains contaminated by heavy metal. However, this metallic contamination is relatively low and the risks for local population via this edible species were also low.  相似文献   

14.
《Chemical Geology》2002,182(2-4):377-394
Bulk heavy metal (Fe, Mn, Zn, Cu, Pb, Cd), Al, organic carbon and carbonate concentrations, grain sizes, and δC13 of the organic carbon distributions were studied in sediments collected throughout the East China Sea continental shelf and the Yangtze River Delta. The results demonstrated that terrigenous sediments from the Yangtze River is a dominating factor controlling the spatial variations of heavy metals and organic carbon concentrations on the East China Sea continental shelf. In addition, grain size and recent anthropogenic influences are also major factors modifying the spatial and vertical variations of heavy metals.Large spatial variations with a band type distribution of heavy metals, grain size, organic carbon and carbonate were observed. Higher concentrations of heavy metal and light δC13 of the organic carbon were found primarily in the Deltaic and inner shelf sediments. The band type distribution generally followed the coastline with little variations in the north–south direction. Away from the Delta and inner shelf (west–east direction), most heavy metal concentrations decreased rapidly with the exception of Cd where high concentrations of Cd were also found in the carbonate-rich shelf break sediments. Coarse-grained relict sediments and biogenic carbonate are two primary diluting agents for the fine-grained aluminosilicate sediments from the Yangtze River with high concentrations of heavy metals.Unusually high concentrations of Cu, Pb, and Cd showed both spatially and vertically that more pollution prevention measures are needed in the Yangtze River drainage basin in order to prevent further heavy metal pollution of the East China Sea inner continental shelf.  相似文献   

15.
1 IntroductionCorals are an important proxy for reconstructingpaleo-environment and revealing global changes in thepast. Variations of heavy metals in the growth bands ofcorals can provide important information about the oce-anic environment.Bastidas and …  相似文献   

16.
Algal species which are ubiquitous along the coastlines of many countries reflect the environmental conditions of the coastal seawater and may serve as useful biomonitors of anthropogenic pollution. Heavy metal concentrations of ten elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) of potential environmental concern were determined in seawater, sediments and twelve species of benthic marine macroalgae from four locations (Glenelg, Port Adelaide, Port Broughton and Port Pirie) along the South Australian coastline. The four sites chosen represented varying degrees of metal contamination, where the capacity for benthic macroalgae to accumulate heavy metals from the environment was evaluated. Spatial differences in heavy metal concentration in both seawaters and sediments were observed at all sites with the highest concentrations of heavy metals including Cd (125 μg g?1), Pb (2,425 μg g?1) and Zn (7,974 μg g?1) found in the finer sediment fractions (<250 μm) of Port Pirie. While all algal species studied (Acrosorium polyneurum, Anotrichium tenue, Cystophora Cephalornithos Cystophora monillifera, Cystophora monilliformis, Dictyopteris australis, Gelidium micropterum, Gracilaria, Hormophysa Cuneiformis, Sargassum cinctum, Scaberia agardhii and Ulva lactuca) accumulated metals to varying degrees, Blindigia marginata was a good biomonitor species for a number of metals including Cd, Co, Cr, Fe, Pb and Zn, exhibiting both relatively high total metal concentrations and significant concentration factors.  相似文献   

17.
通过对南海北部大亚湾海区1976~1998年扁脑珊瑚Platygyra骨骼Cu,Pb和Cd含量的研究及其与观测记录的比较,初步认为珊瑚可以记录大亚湾海区重金属的年际变化特征;发现1979年和1991年是重金属含量比较高的年份;由扁脑珊瑚记录推测珊瑚中Cd含量短时间内可能受到了核电站兴建的影响,但近20多年来的大亚湾扁脑珊瑚及海水中重金属状况的总体变化过程可能与整个广东海域水质的变化背景基本一致,而与核电站的兴建和运行似乎没有明显的关系  相似文献   

18.
恬矿库周围土壤中重金属存在形态特征研究   总被引:48,自引:4,他引:44  
通过对大冶铜绿山铜铁矿尾矿库周围土壤中重金属形态分析实验,研究了重金属各种形态在土壤中的分布特征。由对比实验可知,尾矿库周围土壤中Cu、Pb、Zn、Cd等重金属含量都显著地高于对照样品,书经受到重金属的严重污染。土壤中重金属形态分布征为:w(Cr、Zn、Fe);可变换态〈碳酸盐态〈有机态〈铁锰氧化态〈残渣态;w(Cu、Pb):可变换态〈碳酸盐态〈有机态〈残渣态〈铁锰氧化态;w(Cd):残渣态,有机  相似文献   

19.
Deep-sea corals have been shown to be useful archives of rapid changes in ocean chemistry during the last glacial cycle. Their aragonitic skeleton can be absolutely dated by U-Th data, freeing radiocarbon to be used as a water-mass proxy. For certain species of deep-sea corals, the growth rate allows time resolution that is comparable to ice cores. An additional proxy is needed to exploit this opportunity and turn radiocarbon data into rates of ocean overturning in the past.Neodymium isotopes in seawater can serve as a quasi-conservative water-mass tracer and initial results indicate that deep-sea corals may be reliable archives of seawater Nd isotopes. Here we present a systematic study exploring Nd isotopes as a water-mass proxy in deep-sea coral aragonite. We investigated five different genera of modern deep-sea corals (Caryophyllia, Desmophyllum, Enallopsamia, Flabellum, Lophelia), from global locations covering a large potential range of Nd isotopic compositions. Comparison with ambient seawater measurements yields excellent agreement and suggests that deep-sea corals are reliable archives for seawater Nd isotopes.A parallel study of Nd concentrations in these corals yields distribution coefficients for Nd between seawater and coral aragonite of 1-10, omitting one particular genus (Enallopsamia). The corals and seawater did however not come from exactly the same location, and further investigations are needed to reach robust conclusions on the incorporation of Nd into deep-sea coral aragonite.Lastly, we studied the viability of extracting the Nd isotope signal from fossil deep-sea corals by carrying out stepwise cleaning experiments. Our results show that physical removal of the ferromanganese coating and chemical pre-cleaning have the highest impact on Nd concentrations, but that oxidative/reductive cleaning is also needed to acquire a seawater Nd isotope signal.  相似文献   

20.
Concentrations of Co, Cu, Fe, Mn, Ni, Pb and Zn in four macroalgae species (Ulva lactuca, Chondracanthus squarrulosus, Sargassum sinicola and Gracilariopsis lemaneiformis) were obtained for the first time from the central part of the west coast of the Gulf of California. Generally, no differences in metal concentrations were found among the different seaweed species, although spatial differences were apparent. Iron, Mn and Cu exhibited higher concentrations at the stations located in front of Angel de la Guarda Island, probably because of high vertical mixing processes present in the zone. The results were compared with dissolved metal concentrations reported for the Gulf of California (Cd, Mn and Fe) and the North Pacific Ocean. The resulting linear regression of the results vs. North Pacific Ocean concentrations indicated that the levels of Cu, Ni and Zn measured in this study were within its 95% confidence level. Furthermore, this comparison was capable of detecting dissolved Fe and Mn enrichments in Gulf of California waters relative to the North Pacific Ocean concentrations. Calculations of total masses of metals associated with algal biomass on the west coast of the Gulf of California indicated that the lowest masses were represented by Cu (108 ± 25 kg) and Ni (184 ± 52 kg), whereas Pb (1.1 ± 0.6 ton) and Fe (10.9 ± 8.5 ton) were the elements with the highest associated masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号