首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The occurrence of critical assemblages among antigorite, diopside, tremolite, forsterite, talc, calcite, dolomite and magnesite in progressively metamorphosed ophicarbonate rocks, together with experimental data, permits the construction of phase diagrams in terms of the variables P, T, and composition of a binary CO2-H2O fluid. Equilibrium constants are given for the 30 equilibria that describe all relations among the above phases. Ophicalcite, ophidolomite, and ophimagnesite assemblages occupy partially overlapping fields in the diagram. The upper temperature limit of ophicalcite rocks lies below that of ophidolomite and ophimagnesite. The fluid phase in ophicarbonate rocks has 0.8$$ " align="middle" border="0"> , and there are indications that during their progressive metamorphism is approximately equal to P total.  相似文献   

2.
Two metamorphic isograds cut across graphitic schist near Pecos Baldy, New Mexico. The southern isograd marks the first coexistence of staurolite with biotite, whereas the northern isograd marks the first coexistence of andalusite with biotite. The isograds do not record changes in temperature or pressure. Instead, they record a regional gradient in the composition of the metamorphic fluid phase. Ortega Quartzite, which contains primary hematite, lies immediately north of the graphitic schist. Mineral compositions within the schist change gradually toward the quartzite, reflecting gradients in and . The chemical potential gradients, locally as high as 72 cal/m in and 9 cal/m in , controlled the positions of the two mapped isograds. The staurolite-biotite isograd records where fell below 0.80, at near 10–23 bars; the andalusite-biotite isograd records where fell below 0.25, at near 10–22 bars. Dehydration and oxidation were coupled by graphite-fluid equilibrium.The chemical potential gradients apparently formed during metamorphism, as graphite in schist reacted with hematite in quartzite. Local oxidation of graphite formed CO2 which triggered dehydration reactions along the schistquartzite contact. This process created a C-O-H fluid which infiltrated into overlying rocks. Upward infiltration, local fluid-rock equilibration and additional infiltration proceeded until the composition of the infiltrating fluid evolved to that in equilibrium with the infiltrated rock. This point occurs very close to the staurolite-biotite isograd. Pelitic rocks structurally above this isograd show no petrographic evidence of infiltration, even though calculations indicate that volumetric fluid/rock ratios may have exceeded 15 and thin, rare calc-silicate beds show extensive K-metasomatism and quartz veining.  相似文献   

3.
The partition of iron and magnesium between cordierite and garnet depends on as well as temperature. The apparently conflicting experimental data on the values of K D may be reconciled by considering the pertaining during the different experiments.  相似文献   

4.
In the Rogers Pass area of British Columbia the almandine garnet isograd results from a reaction of the form: 5.31 ferroan-dolomite+8.75 paragonite+4.80 pyrrhotite+3.57 albite+16.83 quartz+1.97 O2=1.00 garnet+16.44 andesine+1.53 chlorite+2.40 S2+1.90 H2O+10.62 CO2. The coefficients of this reaction are quite sensitive to the Mn content of ferroan-dolomite.Experimental data applied to mineral compositions present at the isograd, permits calculation of two intersecting P, T equilibrium curves. P=29088–39.583 T is obtained for the sub-system paragonite-margarite (solid-solution), plagioclase, quartz, ferroan-dolomite, and P=28.247 T–14126 is obtained for the sub-system epidote, quartz, garnet, plagioclase. These equations yield P=3898 bars and T=638° K (365° C). These values are consistent with the FeS content of sphalerite in the assemblage pyrite, pyrrhotite, sphalerite and with other estimates for the area.At these values of P and T the composition of the fluid phase in equilibrium with graphite in the system C-O-H-S during the formation of garnet is estimated as: bars, bars, bars, bars, bars, bars, bars, bars, , bars, bars.  相似文献   

5.
Ignimbrites from the central North Island consist mainly of glass or its devitrified product (70–95%); their phenocryst mineralogy is varied and includes plag., hyp., ti-mag., ilm., aug., hblende, biot., san., qtz, ol., with accessory apatite, zircon and pyrrhotite. The Fe-Mg minerals can be used to divide the ignimbrites into four groups with hyp.+aug. reflecting high quench temperatures and biot.+hblende +hyp.+aug., low quench temperatures. Oxygen fugacities lie above the QMF buffer curve and even in ignimbrites with low crystal contents the solid phases apparently buffered fO2. Some ignimbrites contain the assemblage actinolite, gedrite, magnetite and hematite, reflecting post-eruption oxidation. The mineralogy also allows estimation of using pyrrhotite and thence , . The assemblage biotite-sanidine can be used to estimate and thence . Water fugacity is calculated in a variety of ways using both biotite and hornblende as well as the combining reaction . It is high and approaches P total in most ignimbrites (~4kb) but is lower in unwelded pumice breccias. Comparison of temperature estimates using mineral geothermometers for the various phenocryst phases suggests that the ignimbrite magmas showed temperature differences of 60–100 °C and pressure differences of several kilobars. Individual magma chambers therefore, would have extended over several kilometres vertically. The chemical potential of water may have been constant through the magma.  相似文献   

6.
Under hydrous conditions the stability field of the assemblage Mg-cordierite+K feldspar+quartz is limited on its low-temperature side by the breakdown of cordierite+K feldspar into muscovite, phlogopite and quartz, whereas the high-temperature limit is given by eutectic melting. The compatibility field of the assemblage ranges from 530° C to 745° C at 1 kbar , from 635 to 725° C at 3 kbars , from 695 to 725° C at 5 kbars and terminates at 5.5 kbars . Most components not considered in the model system will tend to restrict this field even more. However, the condition < P total will increase the range of stable coexistence drastically, making the assemblage common at elevated temperatures from contact metamorphic rocks up to intermediate pressure granulites of appropriate bulk composition.  相似文献   

7.
Near-liquidus melting experiments were performed on a high-K latite at fO2's ranging from iron-wustite-graphite (IWG) to nickel-nickel oxide (NNO) in the presence of a C-O-H fluid phase. Clinopyroxene is a liquidus phase under all conditions. At IWG , the liquidus at 10 kb is about 1,150° C but is depressed to 1,025° C at NNO and . Phlogopite and apatite are near-liquidus phases, with apatite crystallizing first at pressures below 10 kb. Phlogopite is a liquidus phase only at NNO and high . Under all conditions the high-K latites show a large crystallization interval with phlogopite becoming the dominant crystalline phase with decreasing temperature. Increasing fO2 affects phlogopite crystallization but the liquidus temperature is essentially a function of . The chemical compositions of the near-liquidus phases support formation of the high-K latites under oxidizing conditions (NNO or higher) and high . It is concluded from the temperature of the H2O-saturated liquidus at 10 kb, the groundmass: crystal ratio and presence of chilled latite margins around some xenoliths that the Camp Creek high-K latite magma passed thru the lower crust at temperatures of 1,000° C or more.  相似文献   

8.
Trace element analyses of 1-atm and high-pressure experiments show that in komatiite and peridotite, the olivine (OL)/liquid (L) distribution coefficient for Al2O3 ( ) increases with pressure and temperature. Olivine in equilibrium with liquid accepts as much as 0.2 wt% Al2O3 in solution at 6 GPa. Convergence to equilibrium compositions at this high level is shown by cation diffusion of Al into synthetic forsterite crystals of low-Al contents in the presence of melt. Convergence to low-Al equilibrium compositions at lower P and T is shown by diffusion of Al out of synthetic forsterite with high initial Al content. Isobaric and isothermal experimental data subsets reveal that temperature and pressure variations both have real effects on . Variation in silicate melt composition has no detectable effect on within the limited range of experimentally investigated mixtures. Least-squares regression for 24 experiments, using komatiite and peridotite, performed at 1 atm to 6 GPa and 1300 to 1960°C, gives the best fit equation: Increase in with increasingly higher-pressure melting is consistent with incorporation of a spinel-like component of low molar volume into olivine, although other substitutions possibly involving more complex coupling cannot be ruled out. High P-T ultrabasic melting residues, if pristine, may be recognized by the high calculated from microprobe analyses of Al2O3 concentrations in residual olivines and estimated Al2O3 concentration in the last liquid removed. In general the low levels of Al in natural olivine from mantle xenoliths suggest that pristine residues are rarely recovered.  相似文献   

9.
Iron chlorites with compositions intermediate between the two end-members daphnite (Fe5Al2Si3O10(OH)8) and pseudothuringite (Fe4Al4Si2O10(OH)8) were synthesized from mixtures of reagent chemicals. The polymorph with a 7 Å basal spacing initially crystallized from these mixtures at 300 °C and 2 kb after two weeks. Conversion to a 14 Å chlorite required a further 6 weeks at 550 °C. Shorter conversion times were required at higher water pressures. The products contained up to 20% impurities.The maximum equilibrium decomposition temperature for iron chlorite, approximately 550 °C at 2kb, is at an between assemblages (1) and (2) listed below. Synthetic iron chlorite will break down by various reactions with variable P, T, and fugacity of oxygen. For the composition FeAlSi = 523, the sequence of high temperature breakdown products with increasing traversing the magnetite field for P total = =2kb is: (1) corierite+ fayalite+hercynite; (2) cordierite+fay alite+magnetite; (3) cordierite+magnetite+quartz; (4) magnetite+mullite+quartz. Almandine should replace cordierite in assemblages (1) and (2) but it did not nucleate. The significance of the relationship between iron cordierite and almandine in this system is discussed.At water pressures from 4 to 8.5 kb and at the nickel-bunsite buffer, iron chlorite+quartz break down to iron gedrite+magnetite with temperature 550 to 640 °C along the curve. At temperatures 50 °C greater and along a parallel curve, almandine replaces iron gedrite. For on this buffer curve, almandine is unstable below approximately 4 kb for temperatures to approximately 750 °C.  相似文献   

10.
The positions of the liquidi and the near-liquidus phases of olivine-melilitite+CO2 have been determined under MH-buffered and furnace-buffered conditions up to 40 kb. It is found that CO2 alone lowers the liquidus compared to dry conditions, yet its influence is minor compared to H2O. The major role of CO2 is to favour the growth of orthopyroxene and garnet over that of olivine at least at high pressures. CO2-contents of glasses from experiments just above the liquidus (MH-buffered) were determined as 5.1 % at 10kb; 7.5 % at 20kb, 9.3 % at 30kb and 10–11 % (estimated) at 40 kb. Experiments on (pyrolite –40 % olivine)+H2O+CO2 show that CO2 occurs under mantle conditions as carbonate under subsolidus conditions and dissolved in a melt above the solidus. At 30kb, the solidus lies between 1,000 ° C and 1,050 ° C for vapour-saturated conditions, at and at .  相似文献   

11.
A suite of heat-treatment experiments have been performed to test the high-temperature stability of San Carlos olivine within the theoretical stability field at one atmosphere total pressure. Exsolution or contamination products did not form on the surfaces of samples which were surrounded by olivine, magnesia, or alumina. In contrast, silica-rich phases developed on the surfaces of samples which were in line-of-sight contact with silica or platinum. These silica-rich phases result from interaction of the olivine with silica or platinum in the furnace environment via vapor phase transport or surface diffusion, rather than from diffusion of excess silica from the bulk to the surface as suggested by Jaoul et al. (1984, 1985). This conclusion is consistent with the reported slow rate of diffusion of silicon in olivine and with the lack of internal precipitation of silica-rich phases. Consequently, it is concluded that San Carlos olivine does not contain silica in excess of the solubility limit under conditions which are within the -T stability field for this (Mg,Fe,Ni)-olivine.  相似文献   

12.
The compositions of coexisting pyroxmangites, rhodonites, rhodochrosites and manganese calcites in regional metamorphosed manganese cale-silicate marbles from Val Scerscen and Alagna were analysed by microprobe and permit definition of critical tie lines at metamorphic grades appropriate to temperatures between 400 and 450 °C.Variations in composition of coexisting mineral pairs in one and the same locality are attributed to variations in and not to metamorphic temperatures. From the analysed assemblages isothermal plots (with SiO2 as excess component) were constructed for the system CaO-MnO-SiO2-CO2.  相似文献   

13.
Water in microcrystalline quartz of volcanic origin: Agates   总被引:2,自引:0,他引:2  
Agates of volcanic origin, containing the different quartz species, fibrous, length-fast chalcedony (CH), granular fine quartz (FQ), and fibrous, length-slow, to lepidospheric quartzine (QN), have been investigated to evaluate possible relations between microstructure, i.e. crystallite size and texture, refractive indices, densities, contents of trace elements and of water, as well as dehydration behaviour. By means of near infrared spectroscopy, total water contents , could be differentiated quantitatively into contents of molecular water, , and silanole-group water, . Despite the low total water contents of the agates studied ( between 1 and 2 wt.%), near infrared spectroscopy results in reliable data on and .Wall-layering CH consists of fibrous quartz crystals and exhibits higher C-ratios, , than horizontally layered FQ which consists predominantly of granular quartz crystals (C CH=0.45±0.11 (N=6), C FQ=0.36±0.10 (N=4). This result is interpreted to be due to analogy with the behaviour of C-ratios in fluid phase-deposited opals-AN (hyalithe) and liquid phase-deposited opals-AG (non-crystalline opal) or -CT (common opal) (Langer and Flörke 1974).Translucent layers of CH show mostly lower refractive indices, when measured parallel than when measured perpendicular to the axes of the quartz fibers. The same is true for milky layers of CH. Crystallite sizes are smaller in the latter than in the former.For all samples studied, exists a positive correlation between at% (1/2Ca+1/2Mg+Na+K+Li) and at% (Al3++Fe3+). This indicates that at least parts of (A13++ Fe3+) substitute for Si in the quartz structure. The charge is balanced by incorporation of di- and mono-valent cations in structural interstices. When the quantity at % H+, as obtained from , is included into the sum at% (1/2 Me2++Me+), the above correlation is destroyed. This result could be indicative for a strong concentration of the Si-OH groups in the surface of the quartz microcrystallites.  相似文献   

14.
Thermodynamic calculations, modified after Nicholls et al. (1971), which relate the activity of silica in a lava to the temperature and pressure conditions at which the lava could be in equilibrium with a mantle mineral assemblage, have been extended to H2O-bearing magmas by using published experimental data to derive the dependence of on the weight fraction of H2O dissolved in a magma. A petrogenetic grid has been calculated which gives the P-T conditions under which a magma with a given at its liquidus at 1 atm could equilibrate with a mantle mineral assemblage containing olivine (ol) and orthopyroxene (opx) for different amounts of H2O in the magma at its source. This grid is in good agreement with the results of experimental studies as summarized by Green (1971) and Brey and Green (1975). The results show that the pressure at which a given magma composition can equilibrate with ol + opx increases for increasing amounts of H2O dissolved in the magma at depth.In addition, experimental data have been used to calculate the effect of olivine crystallization and removal on the in the residual liquid to assess the effect of low-pressure differentiation on . The results show that if 20 % olivine is added to a basalt magma, its calculated pressure of equilibration with ol+opx increases by 4–5 kbar for a given temperature. The calculated effects of olivine removal and H2O addition on are reasonably consistent with the silicate mixing model of Burnham (1975).Thermodynamic calculations of this type may be useful for assessing the internal consistency of certain experimental data, and in extrapolating the results to other magma compositions. The application of these calculations to determining the possible depth of origin of natural lavas appears to be limited primarily by the difficulty in determining in a lava at its liquidus temperature.  相似文献   

15.
The proportions of species in a C-O-H-S fluid in equilibrium with graphite, pyrite and pyrrhotite were calculated for a range of pressure, temperature and conditions, using the equilibrium constants and mass balance method, for ideal and non-ideal mixing in the fluid. Under typical metamorphic conditions, H2O, CO2, CH4 and H2S are the principal fluid species with H2S favored by higher temperatures, lower pressures and lower conditions. The dominance of H2S in the fluid at high temperatures leads to values of becoming significantly less than 1, and causes hydrous minerals to dehydrate at lower temperatures than the case when . The production of H2S-bearing fluids provides a mechanism for the selective transfer of sulfur from a graphite-pyrite-pyrrhotite bearing pelite into a pluton via a fluid phase, without requiring wholesale melting and assimilation of rocks. Such a process is feasible if a magma is intruded by stoping, which allows a significant volume of pelite country rock to be raised rapidly to temperatures approaching that of the magma. H2S-bearing fluids produced from graphite-pyrite-pyrrhotite pelites (due either to magmatic intrusion or regional metamorphism) may also mobilize ore-forming metals as sulfide complexes.  相似文献   

16.
The nature of the near-liquidus phases for a mantle-derived olivine melilitite composition have been determined at high pressure under dry conditions and with various water contents. Olivine and clinopyroxene occur on or near the liquidus and there are no conditions where orthopyroxene crystallizes in equilibrium with the olivine melilitite. We have determined the effect on the liquidus temperature and liquidus phases of substituting CO2 for H2O on a mole for mole basis at 30 kb, using olivine melilitite + 20 wt% H2O at = 0 and = (CO2)/(H2+CO2) (mole fraction) = 0.25, 0.5, 0.75 and 1.0 (i.e. olivine melilitite + 38 wt% CO2). Experiments were buffered by the MH or NNO buffers. At 30 kb, CO2 is only slightly less soluble than water for <0.5 as judged by the slight increase in liquidus temperature on mole-for-mole substitution of CO2 for H2O and at 30 kb, 1200° C, = = 0.5 the olivine melilitite contains 8.8 wt% H2O and 21 wt% CO2 in solution. For 1 the CO2 saturated liquidus is depressed 70 ° C below the anhydrous liquidus and the magma dissolves approx. 17% CO2 at 30kb, 1400 ° C, 1, 0. Infrared spectra of quenched glasses have absorption bands characteristic of CO 3 = and OH- molecules and no evidence for HCO 3 - . The effect of CO 3 = molecules dissolved in the olivine melilitite at high pressure is to suppress the near-liquidus crystallization of olivine and clinopyroxene and bring orthopyroxene and garnet on to the liquidus. We infer that olivine melilitite magmas may be derived by equilibrium partial melting (<5%) of pyrolite at 30 kb, 1150–1200 ° C, provided that both H2O and CO2 are present in the source region in minor amounts. Preferred conditions are 0< <0.5, 0.5< <1, and at low oxygen fugacities (相似文献   

17.
The partition of Ni between olivine and monosulfide-oxide liquid has been investigated at 1300–1395° C, =10–8-9–10–6.8, and =10–2.0–10–0.9, over the composition range 20–79 mol. % NiS. The product olivine compositions varied from Fo98 to Fo59 and from 0.06 to 3.11 wt% NiO. The metal/sulfur ratio of the sulfide-oxide liquid increases with increase in , decrease in , and increase in NiS content. The Ni/Fe exchange reaction has been perfectly reversed using natural olivine and pure forsterite as starting materials. The FeO and NiO contents of olivine from runs equilibrated at the same and form isobaric distributions with NiS content, which, to a first approximation, are dependent at constant temperature and total pressure on a variable term, –0.5 log ( / ). The Ni/Fe distribution coefficient (K D3) exhibits only a weak decrease from 35 to 29 with increase in from the IW buffer to close to the FMQ buffer. At values higher than FMQ, the sulfide-oxide liquid has the approximate composition (Ni,Fe)3±xS2K D358. The present K D3 vs O/(S+O) data define a trend which extrapolates to K D320 at 10 wt% oxygen in the sulfide-oxide liquid. The compositions of olivine and Ni-Cu sulfides associated with early-magmatic basic rocks and komatiites are consistent, at 1400° C, with a value of -log ( / ) of about 7.7, which is equivalent to 0.0 wt% oxygen in the hypothesized immiscible sulfide-oxide liquid. Therefore, K D3 would not be reduced significantly from the 30 to 35 range for sulfide-oxide liquids with low oxygen contents.  相似文献   

18.
In the 6 component system CaO-MgO-Al2O3-SiO2-CO2-H2 with 9 solid phases (quartz, plagioclase, epidote, tremolite, talc, chlorite, magnesite, calcite, dolomite) and a fluid phase, all 17 possible fluid-absent reactions have been set up and balanced. Using molar entropy and volume data for the solid phases, these reactions are arranged in P-T space about the 8 possible fluid-absent invariant points after the method of Schreinemakers. Field observations in Ordovician greenschist facies basic volcanics at Sofala N.S.W., indicate that neither talc+epidote nor magnesite+calcite are stable under the conditions of metamorphism. Assuming these conditions to apply to the theoretical study here, the fluid-absent invariant points are arranged in a relative fashion with fluid-absent reactions subdividing P-T space into smaller areas.A scheme which permits a fluid of composition (i.e. a fluid containing CO2 and H2O together with other components), is modeled by treating H2O as a mobile component independent of CO2, and by allowing values that lie off the locus of binary H2O-CO2. Taking into account that neither talc+epidote nor magnesite +calcite is to be permitted, the fluid scheme is used to set up and balance all 39 possible fluid-bearing reactions. These are then arranged about 20 valid fluid-bearing invariant points in space after the method of Korzhinskii and Sehreinemakers.A characteristic solid phase assemblage is defined for each P-T area using chemographic relations inherent from the fluid-absent boundary reactions. The fluid-bearing invariant points that have a solid assemblage compatible with the characteristic assemblage in a particular P-T area are stable within the P-T regime of that area. When these stable fluidbearing invariant points are arranged in a relative fashion in space, they outline a fluid grid which can be used to study the possible effects of local variation in X fluid over the particular P-T regime.Symbols Used U chemical potential - S entropy - V molar volume - n coefficient of a phase in a reaction - X mole fraction - T temperature - P pressure - F number of degrees of freedom - C number of components - p number of phases - s solid - slope of reaction - 1 quartz - 2 plagioclase - 3 epidote - 4 tremolite - 5 talc - 6 chlorite - 7 dolomite - 8 magnesite - 9 calcite  相似文献   

19.
The Al-in-hornblende barometer, which correlates Altot content of magmatic hornblende linearly with crystallization pressure of intrusion (Hammarstrom and Zen 1986), has been calibrated experimentally under water-saturated conditions at pressures of 2.5–13 kbar and temperatures of 700–655°C. Equilibration of the assemblage hornlende-biotite-plagioclase-orthoclasequartz-sphene-Fe-Ti-oxide-melt-vapor from a natural tonalite 15–20° above its wet solidus results in hornblende compositions which can be fit by the equation: P(±0.6 kbar) = –3.01 + 4.76 Al hbl tot r 2=0.99, where Altot is the total Al content of hornblende in atoms per formula unit (apfu). Altot increase with pressure can be ascribed mainly to a tschermak-exchange ( ) accompanied by minor plagioclase-substitution ( ). This experimental calibration agrees well with empirical field calibrations, wherein pressures are estimated by contact-aureole barometry, confirming that contact-aureole pressures and pressures calculated by the Al-in-hornblende barometer are essentially identical. This calibration is also consistent with the previous experimental calibration by Johnson and Rutherford (1989b) which was accomplished at higher temperatures, stabilizing the required buffer assemblage by use of mixed H2O-CO2 fluids. The latter calibration yields higher Altot content in hornblendes at corresponding pressures, this can be ascribed to increased edenite-exchange ( ) at elevated temperatures. The comparison of both experimental calibrations shows the important influence of the fluid composition, which affects the solidus temperature, on equilibration of hornblende in the buffering phase assemblage.  相似文献   

20.
The mineralogy, petrology and geochemistry of the Proterozoic Harney Peak Granite, Black Hills, South Dakota, were examined in view of experimentally determined phase equilibria applicable to granitic systems in order to place constraints on the progenesis of peraluminous leucogranites and commonly associated rare-element pegmatites. The granite was emplaced at 3–4 kbar as multiple sills and dikes into quartz-mica schists at the culmination of a regional high-temperature, low-pressure metamorphic event. Principally along the periphery of the main pluton and in satellite intrusions, the sills segregated into granite-pegmatite couplets. The major minerals include quartz, K-feldspar, sodic plagioclase and muscovite. Biotite-{Mg No. [Molar MgO/(MgO+FeO)]=0.32-0.38} is the predominant ferromagnesian mineral in the granite's core, whereas at the periphery of the main pluton and in the satellite intrusions tourmaline (Mg No.=0.18–0.48) is the dominant ferromagnesian phase. Almandine-spessartine garnet is also found in the outer intrusions. There is virtually a complete overlap in the wide concentration ranges of SiO2, CaO, MgO, FeO, Sr, Zr, W of the biotite- and tourmaline-bearing granite suites with no discernable differentiation trends on Harker diagrams, precluding the derivation of one suite from the other by differentiation following emplacement. This is consistent with the oxygen isotope compositions which are 11.5 ± 0.6 for the biotite granites and 13.2 ± 0.8 for the tourmaline granites, suggesting derivation from different sources. The concentrations of TiO2 and possibly Ba are higher and of MnO and B are lower in the biotite granites. The normative Orthoclase/Albite ratio is extremely variable ranging from 0.26 to 1.65 in the biotite granites to 0.01–1.75 in the tourmaline granites. Very few sample compositions fall near the high-pressure, watersaturated haplogranite minima-eutectic trend, indicating that the granites for the most part are not minimum melts generated under conditions with =1. Instead, most biotite granites are more potassic than the water-saturated minima and eutectics and in analogy with experimentally produced granitic melts, they are best explained by melting at 6 kbar, <1 and temperatures 800°C. Such high temperatures are also indicated by oxygen isotope equilibration among the constituent minerals (Nabelek et al. 1992). Several of the tourmaline granite samples contain virtually no K-feldspar and have oxygen isotope equilibration temperatures 716–775°C. Therefore, they must represent high-temperature accumulations of liquidus minerals crystallized under equilibrium conditions from melts more sodic than the water-saturated haplogranite minima or during fractionation of intruded melts into granite-pegmatite couplets accompanied by volatile-aided differentiation of the alkali elements. The indicated high temperatures, <1, the relatively high TiO2 and Ba concentrations and the relatively low values of the biotite granites suggest that they were generated by high-extent, biotite-dehydration melting of an immature Archean metasedimentary source. The ascent of the hot melts may have triggered low-extent, muscovite-dehydration melting of schists higher in the crust producing the high-B, low-Ti melts comprising the periphery of the main pluton and the satellite intrusions. Alternatively, the different granite types may be the result of melting of a vertical section of the crust in response to the ascent of a thermal pulse, with the low- biotite granites generated at a deeper, hotter region and the high- tourmaline granites at a higher, cooler region of the crust. The low-Ti and high-B concentrations in the high- melts resulted in the crystallization of tourmaline rather than biotite, which promoted the observed differentiation of the melts into the granitic and pegmatitic layers found along the periphery of the main pluton and the satellite intrusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号