首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Mediterranean semi‐arid conditions, the availability of studies monitoring channel adjustments as a response to reforestation and check dams over representative observation periods, could help develop new management strategies. This investigation is an integrated approach assessing the adjustments of channel morphology in a typical torrent of southern Italy after land‐use changes and check dam construction across a period of about 60 years. A statistical analysis of historical rainfall records, an analysis of land‐use changes in the catchment area and a geomorphological mapping of channel adjustments were carried out and combined with field surveys of bed surface grain‐size over a 5‐km reach including 14 check dams. The analysis of the historical rainfall records showed a slight decrease in the amount and erosivity of precipitation. Mapping of land‐use changes highlighted a general increase of vegetal coverage on the slopes adjacent to the monitored reaches. Together with the check dam network installation, this increase could have induced a reduction in water and sediment supply. The different erosional and depositional forms and adjustments showed a general narrowing between consecutive check dams together with local modifications detected upstream (bed aggradation and cross‐section expansion together with low‐flow realignments) and downstream (local incision) of the installed check dams. Changes in the torrent bends were also detected as a response to erosional and depositional processes with different intensities. The study highlighted: the efficiency of check dams against the disrupting power of intense floods by stabilizing the active channel and the influence of reforestation in increasing hillslope protection from erosion and disconnectivity of water and sediment flows towards the active channel. Only slight management interventions (for instance, the conversion of the existing check dams into open structures) are suggested, in order to mobilize the residual sediment avoiding further generalized incision of the active channel and coast line erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Many lowland fluvial systems are suspected to possess a morphological legacy from a long history of channel modifications as a consequence of limited energy and sediment supply to facilitate recovery. We explore the extent of such modifications using a regionally extensive dataset of physical habitat surveys compiled by non-specialist surveyors. Representative photographs for each surveyed site were used to quality check channel width, depth and bed grain size information derived from Modular River Physical (MoRPh) surveys. Following checking, 1659 surveys were retained for analysis from alluvial sites, almost entirely in England. The photographs were also inspected for evidence of clear ‘overdeepening’ that would preclude frequent overtopping of the lower bank top. Results indicated that almost one-third of the sites were overdeepened, that width-to-depth ratios defined using the active bed width showed stronger discrimination of overdeepening than bankfull width, that highly statistically significant identification of overdeepened channels was possible in channels up to 10 m wide and with only minimal differences attributable to channel bed materials. Stepwise regression analysis estimated relationships between channel width-to-depth ratios and channel size for overdeepened and non-overdeepened channels. We demonstrate that large data sets collected by numerous non-specialist surveyors can, with careful filtering, generate statistically robust results of geomorphological value over areas larger than is otherwise practicable. Furthermore, we reveal a notable legacy of overdeepening in the analysed lowland rivers, which presents a significant ‘hydromorphological’ management challenge.  相似文献   

3.
Knowledge on spatio-temporal variations in planform, hydraulic geometry, and bed-level variations of alluvial streams is required for planning and development of hydraulic structures and bank protection works. In the current study, a Geographic Information System (GIS) has been used to analyze topographical maps, multi-temporal remotely sensed imagery, and hydrologic and hydraulic data to extract the morphological parameters of the Upper Tapi River, India. The river has been found to have consistent migration towards the northern direction, with erosion/deposition on right/left banks. The river has not experienced any major meander except in the lower reaches of the Upper Tapi Gorge and minor braiding conditions at the location where the river emerges from mountainous topography to the plain region. The analyzed river cross sections were found to be depth dominated, and contain large flows within the channel banks. The cross-sections exhibited moderate channel bed adjustments in 1994, 2006, and 2007 wherein excessive sediment flux and stream power were capable of causing morphological changes in the river. High intensity rainfall in the subcatchment resulted in high sediment flux into the river during 1994, which was reported to cause significant aggradation at the downgauging station. The analysis of sediment flux into the river in conjunction with decadal land use land cover, revealed that sediment yield from the catchment was reduced during 2000–2010 due to an increase in water bodies in the form of minor hydraulic structures. The entry of comparatively less sediment laden water into the river, resulted in moderate bed degradation especially in 2006 and 2007 as observed at the downstream station. The methodology applied in the current study is generic in nature and can be applied to other rivers to identify their morphological issues.  相似文献   

4.
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three‐dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one‐third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Climatically driven changes in streamflow and hillslope sediment supply could potentially alter stream surface grain size distribution patterns and thereby impact habitat for a number of threatened and endangered in‐stream fish species. Relatively little is known about hydrograph (shape, peak flow) influence or the relative importance of chronic and episodic hillslope inputs on channel conditions. To better understand these external drivers, we calculated sediment routing through a gravel‐bedded river network using a one‐dimensional (1D) bedload transport model. We calculated changes in grain sizes and estimated Chinook salmon habitat suitability caused by a dry year and an extreme flood hydrograph, and chronic (diffusive, overland flow) or pulse (landslide, debris flow) hillslope sediment supplies. To obtain accurate channel conditions, a relatively high reference Shields stress, representative of steep mountain streams, was needed. An extreme event flood without any hillslope sediment inputs caused widespread bed coarsening and a decrease in aquatic habitat. Chronic sediment input combined with this hydrograph eliminated any changes in grain size and habitat, although when combined with a dry year flow, caused systematic bed fining. The influence of a given hydrograph therefore highly depends on the hillslope sediment supply. Regardless of the flow hydrograph or sediment pulse timing, grain size distribution or location, pulse sediment inputs did not cause widespread grain size changes despite being 100 times the total chronic input volume. Widespread and continuous hillslope sediment inputs may influence channel grain sizes and aquatic habitat more than a single discrete sediment pulse. Depending on the magnitudes of flow hydrograph and sediment supply alterations, climate change may induce no differences in grain sizes or very dramatic changes with significant consequences for long‐term sustainability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Stochastic erosion of composite banks in alluvial river bends   总被引:2,自引:0,他引:2       下载免费PDF全文
The erosion of composite river banks is a complex process involving a number of factors including fluvial erosion, seepage erosion, and cantilever mass failure. To predict the rate of bank erosion with these complexities, a stochastic bank erosion model is suitable to define the probability distribution of the controlling variables. In this study, a bank erosion model in a river bend is developed by coupling several bank erosion processes with an existing hydrodynamic and morphological model. The soil erodibility of cohesive bank layers was measured using a submerged jet test apparatus. Seasonal bank erosion rates for four consecutive years at a bend in the Brahmaputra River, India, were measured by repeated bankline surveys. The ability of the model to predict erosion was evaluated in the river bend that displayed active bank erosion. In this study, different monsoon conditions and the distribution functions of two variables were considered in estimating the stochastic bank erosion rate: the probability of the soil erodibility and stochastic stage hydrographs for the nth return period river stage. Additionally, the influences of the deflection angle of the streamflow, longitudinal slope of river channel, and bed material size on bank erosion rate were also investigated. The obtained stochastic erosion predictions were compared with the observed distribution of the annual‐average bank erosion rate of 45 river bends in the Brahmaputra River. The developed model appropriately predicted the short‐term morphological dynamics of sand‐bed river bends with composite banks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Sediment flushing and the morphological responses to the procedure of check dam removal are still unclear. Following laboratory experiments that revealed three stages (deepening, widening, and volume release) of check dam adjustment, a check dam built in 2007 at Landao Creek in central Taiwan was adjusted in 2015 by removing central bars and cutting 2.5 m from the middle two piers (stage 1 + 2), with the purpose of regulating sediment transfer and keeping the thalweg at the center of the channel, while also preventing hill slope toe erosion. In 2019, four central piers were removed (stage 3) to increase the volume of sediment released. Annual surveys were conducted after the initial adjustment in 2015 through to 2020 using unmanned aerial vehicles (UAVs). The check dam adjustments revealed that the channel had narrowed and stabilized as indicated by regenerating riparian vegetation. Additionally, distinct terraces had formed on the hill slope toes of the creek channel in proximity to the check dam. The meander upstream weakened following the dam adjustments. This study combining laboratory experiments with actual field observation contributed immensely to check dam decommissioning. Additionally, this study illustrated how an adjustable check dam may aid regulation of sediment transport and thereby sediment balance. It can be adjusted accordingly based on the prevailing channel condition.  相似文献   

8.
Effects of large organic material on channel form and fluvial processes   总被引:1,自引:0,他引:1  
Stream channel development in forested areas is profoundly influenced by large organic debris (logs, limbs and rootwads greater than 10 cm in diameter) in the channels. In low gradient meandering streams large organic debris enters the channel through bank erosion, mass wasting, blowdown, and collapse of trees due to ice loading. In small streams large organic debris may locally influence channel morphology and sediment transport processes because the stream may not have the competency to redistribute the debris. In larger streams flowing water may move large organic debris, concentrating it into distinct accumulations (debris jams). Organic debris may greatly affect channel form and process by: increasing or decreasing stability of stream banks; influencing development of midchannel bars and short braided reaches; and facilitating, with other favourable circumstances, development of meander cutoffs. In steep gradient mountain streams organic debris may enter the channel by all the processes mentioned for low gradient streams. In addition, considerable debris may also enter the channel by way of debris avalanches or debris torrents. In small to intermediate size mountain streams with steep valley walls and little or no floodplain or flat valley floor, the effects of large organic debris on the fluvial processes and channel form may be very significant. Debris jams may locally accelerate or retard channel bed and bank erosion and/or deposition; create sites for significant sediment storage; and produce a stepped channel profile, herein referred to as ‘organic stepping’, which provides for variable channel morphology and flow conditions. The effect of live or dead trees anchored by rootwads into the stream bank may not only greatly retard bank erosion but also influence channel width and the development of small scour holes along the channel beneath tree roots. Once trees fall into the stream, their influence on the channel form and process may be quite different than when they were defending the banks, and, depending on the size of the debris, size of the stream, and many other factors, their effects range from insignificant to very important.  相似文献   

9.
Experimental removal of woody debris from a small, gravel-bed stream in a forested area resulted in a four-fold increase in bedload transport at bankfull discharge. This was caused by increased transportability of sediment previously stored upslope of debris buttresses or in low-energy hydraulic environments related to debris. Bank erosion delivered additional sediment to the channel, and transport energy was increased by an inferred increase in the component of total boundary shear stress affecting grains on the bed. Increased transport following debris removal in May 1987 continued throughout the entire autumn storm season through late November 1987, indicating persistent adjustment of the stream bed and banks despite marked response to earlier flows as large as bankfull. Stream bed adjustments included development of a semi-regular sequence of alternate bars and pools, many of which were spaced independently of former pool locations.  相似文献   

10.
Delta channels are important landforms at the interface of sediment transfer from terrestrial to oceanic realms and affect large, and often vulnerable, human populations. Understanding these dynamics is pressing because delta processes are sensitive to climate change and human activity via adjustments in, for example, mean sea level and water/sediment regimes. Data collected over a 40-year period along a 110-km distributary channel of the Yellow River Delta offer an ideal opportunity to investigate morphological responses to changing water and sediment regimes and intensive human activity. Complementary data from the delta front provide an opportunity to explore the interaction between delta channel geomorphology and delta-front erosion–accretion patterns. Cross-section dimensions and shape, longitudinal gradation and a sediment budget are used to quantify spatial and temporal morphological change along the Qingshuigou channel. Distinctive periods of channel change are identified, and analysis provides a detailed understanding of the temporal and spatial adjustments of the channel to specific human interventions, including two artificial channel diversions and changes in water and sediment supply driven by river management, and downstream delta-front development. Adjustments to the diversions included a short-lived period of erosion upstream and significant erosion in the newly activated channel, which progressed downstream. Channel geomorphology widened and deepened during periods when management increased water yield and decreased sediment supply, and narrowed and shallowed during periods when management reduced water yield and the sediment load. Changes along the channel are driven by both upstream and downstream forcing. Finally, there is some evidence that changing delta-front erosion–accretion patterns played an important role in the geomorphic evolution of the deltaic channel; an area that requires further investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
Flume experiments, in which the middle section of an erosion channel is displaced horizontally, have been conducted to assess the response of streams to horizontal displacement by a strike‐slip fault. The experimental erosion channel was developed in a mixture of sand and clay, which provided relatively stable banks with its cohesiveness. Horizontal displacement of a strike‐slip fault perpendicular to the channel is expected to add a ?at section to its longitudinal pro?le along the fault line. The experimental stream eliminated this ?at section with downstream degradation, upstream aggradation, and lateral channel shift. As a result, a roughly continuous longitudinal pro?le was maintained. This maintenance of a continuous longitudinal pro?le along channel is considered to be the principle of stream response to horizontal displacement by a strike‐slip fault. Downstream degradation was the dominant process of this stream response in the overall tendency of erosion without sand supply. When the rate of fault displacement was low (long recurrence interval), the experimental stream eroded the fault surface, jutting laterally into the channel like a scarp, and de?ected the channel within the recurrence interval. This lateral channel shift gave some gradient to the reach created by fault displacement (offset reach), and the downstream degradation occurred as much as completing the remaining longitudinal pro?le adjustment. When the rate of fault displacement was high (short recurrence interval), the lateral erosion on the ?rst fault surface was interrupted by the next fault displacement. The displacement was then added incrementally to the existing channel offset making channel shift by lateral erosion increasingly dif?cult. The channel offset with sharp bends persisted without much modi?cation, and downstream degradation and upstream aggradation became evident with the effect of the offset channel course, which worked like a dam. In this case, a slight local convexity, which was incidentally formed by downstream degradation and upstream aggradation, tended to remain in the roughly continuous longitudinal pro?le, as long as the horizontal channel offset persisted. In either case, once the experimental stream obtained a roughly continuous gradient, further channel adjustment seemed to halt. Horizontal channel offset remained to a greater or lesser extent at the end of each run long after the last fault displacement. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

13.
Erosion, sediment transportation and accumulation in rivers   总被引:8,自引:5,他引:3  
The present paper analyses the interrelation between erosion, sediment transportation and accumulation proposed by N. I. Makkaveyev (1908-1983) and its further development in modem studies of river channel processes in Russia. Spatio-temporal linkages between erosion and accumulation are defined considering channel processes at different scales - river longitudinal profile, channel morphological patterns, alluvial bedforms (bars, dunes) and individual sediment particles. Relations between river geomorphic activity, flow transportation capacity and sediment budgets are established (sediment input and output; channel bed erosion and sediment entrainment into flow - termination of sediment transport and its deposition). Channel planforms, floodplain segments separated by the latter and alluvial channel bedforms are shown to be geomorphic expressions of sediment transport process at different spatial and temporal scales. This paper is dedicated to the 100th anniversary of N. I. Makkaveyev, Professor of the Moscow State University, author of the book "River channel and erosion in its basin" (1955). That book is regarded in Russia as the pioneering work which initiated the complex hydrological and geographical studies of channel processes and laid a basis for the theory of unified fluvial erosion-accumulation process.  相似文献   

14.
The prediction of the morphological evolution of renaturalized streams is important for the success of restoration projects. Riparian vegetation is a key component of the riverine landscape and is therefore essential for the natural rehabilitation of rivers. This complicates the design of morphological interventions, since riparian vegetation is influenced by and influences the river dynamics. Morphodynamic models, useful tools for project planning, should therefore include the interaction between vegetation, water flow and sediment processes. Most restoration projects are carried out in USA and Europe, where rivers are highly intervened and where the climate is temperate and vegetation shows a clear seasonal cycle. Taking into account seasonal variations might therefore be relevant for the prediction of the river morphological adaptation. This study investigates the morphodynamic effects of riparian vegetation on a re‐meandered lowland stream in the Netherlands, the Lunterse Beek. The work includes the analysis of field data covering 5 years and numerical modelling. The results allow assessment of the performance of a modelling tool in predicting the morphological evolution of the stream and the relevance of including the seasonal variations of vegetation in the computations. After the establishment of herbaceous plants on its banks, the Lunterse Beek did not show any further changes in channel alignment. This is here attributed to the stabilizing effects of plant roots together with the small size of the stream. It is expected that the morphological restoration of similarly small streams may result in important initial morphological adaptation followed by negligible changes after full vegetation establishment. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

15.
Changes in river regime after the construction of upstream reservoirs   总被引:1,自引:0,他引:1  
This article presents and analyses many years of investigations in China on the fluvial processes downstream of impounding and detention reservoirs. The study covers the change in hydrograph, the recovering of sediment concentration along the river course, the degradation of stream bed, the adjustment of longitudinal profile, the coarsening of bed material, the change in channel width, and the trend of channel pattern variation for alluvial streams downstream of impounding reservoirs. Without confluence of major tributaries, the degradation may extend to a great distance below the dam. In the process of reducing the sediment carrying capacity of the flow to match the diminished sediment supply, the coarsening of bed material is a factor of equal, if not greater, importance as compared with the flattening of channel gradient. In places where the flow has not been sufficiently cut down and the bank is erosive non-resistant, a receding of banklines may take place in concurrence with the deepening of the river bed. Below detention reservoirs, even if the total runoff and sediment supply remain essentially unchanged, the modification of the hydrograph is sufficient to enhance the deterioration of the downstream channel.  相似文献   

16.
Streambank erosion is a primary source of suspended sediments in many waterways of the US Atlantic Piedmont. This problem is exacerbated where banks are comprised of fine sediment produced by the intensive land use practices of early European settlers. A stream in this region, Richland Creek incises into banks comprised of three stratigraphic layers associated with historic land use: pre‐European settlement, early European agriculture and development, and water‐powered milldam operation. This study aims to identify the bank processes along a reach of Richland Creek that is eroding towards its pre‐disturbance elevation. The volume of material that has eroded along this stream since the milldam breached was calculated by differencing a reconstructed surface of the pond bed and an aerial lidar digital terrain model (DTM). Immediately downstream from the study reach, the channel is floored by bedrock and immediately upstream the rate of channel erosion approximately doubled along the longitudinal profile of Richland Creek, which indicate that the study reach spans the transition from a channel dominated by vertical incision in the upstream direction to horizontal widening in the downstream direction. The combined hydrometeorological conditions and dominant processes causing reach‐scale cut bank erosion were investigated with analyses of stream stage, precipitation, and streambank volumetric and surfaces change that was measured during nine terrestrial lidar surveys in 2010–2012. The spatial variability of erosion during a simulated precipitation event was examined in a field‐based experiment. Erosion was greatest where mill pond sediment columns detached along vertical desiccation and horizontal seepage cracks. This sediment accumulated on the bank toe throughout the study and was a source of readily‐entrained fine sediment contrary to the upper reaches where depositional accommodation space is more limited. Findings suggest that hotspots of sediment excavation progress upstream, indicating that restoration efforts should focus upon stabilizing banks at these locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Sediment in urban stormwater systems creates a significant maintenance burden, while a lack of coarse-grained bed sediment in streams limits their ecological value and geomorphic resilience. Gravel substrates, for example, provide benthic habitat yet are often scoured from the channel bed only to end up in a detention basin or treatment wetland. This dual problem of both ‘too much’ and ‘too little’ coarse-grained sediment reflects a watershed sediment budget that is profoundly altered. We developed a conceptual urban coarse-grained (>0.5 mm) sediment budget across three domains: hillslopes (urban land surfaces), the built stormwater network and stream channels. We then quantified key sources, sinks and storages for a suburban case study, using a combination of hillslope and in-channel monitoring, and interrogation of local government records. Around 36% of the sediment supplied to the stormwater network reached the catchment outlet, a level of sediment delivery much higher than observed in similar-sized natural catchments. The remainder was deposited in the sediment cascade and either stored, or extracted and removed from the catchment (e.g. material deposited in sediment ponds and gross pollutant traps). Conventional urban drainage networks are characterized by high hillslope sediment supply and low storage, resulting in efficient sediment delivery. Channel erosion, deposition in (and extraction from) pipes and channels, and floodplain deposition are small compared to sediment transport through the cascade. An understanding of the sediment budget of urban headwater catchments can provide stormwater and waterway managers with the information they need to address specific sediment problems such as sedimentation in stormwater assets and geomorphic recovery of urban streams. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
This study examined stream water quality across a range of catchments which are representative of the key environments and land uses of rural south-west England. These catchments included: (a) an acidic upland headwater catchment, rising on the moorlands of Dartmoor, with low-intensity sheep rearing; (b) a headwater catchment rising on the weathered granite lower slopes of Dartmoor, with cattle farming; (c) a lowland headwater clay catchment with sub-surface drainage and high intensity livestock farming, fodder crop cultivation, and hard-standing/slurry storage; and (d) the main River Taw, a lowland river system receiving drainage from a range of tributaries, exemplified by the above catchment types. Variations in water chemistry and quality were observed along an upland–lowland transition, from headwater streams to the main river channel. Within the livestock-dominated headwater streams, total phosphorus (TP) was dominated by particulate phosphorus (PP). These PP concentrations appeared to be mainly linked to two sets of processes: (1) in-stream sediment precipitation with sorption/co-precipitation of phosphate and/or localised in-channel mobilisation of sediment (by cattle or channel-clearing operations) under low flow conditions, and (2) sediment erosion and transportation associated with near-surface runoff during storm events. Under baseflow conditions, in-stream and/or riparian processes played a significant role in controlling general nutrient chemistry, particularly in the headwater streams which were heavily impacted by livestock.  相似文献   

19.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

20.
Relatively little attention has been given to river channel adjustments that occur downstream from channelization works. This study is concerned with the nature of channel adjustments downstream from a total of 46 channelization works located in low and high energy environments in England and Wales. Channel changes are identified principally by the method of field survey and by reconstructing the original positions of eroded beds and banks. Use is also made of maps, aerial photographs, and engineering drawings of different dates and the technique of space-for-time substitution is applied. Enlargement of channel cross-sections through erosion had occurred downstream from a variety of types, sizes, and dates of channelization works. The maximum increase of channel size was 153 per cent. Out of a total of 14 sites with enlarged channel cross-sections, seven had undergone a change of width only, at a further three width increased rather than depth, and at the remaining four sites depth increases were dominant. These sites all have relatively high stream powers. Factors causing spatial variation of erosion included tree roots locally binding bank sediments and the occurrence of bends. Planform change had taken place at only one site. A further three high stream power sites had downstream reaches incised into bedrock and therefore did not exhibit adjustment. Channel enlargement is explained in terms of increased flood flows downstream from channelization works causing higher stream velocities, which in turn cause erosion, thereby increasing channel width and/or depth. Examination of flow records for 35 stations revealed flood events which would formerly have spread overbank but are now confined by the channelization works and are therefore likely to alter downstream flows. At sites with downstream change it is proposed that the energy of increased flows was sufficient to exceed a threshold required for erosion of perimeter sediments. By contrast the absence of change at a majority of sites in low energy lowland areas could be a reflection of both the incompetence of increased flows to erode and resistance provided by perimeter sediments. Sites with erosion features appear not to have yet attained new equilibrium conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号