首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Short-term water system operation can be realized using Model Predictive Control (MPC). MPC is a method for operational management of complex dynamic systems. Applied to open water systems, MPC provides integrated, optimal, and proactive management, when forecasts are available. Notwithstanding these properties, if forecast uncertainty is not properly taken into account, the system performance can critically deteriorate.Ensemble forecast is a way to represent short-term forecast uncertainty. An ensemble forecast is a set of possible future trajectories of a meteorological or hydrological system. The growing ensemble forecasts’ availability and accuracy raises the question on how to use them for operational management.The theoretical innovation presented here is the use of ensemble forecasts for optimal operation. Specifically, we introduce a tree based approach. We called the new method Tree-Based Model Predictive Control (TB-MPC). In TB-MPC, a tree is used to set up a Multistage Stochastic Programming, which finds a different optimal strategy for each branch and enhances the adaptivity to forecast uncertainty. Adaptivity reduces the sensitivity to wrong forecasts and improves the operational performance.TB-MPC is applied to the operational management of Salto Grande reservoir, located at the border between Argentina and Uruguay, and compared to other methods.  相似文献   

2.
Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to investigate: (1) the effects of plants on delta growth and channel network formation; and (2) the timescales controlling delta evolution in the presence of plants. Experiments were conducted with fluctuating discharge (i.e. flood and base flow periods) and variable seeding densities. We found that when deltas were small, channels had no memory across flood cycles, as floods could completely fill the incised channel network. When deltas were large, the larger channel volume could remain underfilled to keep channel memory. Plant patches also helped to increase the number of channels and make a more distributive network. Patchiness increased over time to continually aid in bifurcation, but as vegetation cover and patch sizes increased, patches began to merge. Larger patches blocked the flow to enhance topset deposition and channel filling, even for the case of large deltas with a high channel volume. We conclude that both plant patchiness and delta size affect the development of the channel network, and we hypothesize that their influences are manifested through two competing timescales. The first timescale, Tv, defines the time when the delta is large enough for channels to have memory (i.e. remain underfilled), and the second, Tp, defines the time when vegetation patches merge, amplifying deposition and blocking channels. When run time is between these two timescales, the delta can develop a persistent distributary network of channels aided by bifurcation around plant patches, but once Tp is reached, the channel network can again be destroyed by vegetation. © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
An idealized numerical model is developed to study the spatial asymmetry of ebb–tidal deltas under influence of large-scale alongshore tidal currents. It is shown that the asymmetry of the delta depends on the magnitude of the cross-shore and large scale alongshore tidal currents, their phase difference, and on the width of the inlet. Model results are compared with observations of ebb–tidal deltas of the tidal inlet systems of the Dutch Wadden Sea and with the ebb–tidal delta of the Eastern Scheldt, located in the southwestern part of the Netherlands. The modeled current and residual sediment transport patterns agree well with observed ones. The modeled asymmetry of the ebb–tidal delta also agree with observed ones. Furthermore, bottom patterns are consistent with those found with a previous version of the idealized model which focused on the modeling of symmetric ebb–tidal deltas. However, the model is not able to reproduce the observed ebb-dominated channel. The underlying physical processes are explained in terms of vorticity dynamics. The convergence of the mean vorticity flux generates mean vorticity and thereby residual circulation. An analysis shows there is competition between two contributions to the convergence of the mean vorticity flux. This competition explains the sensitivity of the results to the model parameters.  相似文献   

4.
Theoretical principles of the sediment budget at river mouths and the role of deltas in the deposition of river sediments are discussed. The results of the quantitative assessment of sediment budget components at river deltas are given. The article shows the impact of such natural factors as delta sizes, peculiarities of their topography and hydrographic system, as well as a series of anthropogenic factors, including diking, water intake structures, etc., on the role of deltas in sediment retention.  相似文献   

5.
Arctic deltas, such as the Mackenzie Delta, are expected to face major climate change and increased human influence in the near future. Deltas are characterised by highly dynamic fluvial processes, and changing climate will cause considerable evolution of the riverine environment. The changes are difficult to predict with existing knowledge and data. This study quantified channel planform change of the Mackenzie Delta (1983–2013), analysing its temporal and spatial patterns. We addressed the main obstacle of research on large remote areas, the lack of data, by developing a unique work flow that utilised Landsat satellite imagery, hydrological time series, remote sensing‐based change analysis, and automatic vectorisation of channels. Our results indicate that the Mackenzie Delta experienced constant evolution but at a highly varying rate over the 30 years. The study demonstrates that the magnitude and duration of flood peaks and the presence of spring ice breakup floods determine the rate of Arctic delta planform change. Changing winter conditions and spring flood magnitudes may therefore affect the stability of Arctic deltas. However, no clear trends towards decreased recurrence or magnitude of spring floods or increased instability of the delta plain have yet been observed in the Mackenzie Delta. The delta plain was most dynamic at the beginning and at the end of the examined period, corresponding to intense flooding, whereas the rates of change were subtle during the low‐flood period 1994–2007. The largest changes have occurred along the wide Middle Channel and in the outermost delta. Relative to their size, however, smaller meandering channels have been highly dynamic. Hotspots of change in the delta plain are located in anastomosing and braiding channel segments and, at the local scale, in point bars and cut‐banks along meandering channels. Our study describes how Landsat satellite data can be utilised for advancing fluvial geomorphological research in remote areas. However, cloudiness in the delta restricts production of dense time series with simultaneous coverage of the whole area and requires manual preprocessing.  相似文献   

6.
Data on several river deltas are used to analyze the regularities in their dynamics in the context of variations of water and sediment runoff, sea level, and hydroengineering activities in delta areas. The basis for this analysis includes the results of many-year studies of river deltas in Russia and the world. The specific features of the evolution of the structure and morphometry of bayhead deltas, forming in bays, lagoons, and estuaries are shown in the case of the Alikazgan delta in the Terek mouth area and the deltas of two watercourses in the Mississippi mouth area. Data on many-year variations of the morphometric characteristics of modern protruding deltas in open coastal zones are systematized, and the factors that have an effect on these changes are analyzed. The types of delta formation processes and the types of deltas are considered with regard to the factors involved. The majority of modern river deltas are found to slow down their progradation into seas under the effect of anthropogenic runoff decline; moreover, some deltas have started retreating and degrading.  相似文献   

7.
Gender of large river deltas and parasitizing rivers   总被引:1,自引:0,他引:1  
Deltas are the most dynamic part of large rivers and the characteristics of deltas reflect the basic nature of morphodynamics,ecology and anthropogenic influence.The authors investigated many deltas of...  相似文献   

8.
Climate warming in the Arctic directly causes two opposite changes in Arctic coastal systems: increased melt‐water discharge through rivers induces extra influx of sediments and extended open water season increases wave impact which reworks and erodes the shores. A shoreline change analysis along the southern coast of Disko Island in western Greenland was conducted with aerial photographs and satellite images from 1964, 1985, and 2012. The decadal morphologic evolution of this 85 km section showed that large parts of the coast had undergone very limited changes. However, two deltas were highly dynamic and popped up as hotspots. The Tuapaat delta and Skansen delta showed large progradation rates (1.5 and 7 m/yr) and migration of the adjacent barriers and spits. The dynamic behavior at the delta mouths was mainly caused by classic delta channel lobe switching at one delta (Tuapaat), and by a breach of the fringing spit at the other delta (Skansen). The longshore and cross‐shore transports are responsible for reworking the sediment with a result of migrating delta mouths and adjacent subaqueous mouth bars. Seaward progradation of the deltas is limited due to the steep nature of the bathymetry in Disko Bay. Finally, a schematic conceptual overview of processes and associated morphological responses for deltas in Arctic environments is presented, including the climate drivers affecting delta evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Bifurcations in tidally influenced deltas distribute river discharge over downstream channels, asserting a strong control over terrestrial runoff to the coastal ocean. Whereas the mechanics of river bifurcations is well-understood, junctions in tidal channels have received comparatively little attention in the literature. This paper aims to quantify the tidal impact on subtidal discharge distribution at the bifurcations in the Mahakam Delta, East Kalimantan, Indonesia. The Mahakam Delta is a regular fan-shaped delta, composed of a quasi-symmetric network of rectilinear distributaries and sinuous tidal channels. A depth-averaged version of the unstructured-mesh, finite-element model second-generation Louvain-la-Neuve Ice-ocean Model has been used to simulate the hydrodynamics driven by river discharge and tides in the delta channel network. The model was forced with tides at open sea boundaries and with measured and modeled river discharge at upstream locations. Calibration was performed with water level time series and flow measurements, both spanning a simulation period. Validation was performed by comparing the model results with discharge measurements at the two principal bifurcations in the delta. Results indicate that within 10 to 15 km from the delta apex, the tides alter the river discharge division by about 10% in all bifurcations. The tidal impact increases seaward, with a maximum value of the order of 30%. In general, the effect of tides is to hamper the discharge division that would occur in the case without tides.  相似文献   

11.
DIAS (European Digital Upper Atmosphere Server) effective sunspot number — R12eff was recently introduced as a proxy of the ionospheric conditions over Europe for regional ionospheric mapping purposes. Although a pre-processing step for the real-time update of the Simplified Ionospheric Regional Model (SIRM) to real-time conditions, R12eff is available in real time by DIAS system (http://dias.space.noa.gr) for independent operational use. In this paper we discuss the efficiency of R12eff to specify ionospheric conditions over Europe. For this purpose, the diurnal R12eff’s reference pattern was determined on monthly basis and for different solar cycle phases. The deviation of the real-time R12eff estimates from the reference values, ΔR12eff was found to be highly correlated with the foF2 storm-time disturbances, especially during large scale effects indicating that DIAS-R12eff can provide a reliable estimator of the ionospheric activity level over a substantial part of Europe and a powerful tool for ionospheric specification applications.  相似文献   

12.
This article characterizes the atlas prepared at the Faculty of Geography, Moscow State University; 87 mouths of the largest world rivers are presented in space images. The atlas has 325 pages, 95 maps, 425 images and six printer’s sheets of explanatory text. The atlas is based on space images in the Internet galleries with data representation at different territorial levels (river mouth area-delta, estuary or their complex-typical delta reaches). The atlas shows specific features of river mouth areas, their hydrological and morphological structure, including estuaries and river deltas, their long-term and seasonal dynamics, landscapes and delta land use, hydraulic structures in deltas, ports, cultural and historical monuments, as well as recreation objects.  相似文献   

13.
In a real-time hybrid simulation, a transfer system is used to enforce the interface interaction between computational and physical substructures. A model-based, multilayer nonlinear control system is developed to accommodate extensive performance variations and uncertainties in a physical substructure. The aim of this work is to extend the application of real-time hybrid simulation to investigating failure, nonlinearity, and nonstationary behavior. This Self-tuning Robust Control System (SRCSys) consists of two layers: robustness and adaptation. The robustness layer synthesizes a nonlinear control law such that the closed-loop dynamics perform as intended under a broad range of parametric and nonparametric uncertainties. Sliding mode control is employed as the control scheme in this layer. Then, the adaptation layer reduces uncertainties at run time through slow and controlled learning of the control plant. The tracking performance of the SRCSys is evaluated in two experiments that have highly uncertain physical specimens.  相似文献   

14.
Sewer inlet structures are vital components of urban drainage systems and their operational conditions can largely affect the overall performance of the system. However, their hydraulic behaviour and the way in which it is affected by clogging is often overlooked in urban drainage models, thus leading to misrepresentation of system performance and, in particular, of flooding occurrence. In the present paper, a novel methodology is proposed to stochastically model stormwater urban drainage systems, taking the impact of sewer inlet operational conditions (e.g. clogging due to debris accumulation) on urban pluvial flooding into account. The proposed methodology comprises three main steps: (i) identification of sewer inlets most prone to clogging based upon a spatial analysis of their proximity to trees and evaluation of sewer inlet locations; (ii) Monte Carlo simulation of the capacity of inlets prone to clogging and subsequent simulation of flooding for each sewer inlet capacity scenario, and (iii) delineation of stochastic flood hazard maps. The proposed methodology was demonstrated using as case study design storms as well as two real storm events observed in the city of Coimbra (Portugal), which reportedly led to flooding in different areas of the catchment. The results show that sewer inlet capacity can indeed have a large impact on the occurrence of urban pluvial flooding and that it is essential to account for variations in sewer inlet capacity in urban drainage models. Overall, the stochastic methodology proposed in this study constitutes a useful tool for dealing with uncertainties in sewer inlet operational conditions and, as compared to more traditional deterministic approaches, it allows a more comprehensive assessment of urban pluvial flood hazard, which in turn enables better-informed flood risk assessment and management decisions.  相似文献   

15.
Assimilation of SLA and SST data into an OGCM for the Indian Ocean   总被引:6,自引:0,他引:6  
 Remotely sensed observations of sea-level anomaly and sea-surface temperature have been assimilated into an implementation of the Miami Isopycnic Coordinate Ocean Model (MICOM) for the Indian Ocean using the Ensemble Kalman Filter (EnKF). The system has been applied in a hindcast validation experiment to examine the properties of the assimilation scheme when used with a full ocean general circulation model and real observations. This work is considered as a first step towards an operational ocean monitoring and forecasting system for the Indian Ocean. The assimilation of real data has demonstrated that the sequential EnKF can efficiently control the model evolution in time. The use of data assimilation requires a significant amount of additional processing and computational resources. However, we have tried to justify the cost of using a sophisticated assimilation scheme by demonstrating strong regional and temporal dependencies of the covariance statistics, which include highly anisotropic and flow-dependent correlation functions. In particular, we observed a marked difference between error statistics in the equatorial region and at off-equatorial latitudes. We have also demonstrated how the assimilation of SLA and SST improves the model fields with respect to real observations. Independent in situ temperature profiles have been used to examine the impact of assimilating the remotely sensed observations. These intercomparisons have shown that the model temperature and salinity fields better resemble in situ observations in the assimilation experiment than in a model free-run case. On the other hand, it is also expected that assimilation of in situ profiles is needed to properly control the deep ocean circulation. Received: 8 January 2002 / Accepted: 8 April 2002  相似文献   

16.
Fractal Dimension of the Channel Network Structure of Selenga River Delta   总被引:1,自引:0,他引:1  
Balkhanov  V. K.  Bashkuev  Yu. V. 《Water Resources》2004,31(2):148-151
Specific features of the geomorphology and hydrology of Selenga River delta are considered. Fractal theory is used to evaluate the fractal dimension of the river delta as a branched structure. The fractal dimension of the planar pattern of the Selenga and Volga deltas are evaluated for the first time using three independent methods. The obtained values are 1.38 and 1.72, respectively.  相似文献   

17.
The Niger River delta, one of the largest deltas of the world, is characterized in this article. The geographic features, including the delta hydrographic system, natural and territorial complexes, hydrological regime, and the dynamics of the coastline, are discussed. Special emphasis is given to the assessment of the impact of the following factors on the delta structure and regime: river flow regulation, tides, the ocean level rise, sea waves, natural and human-induced land subsidence.  相似文献   

18.
The problem of assessment of sea level rise impact on the hydrological regime and morphological structure of river deltas is discussed. Studies of the response of river deltas, which are among the most vulnerable natural objects, to the sea level rise has become urgent because of the global climate warming and the associated acceleration of the World Ocean level rise. Methods are described that can be used for the analysis, calculation, and prediction of sea level rise impact on submergence of deltas, propagation of backwater from the sea tides, surges, and salt seawater intrusion. Special emphasis is given to channel processes in delta branches, which accompany sea level rise, as well as to delta coastline erosion and flow redistribution among branches. In the course of research, due consideration was taken of the experience gained in studying the response of river deltas on the Caspian Sea coasts to the recent considerable level rise in this water body.  相似文献   

19.
This paper presents a test system for conducting on-line tests in a real time and a series of real-time on-line tests conducted to verify the effectiveness of the system. The proposed system is characterized by (1) use of a Digital Signal Processor (DSP) now readily available, (2) adoption of the C language to ensure easy programming, and (3) separation of response analysis and displacement signal generation to apply the system for tests with complex structures. To create displacement signals successively without being interrupted by the computation of equations of motion, extrapolation and interpolation procedures using present and past target displacements are developed. Base-isolated building models were chosen for the real-time on-line test. The effectiveness of the extrapolation and interpolation procedures was demonstrated through a series of real-time on-line tests applied to the models treated as SDOF structures. A five-storey base-isolated building model (treated as a six DOF structure) was tested for various ground motions, and it was verified that the system is able to simulate earthquake responses involving large displacements and large velocities. The number of DOFs that can be handled in the proposed system was investigated, and it was found that the system is capable of performing the test with reasonable accuracy for up to 10 DOF structures with a range of response frequency not greater than 3·0 Hz, or 12 DOF structures with a range of response frequency not greater than 2·0 Hz. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号