首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In this paper, we explore the plausible luminosity evolution of early-type galaxies in different cosmological models by constructing a set of pure luminosity evolution (PLE) models via the choices of the star-formation rate (SFR) parameters and formation redshift z f of galaxies, with the observational constraints derived from the Hubble Space Telescope ( HST  ) morphological number counts for elliptical and S0 galaxies of the Medium Deep Survey (MDS) and the Hubble Deep Field (HDF). We find that the number counts of early-type galaxies can be explained by the pure luminosity evolution models, without invoking exotic scenarios such as merging or introducing an additional population, but the evolution should be nearly passive, with a high z f assumed. The conclusion is valid in all of the three cosmological models we adopt in this paper. We also present the redshift distributions for three bins of observed magnitudes in the F814w passband, to show the redshift at which the objects that dominate the counts at a given magnitude may be found. The predictions of the redshift distribution of 22.5 <  b j  < 24.0 are also presented for comparison with future data.  相似文献   

2.
We have obtained U - and R -band observations of the depletion of background galaxies resulting from the gravitational lensing of the galaxy cluster CL0024+1654 ( z =0.39). The radial depletion curves show a significant depletion in both bands within a radius of 40–70 arcsec from the cluster centre. This is the first time that depletion is detected in the U band. This gives independent evidence for a break in the slope of the U -band luminosity function at faint magnitudes. The radially averaged R -band depletion curve is broader and deeper than in the U band. The differences can be attributed to the wavelength dependence of the slope of the luminosity function and to the different redshift distribution of the objects probed in the two bands. We estimate the Einstein radius, r E, of a singular isothermal sphere lens model using maximum-likelihood analysis. Adopting a slope of the number counts of α =0.2 and using the background density found beyond r =150 arcsec, we find r E=17±3 and 25±3 arcsec in the U and R bands, respectively. When combined with the redshift of the single background galaxy at z =1.675 seen as four giant arcs around 30 arcsec from the cluster centre, these values indicate a median redshift in the range 〈 z S〉≈0.7 to 1.1 for the U AB≥24 mag and R AB≥24 mag populations.  相似文献   

3.
We have previously shown that the linewidth distribution in AGN can be accounted for by an axisymmetric broad-emission-line region. In this paper we show that the linewidth distribution changes with redshift and that these changes are dependent on H 0 and q 0. We show that relatively small samples of AGN at high redshift with measured linewidth at half maximum can be used to distinguish between values of H 0 and q 0. Furthermore, larger low-redshift samples can be used to distinguish between luminosity functions and hence different models of quasar evolution.  相似文献   

4.
5.
A new method is presented to obtain a non-parametric maximum likelihood estimate of the luminosity function and the selection function of a flux-limited redshift survey. The method parametrizes the selection function as a series of stepwise power laws and allows possible evolution of the luminosity function. We also propose a new technique to estimate the rate of evolution of the luminosity function. This is based on a minimization of the observed large-scale power with respect to the evolutionary model. We use an ensemble of mock surveys extracted from an N -body simulation to verify the power of this method. We apply our estimators to the 1.2-Jy survey of IRAS galaxies. We find a far-infrared luminosity function in good agreement with previously published results and evidence for rather strong evolution. If the comoving number density of IRAS galaxies is assumed to scale ∝ (1 +  z ) P , we estimate P  = 4.3 ± 1.4.  相似文献   

6.
We investigate pure luminosity evolution models for early-type (elliptical and S0) galaxies (i.e. no number density change or morphological transition), and examine whether these models are consistent with observed number counts in the B , I and K bands, and redshift distributions of two samples of faint galaxies selected in the I and K bands. The models are characterized by the star formation time-scale τ SF and the time t gw when the galactic wind starts to blow, in addition to several other conventional parameters. We find that the single-burst model ( τ SF=0.1 Gyr and t gw=0.353 Gyr), which is known to reproduce the photometric properties of early-type galaxies in clusters, is inconsistent with the redshift distributions of early-type galaxies in the field environment, owing to overpredictions of the number of galaxies at z ≳1.4 even with strong extinction which is at work until t gw. In order for dust extinction to be more effective, we treat τ SF and t gw as free parameters, and find that models with τ SF≳0.5 Gyr and t gw>1.0 Gyr can be made consistent with both the observed redshift distributions and the number counts, if we introduce strong extinction [ E ( B − V )≥1 as a peak value]. These results suggest that early-type galaxies in the field environment do not have the same evolutionary history as described by the single-burst model.  相似文献   

7.
We extend our previous analysis which used generalized luminosity functions (GLFs) to predict the number of quasars and galaxies in low-radio-frequency-selected samples as a function of redshift, radio luminosity, narrow-emission-line luminosity and type of unified scheme. Our extended analysis incorporates the observed submillimetre (850-μm) flux densities of radio sources, employs a new method which allows us to deal with non-detections, and focuses on the high-luminosity population. First, we conclude that the submillimetre luminosity L 850 of low-frequency-selected radio sources is correlated with the bolometric luminosity L bol of their quasar nuclei via an approximate scaling relation   L 850∝ L 0.7±0.2bol  . Secondly, we conclude that there is quantitative evidence for a receding-torus-like physical process for the high-luminosity population within a two-population unified scheme for radio sources; this evidence comes from the fact that radio quasars are brighter in both narrow emission lines and submillimetre luminosity than radio galaxies matched in radio luminosity and redshift. Thirdly, we note that the combination of a receding-torus-like scheme and the assumption that the observed submillimetre emission is dominated by quasar-heated dust yields a scaling relation   L 850∝ L 1/2bol  which is within the errors of that determined here for radio-selected quasars, and consistent with that inferred for radio-quiet quasars.  相似文献   

8.
We measure the     B -band optical luminosity function (LF) for galaxies selected in a blind H  i survey. The total LF of the H  i selected sample is flat, with Schechter parameters     and     , in good agreement with LFs of optically selected late-type galaxies. Bivariate distribution functions of several galaxy parameters show that the H  i density in the local Universe is more widely spread over galaxies of different size, central surface brightness and luminosity than the optical luminosity density is. The number density of very low surface brightness (LSB ) (>24.0 mag arcsec−2) gas-rich galaxies is considerably lower than that found in optical surveys designed to detect dim galaxies. This suggests that only a part of the population of LSB galaxies is gas-rich and that the rest must be gas-poor. However, we show that this gas-poor population must be cosmologically insignificant in baryon content. The contribution of gas-rich LSB galaxies (>23.0 mag arcsec−2) to the local cosmological gas and luminosity density is modest     and     per cent respectively); their contribution to Ωmatter is not well-determined, but probably <11 per cent. These values are in excellent agreement with the low redshift results from the Hubble Deep Field.  相似文献   

9.
Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines – the 'quasar fraction'– as a function of redshift and of radio and narrow-emission-line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow-line and radio) than it is on redshift. Above a narrow [O  ii ] emission-line luminosity of log10( L [O  ii ]/W)≳35 [or radio luminosity log10( L 151/W Hz−1 sr−1)≳ 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle θ trans≈53°. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in θ trans and/or a gradual increase in the fraction of lightly reddened (0≲ A V ≲5) lines of sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low-luminosity radio sources which, like M87, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.  相似文献   

10.
We determine the companion galaxy luminosity function (LF) for regions around isolated spiral galaxies. If we assume that any excess in the galaxy number counts in the vicinity of a spiral galaxy is due to galaxies at the same distance, then a system LF can be determined from the variation of excess numbers with apparent magnitude. By studying the excess over many field 'centre' galaxies, a good statistical accuracy can be obtained for the companion galaxy LF. Since redshift information is not required for the faint galaxies, it is possible to sample further down the LF as compared with redshift surveys. For 23 primary galaxies of known redshift, we find a dwarf satellite Schechter LF with a characteristic magnitude M V *( D )≃−19 and a faint-end slope α=−1.7, down to MV =−14 ( H 0=50 km s−1 Mpc−1).  相似文献   

11.
Redshift surveys such as the Sloan Digital Sky Survey (SDSS) have given a very precise measurement of the galaxy luminosity function down to about   MR =−17 (≈ MB =−16)  . Fainter absolute magnitudes cannot be probed because of the flux limit required for spectroscopy. Wide-field surveys of nearby groups using mosaic CCDs on large telescopes are able to reach much fainter absolute magnitudes, about   MR =−10  . These diffuse, spiral-rich groups are thought to be typical environments for galaxies, so their luminosity functions should be the same as the field luminosity function. The luminosity function of the groups at the bright end  ( MR < −17)  is limited by Poisson statistics and is far less precise than that derived from redshift surveys. Here we combine the results of the SDSS and the surveys of nearby groups, and we supplement the results with studies of Local Group galaxies in order to determine the galaxy luminosity function over the entire range  −25 < MR < −9  . The average logarithmic slope of the field luminosity function between   MR =−19  and   MR =−9  is  α=−1.26  , although a single power law is a poor fit to the data over the entire magnitude range. We also determine the luminosity function of galaxy clusters and demonstrate that it is different from the field luminosity function at a high level of significance; there are many more dwarf galaxies in clusters than in the field, due to a rise in the cluster luminosity function of  α∼−1.6  between   MR =−17  and   MR =−14  .  相似文献   

12.
We produce and analyse u -band (  λ≈ 355  nm) luminosity functions (LFs) for the red and blue populations of galaxies using data from the Sloan Digital Sky Survey (SDSS) u -band Galaxy Survey ( u GS) and Deep Evolutionary Exploratory Probe 2 (DEEP2) survey. From a spectroscopic sample of 41 575 SDSS u GS galaxies and 24 561 DEEP2 galaxies, we produce colour magnitude diagrams and make use of the colour bimodality of galaxies to separate red and blue populations. LFs for eight redshift slices in the range  0.01 < z < 1.2  are determined using the  1/ V max  method and fitted with Schechter functions showing that there is significant evolution in   M *  , with a brightening of 1.4 mag for the combined population. The integration of the Schechter functions yields the evolution in the u -band luminosity density (LD) out to   z ∼ 1  . By parametrizing the evolution as  ρ∝ (1 + z )β  , we find that  β= 1.36 ± 0.2  for the combined populations and  β= 2.09 ± 0.2  for the blue population. By removing the contribution of the old stellar population to the u -band LD and correcting for dust attenuation, we estimate the evolution in the star formation rate (SFR) of the Universe to be  βSFR= 2.5 ± 0.3  . Discrepancies between our result and higher evolution rates measured using the infrared and far-UV can be reconciled by considering possibilities such as an underestimated dust correction at high redshifts or evolution in the stellar initial mass function.  相似文献   

13.
We use recent observations of high-redshift galaxies to study the evolution of galactic discs over the redshift range 0 <  z ≲1. The data are inconsistent with models in which discs were already assembled at z  = 1 and have evolved only in luminosity since that time. Assuming that disc properties change with redshift as powers of 1 +   z and analysing the observations assuming an Einstein–de Sitter universe, we find that for given rotation speed, disc scalelength decreases with z as ∼ (1 +  z )−1, total B -band mass-to-light ratio decreases with z as ∼ (1 +  z )−1, and disc luminosity (again in B ) depends only weakly on z . These scalings are consistent with current data on the evolution of disc galaxy abundance as a function of size and luminosity. Both the scalings and the abundance evolution are close to the predictions of hierarchical models for galaxy formation. If different cosmogonies are compared, the observed evolution in disc size and disc abundance favours a flat low-Ω0 universe over an Einstein–de Sitter universe.  相似文献   

14.
We have selected and analysed the properties of a sample of  2905 Ks < 21.5  galaxies in  ∼131 arcmin2  of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of Ks -selected galaxies with respect to the results already obtained in previous studies. We made use of the public deep multiwavelength imaging from the optical B through the infrared (IR) 4.5-μm bands, in conjunction with available spectroscopic and COMBO17 data in the CDFS, to construct an optimized redshift catalogue for our galaxy sample. We computed the Ks -band luminosity function and determined that its characteristic magnitude has a substantial brightening and a decreasing total density from   z = 0  to  〈 z 〉= 2.5  . We also analysed the colours and number density evolution of galaxies with different stellar masses. Within our sample, and in contrast to what is observed for less massive systems, the vast majority (∼85–90 per cent) of the most massive  ( M > 2.5 × 1011 M)  local galaxies appear to be in place before redshift   z ∼ 1  . Around 65–70 per cent of the total assemble between redshifts   z = 1  and 3 and most of them display extremely red colours, suggesting that plausible star formation in these very massive systems should mainly proceed in obscured, short-time-scale bursts. The remaining fraction (up to ∼20 per cent) could be in place at even higher redshifts   z = 3–4  , pushing the first epoch of formation of massive galaxies beyond the limits of current near-IR surveys.  相似文献   

15.
We analyse the K -band Hubble diagram for a sample of brightest cluster galaxies (BCGs) in the redshift range 0< z <1. In good agreement with earlier studies, we confirm that the scatter in the absolute magnitudes of the galaxies is small (0.3 mag). The BCGs exhibit very little luminosity evolution in this redshift range: if q 0=0.0, we detect no luminosity evolution; for q 0=0.5, we measure a small negative evolution (i.e., BCGs were about 0.5 mag fainter at z =1 than today). If the mass in stars of these galaxies had remained constant over this period of time, substantial positive luminosity evolution would be expected: BCGs should have been brighter in the past, since their stars were younger. A likely explanation for the observed zero or negative evolution is that the stellar mass of the BCGs has been assembled over time through merging and accretion, as expected in hierarchical models of galaxy formation. The colour evolution of the BCGs is consistent with that of an old stellar population ( z for>2) that is evolving passively. We can thus use evolutionary population synthesis models to estimate the rate of growth in stellar mass for these systems. We find that the stellar mass in a typical BCG has grown by a factor ≃2 since z ≃1 if q 0=0.0, or by factor ≃4 if q 0=0.5. These results are in good agreement with the predictions of semi-analytic models of galaxy formation and evolution set in the context of a hierarchical scenario for structure formation. The models predict a scatter in the luminosities of the BCGs that is somewhat larger than the observed one, but that depends on the criterion used to select the model clusters.  相似文献   

16.
We show that the luminosity functions of the distant rich clusters Abell 665 ( z =0.182) and Abell 963 ( z =0.206) are flat or gradually rising down to MR =−14, with α≈−1.2±0.4 [here α is the logarithmic slope of the luminosity function: φ( L )∝ L α at the faint end]. We do not confirm the steep luminosity functions (α≤−1.8) that have been recently proposed for these two clusters.
Several technical points are discussed in detail. In particular, we compute the corrections to the background contamination caused by gravitational lensing from the cluster dark matter, and show that the corrections are small unless we wish to determine variations in the luminosity function on small scales.
Recent observations have also shown that the field galaxy luminosity function at z ≈0.2 is also shallow between MB =−19 and MB =−13. Abell 665 and 963 are two of the richest clusters known at that redshift. We therefore propose that the galaxy luminosity function might be universal in this magnitude range at z =0.2.
The dwarf galaxies that we see in Abell 665 have a colour distribution that is strongly peaked at B − R =1.9. We compute K -corrections based on the spectral energy distributions of local galaxies, and show that these are probably dwarf spheroidal galaxies. This might suggest that the dwarf spheroidal population observed in Virgo already existed at z =0.2.  相似文献   

17.
We derive deep luminosity functions (LFs) (to   M z =−15  ) for galaxies in Abell 1835  ( z = 0.25)  and AC 114  ( z = 0.31)  , and compare these with the local z ' LF for 69 clusters. The data show that the faint-end upturn, the excess of galaxies above a single Schechter function at   M z < −17  , does not exist in the higher redshift clusters. This suggests that the faint-end upturn galaxies have been created recently, by infall into clusters of star-forming field populations or via tidal disruption of brighter objects.  相似文献   

18.
We compare observations of the high-redshift galaxy population to the predictions of the galaxy formation model of Croton et al. and De Lucia & Blaizot. This model, implemented on the Millennium Simulation of the concordance Lambda cold dark matter cosmogony, introduces 'radio mode' feedback from the central galaxies of groups and clusters in order to obtain quantitative agreement with the luminosity, colour, morphology and clustering properties of the present-day galaxy population. Here we construct deep light cone surveys in order to compare model predictions to the observed counts and redshift distributions of distant galaxies, as well as to their inferred luminosity and mass functions out to redshift 5. With the exception of the mass functions, all these properties are sensitive to modelling of dust obscuration. A simple but plausible treatment agrees moderately well with most of the data. The predicted abundance of relatively massive  (∼ M *)  galaxies appears systematically high at high redshift, suggesting that such galaxies assemble earlier in this model than in the real Universe. An independent galaxy formation model implemented on the same simulation matches the observed mass functions slightly better, so the discrepancy probably reflects incomplete or inaccurate galaxy formation physics rather than problems with the underlying cosmogony.  相似文献   

19.
We present an analysis of the optical spectra of a volume-limited sample of 375 radio galaxies at redshift  0.4 < z < 0.7  from the 2dF-SDSS (Sloan Digital Sky Survey) Luminous Red Galaxy (LRG) and QSO (quasi-stellar object) (2SLAQ) redshift survey. We investigate the evolution of the stellar populations and emission-line properties of these galaxies. By constructing composite spectra and comparing with a matched sample of radio-quiet sources from the same survey, we also investigate the effect on the galaxy of the presence of an active nucleus.
The composite spectra, binned by redshift and radio luminosity, all require two components to describe them, which we interpret as an old and a younger population. We found no evolution with redshift of the age of the younger population in radio galaxies, nor were they different from the radio-quiet comparison sample. Similarly, there is no correlation with radio power, with the exception that the most powerful radio sources  ( P 1.4 > 1026  W Hz−1) have younger stars and stronger emission lines than the less powerful sources. This suggests that we have located the threshold in radio power where strong emission lines 'switch on', at radio powers of around 1026 W Hz−1. Except for the very powerful radio galaxies, the presence of a currently active radio active galactic nucleus (AGN) does not appear to be correlated with any change in the observed stellar population of a luminous red galaxy at   z ∼ 0.5  .  相似文献   

20.
In a BransDicke (BD) cosmological model, the energy density associated with some scalar field decreases as a 2[( o +1/2)/( o +1)] with the scalefactor a ( t ) of the universe, giving matter with an equation of state In this model, the universe could be closed but still have a non-relativistic matter density corresponding to its critical value, o =1. Different cosmological expressions, such as luminosity distance, angular diameter, number count and ratio of the redshift thicknessangular size, are determined in terms of the redshift for this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号