首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In this study, the inverse method is used to compute the Kuroshio in the East China Sea and southeast of Kyushu and the currents east of the Ryukyu Islands, on the basis of hydrographic data obtained during September-October, 1987 by R/V Chofu Maru. The results show that: (1)A part of the Taiwan Warm Current has a tendency to converge to the shelf break; (2) the Kuroshio flows across the section C3 (PN) with a reduced current width, and the velocity of the Kuroshio at the section C3 increases and its maximum current speed is about 158 cm/s, and its volume transport here is about 26×106m3/s; (3) the Kuroshio has two current cores at the sections C3 (PN) and B2 (at the Tokara Strait); (4) the currents east of the Ryukyu Islands are found to flow northward over the Ryukyu Trench during September-October, 1987. The velocities of the currents are not strong throughout the depths. At the section C2 east of the Ryukyu Islands, the maximum current speed is at the 699 m levei and its magnitude is 25 cm/s, and i  相似文献   

2.
The light-saturated maximum value (P B max) and initial slope (α) of the photosynthesis-irradiance (P-E) curve were examined in a warm streamer, a cold streamer and a warm core ring off the Sanriku area in the subarctic western North Pacific Ocean during an ADEOS/OCTS Sanriku field campaign in early May 1997. BothP B max and α were within the ranges of temperate populations. A regional difference was apparent inP B max: populations in the warm streamer tended to show higher value ranging between 1.92 and 4.74 mgC (mgChla)−1h−1 than those in the cold streamer and the warm core ring (1.35–2.87 mgC (mgChla)−1h−1). A depth variation was also observed in α in both the warm streamer and the warm core ring: shallow populations tended to have lower α than deep populations. The depth variations in bothP B max and α resulted in a lower light intensity of the light saturation in a deeper population than that of a shallower one. These depth-related variations in the P-E parameters were likely a manifestation of “shade-adaptation” of photosynthesis. Photoinhibition was not observed over in situ surface light intensity varying below ca 1600 μmol photon m−2s−1. Water-column primary productivity was biooptically estimated to be 233 to 949 mgC m−2d−1 using vertical distributions of the P-E parameters, chlorophylla, phytoplankton light absorption and underwater irradiance. Applicability of surface data sets for estimation of water-column productivity is discussed.  相似文献   

3.
Natural marine gas hydrate was discovered in Korean territorial waters during a 2007 KIGAM cruise to the central/southwestern Ulleung Basin, East Sea. The first data on the geochemical characterization of hydrate-bound water and gas are presented here for cold seep site 07GHP-10 in the central basin sector, together with analogous data for four sites (07GHP-01, 07GHP-02, 07GHP-03, and 07GHP-14) where no hydrates were detected in other cores from the central/southwestern sectors. Hydrate-bound water displayed very low concentrations of major ions (Cl, SO42−, Na+, Mg2+, K+, and Ca2+), and more positive δD (15.5‰) and δ18O (2.3‰) signatures compared to seawater. Cl freshening and more positive isotopic values were also observed in the pore water at gas hydrate site 07GHP-10. The inferred sulfate–methane interface (SMI) was very shallow (<5 mbsf) at least at four sites, suggesting the widespread occurrence of anaerobic oxidation of methane (AOM) at shallow sediment depths, and possibly high methane flux. Around the SMI, pore water alkalinity was very high (>40 mM), but the carbon isotopic ratios of dissolved inorganic carbon (δ13CDIC) did not show minimum values typical of AOM. Moreover, macroscopic authigenic carbonates were not observed at any of the core sites. This can plausibly be explained by carbon with high δ13C values diffusing upward from below the SMI, increasing alkalinity via deep methanogenesis and eventually escaping as alkalinity into the water column, with minor precipitation as solid phase. This contrasts, but is not inconsistent with recent reports of methane-fuelled carbonate formation at other sites in the southwestern basin sector. Methane was the main hydrocarbon component (>99.85%) of headspace, void, and hydrate-bound gases, C1/C2+ ratios were at least 1,000, and δ13CCH4 and δDCH4 values were in the typical range of methane generated by microbial reduction of CO2. This is supported by the δ13CC2H6 signatures of void and hydrate-bound gases, and helps clarify some contradictory interpretations existing for the Ulleung Basin as a whole. In combination, these findings suggest that deep biogenic gas and pore waters migrate upward through pathways such as hydrofractures, and measurably influence the shallow carbon cycle. As a result, cation-adjusted alkalinity/removed sulfate diagrams cannot always serve to estimate the degree of alkalinity produced by sulfate reduction and AOM in high methane flux areas.  相似文献   

4.
微藻固碳是一种新型节能减排技术,具有长期可持续发展的潜力。本文对两株富油微藻(球等鞭金藻和微拟球藻)进行了富碳培养下生长特性及中性脂积累特性的研究。两株富油微藻的最佳培养条件为10%CO2浓度和f培养基。本研究对两株富油微藻的最大生物量产率、总脂含量、最大油脂产率、微藻的C含量和CO2固定率进行了测定。球等鞭金藻的各参数指标分别为:142.42±4.58g/(m2·d),39.95%±0.77%,84.47±1.56g/(m2·d),45.98%±1.75%和33.74±1.65g/(m2·d)。微拟球藻的各参数指标分别为:149.92±1.80g/(m2·d),37.91%±0.58%,89.90±1.98g/(m2·d),46.88%±2.01%和34.08±1.32g/(m2·d)。实验结果显示,两株海洋微藻均属于高固碳优良藻株,适合应用于微藻烟气减排技术开发,具备用于海洋生物质能耦合CO2减排开发的潜力。  相似文献   

5.
Data on the NO2 content in the vertical column of the atmosphere obtained with the Ozone Monitoring Instrument (OMI) aboard the EOS Aura satellite (United States) in the period from October 2004 to October 2007 are compared with the results of ground-based measurements at the Zvenigorod Scientific Station (55.7° N, 36.8° E). The “unpolluted”; part of the total NO2 content in the atmospheric column, which mostly represents the stratosphere, and the NO2 contents in the vertical column of the troposphere, including the lower layer, which is subject to pollution, are included in the comparison. The correlation coefficient between the results of ground-based and satellite measurements of the “unpolluted” total NO2 content is ∼0.9. The content values measured with the OMI instrument are smaller than the results of ground-based measurements (on average, by (0.30 ± 0.03) × 1015 cm−2 or by (11 ± 1)%). Therms discrepancy between the satellite and ground-based data is 0.6 × 1015 cm−2. The NO2 content in the vertical column of the troposphere from the results of satellite measurements is, on average, (1.4 ± 0.5) × 1015 cm−2, (or about 35%) smaller than from the results of ground-based measurements, and the rms discrepancy between them is about 200%. The correlation coefficient between these data is ∼0.4. This considerable discrepancy is evidently caused by the strong spatial (horizontal) inhomogeneity and the temporal variability of the NO2 field during episodes of pollution, which leads to different (and often uncorrelated) estimates of the NO2 content in the lower troposphere due to different spatial resolutions of ground-based and satellite measurements.  相似文献   

6.
Seasonal and spatial variations of particulate organic carbon (POC) flux were observed with sediment traps at three sites in the Japan Sea (western and eastern Japan Basin and Yamato Basin). In order to investigate the transport processes of POC, radiocarbon (14C) measurements were also carried out. Annual mean POC flux at 1 km depth was 30.7 mg m−2day−1 in the western Japan Basin, 12.0 mg m−2day−1 in the eastern Japan Basin and 23.8 mg m−2day−1 in the Yamato Basin. At all stations, notably higher POC flux was observed in spring (March–May), indicating biological production and rapid sinking of POC in this season. Sinking POC in the high flux season showed modern Δ14C values (>0‰) and aged POC (Δ14C < −40‰) was observed in winter (December–January). The Δ14C values in sinking POC were negatively correlated with aluminum concentration, indicating that Δ14C is strongly related to the lateral supply of lithogenic materials. The Δ14C values also showed correlations with excess manganese (Mnxs) concentrations in sinking particles. The Δ14C-Mnxs relationship suggested that (1) the majority of the aged POC was advected by bottom currents and incorporated into sinking particles, and (2) some of the aged POC might be supplied from the sea surface at the trap site as part of terrestrial POC. From the difference in the Δ14C-Mnxs relationships between the Japan Basin and the Yamato Basin, we consider that basin-scale transport processes of POC occur in the Japan Sea.  相似文献   

7.
Partial pressure of CO2 in surface sea water (pCO2) was measured continuously off Sanriku in May, 1997 by a new pCO2 measurement system. We have examined the relation of pCO2 to physical factors such as temperature, salinity and density, chemical and biological factors such as nutrients and carbonate system and chlorophylla. In the Kuroshio region pCO2 was not correlated to physical, chemical and biological factors in the range of 260 to 290 μatom. In transition water (Tr1) between Kuroshio and the Oyashio second branch, pCO2 was weakly correlated to physical factors and strongly correlated to nutrients. In transition water (Tr2) between the Oyashio first and second branches, pCO2 was highly correlated to temperature (SD: 10.9 μatom) and salinity (SD: 8.6 μatom) and also to nutrients. In transition water (Tr1+Tr2), pCO2 was highly multivariately correlated to temperature (T), salinity (S), chlorophylla (CH) (or nitrate+nitrite (N)) as follows, pCO2(μatom)= 10.8×T(°C)+27.7×S+2.57CH(μg/1) −769, R2= 0.86, SD = 20.9, or pCO2(μatom)= 3.9×T(°C)+25.5×S+16.0NO3(μM) −686, R2= 0.99, SD = 6.4. Moreover, pCO2 was predicted by only two factors, one physical (S) and the other chemical/biological (N) as follows: pCO2 (μatom)=32.8×S+19.4N−908, R2=0.97, SD=8.4. The pH measured at 25°C was well correlated with normalized pCO2 at a fixed temperature. In the Oyashio region pCO2 was decreased to 160 μatom, probably because of spring bloom, but was not correlated linearly to chlorophylla. The results obtained showed the possibility of estimating pCO2 of the Oyashio and transition regions in May by satellite remote sensing of SST, but the problem of estimation of pCO2 in Kuroshio water remains to be solved.  相似文献   

8.
The solubility of aluminum hydroxide in seawater of 35‰ salinity at pH = 7.4−8.2 and 25°C was determined experimentally for three samples synthesized in different ways. The solubilities of two phases subjected to ageing and precipitated (a) from a boiling solution of aluminum sulfate and (b) immediately from seawater at room temperature were a little different and showed the minimum within pH = 8.05−8.10. The solubility of aluminum hydroxide precipitated from a solution of sulfate aluminum at room temperature and not subjected to ageing was about twofold at pH∼7.9. The analysis of the pH dependence of the concentration of dissolved aluminum allows one to suppose that an Al(OH)2+ hydroxo complex is the primary form of the aluminum occurrence in seawater at pH < 8.05, whereas the Al(OH)4 anion is prevailing at pH > 8.10. Electrically neutral Al(OH)30 hydroxocomplexes may be prevailing within the narrow range of pH = 8.05−8.10 and, in general, are of secondary importance.  相似文献   

9.
The method proposed for determining the total inorganic carbon (TC) concentrations in sea ice (Arctic region, North Pole-35 expedition) based on the measurement of the total alkalinity (TA) and the pH in the melt waters without the CO2 exchange with the atmosphere is considered. It is shown that the TC/Sal and TA/TC values through the entire ice section remain similar to these parameters in the subice water. The surface snow and the uppermost ice layers are characterized by elevated TA/TC values, which indicate the reaction Ca2+ + 2HCO3 = ↓CaCO3 + ↑CO2 + H2O. The release of CO2 to the atmosphere due to the decomposition of calcium hydrocarbonate is as high as ∼20 mmol/m2. The meltwater of the examined ice is undersaturated with CO2, which may result in a sink of atmospheric CO2 (∼30 mmol/m2).  相似文献   

10.
On the basis of hydrographic data obtained during two October cruises of 1995, a modified inverse method is used to compute the Kuroshio east of Taiwan and the currents east of the Ryukyu-gunto.The net northward volume transport(VT) of the Kuroshio through Section TK2-K2 southeast of Taiwan is about 57.8×106 m3/s.There are four current cores of the Kuroshio at Section TK2-K2.Its main core is near the south of Taiwan, and its maximum speed is about 257 cm/s at the surface.After the Kuroshio flows through Section TK2-K2, there are three branches of the Kuroshio.The main branch of the Kuroshio flows northward into Section TKa east of Su''ao.The second branch of the Kuroshio flows northward through Section TKa and then enters the East China Sea through the region between Yonakunijima and Iriomote-shima.The net northward VT of the Kuroshio through Section TK4 is about 21.6×106 m3/s.The eastern branch of the Kuroshio flows northeastward through the region between a stronger cyclonic eddy and a recirculating anticyclonic gyre, and then flows continuously northeastward to the region east of the Ryūkyū-guntō and becomes a part of the origin of the western boundary current east of the Ryūkyū-guntō.Another part of the origin of the western boundary current east of the Ryūkyū-guntō comes from a recirculating anticyclonic gyre.From the above, in the regions east of Taiwan end east of the Ryūkyū-guntō the pattern of circulation during October of 1995 differs from the pattern of circulation during early summer of 1985.There are several eddies of different scales in this computational region.For example, there is a meso-scale stronger cyclonic eddy whose center is located at about 23°N, 124°20''E.  相似文献   

11.
Uncertainties in global mapping of Argo drift data at the parking level   总被引:1,自引:0,他引:1  
We used Argo float drift data to estimate average ocean currents at 1000 dbar depth from early 2000 to early 2010. Our estimates cover the global oceans, except for marginal seas and ice-covered regions, at a resolution of 1 degree in latitude and longitude. The estimated flow field satisfies the horizontal boundary condition of no flow through the topography, and is in geostrophic balance. We also estimated the uncertainty in the average flow field, which had a typical magnitude of 0.03 ms−1. The uncertainty is relatively large (>0.03 ms−1 in both the zonal and meridional directions) near the Equator and in the Southern Ocean. The array bias, which is the bias due to the horizontal gradient in the spatial density of the float data, is generally negligible, with an average magnitude outside the equatorial region of 0.007 ms−1, becoming relatively large (>0.01 ms−1) only near the coastal regions. The measurement uncertainty is assumed to be spatially uniform and includes errors due to the Argos positioning system, internal clock drift, unknown surface drift before submerging or after surfacing, and unknown drifts during ascent and descent between the surface and the parking depth. We found that the overall uncertainty was not sensitive to the assumed value of the measurement uncertainty (ɛ m )1/2 when (ɛ m )1/2 < 0.01 ms−1 but it increased with (ɛ m )1/2 for (ɛ m )1/2 > 0.01 ms−1.  相似文献   

12.
In the present study, we have investigated the conditions influencing encystment and excystment in the dinoflagellate Gyrodinium instriatum under laboratory conditions. We incubated G. instriatum in modified whole SWM-3 culture medium and in versions of modified SWM-3 from which NO3 , PO4 3−, NO3 + PO4 3−, or Si had been omitted and observed encystment. Percentage encystment was high in the media without N and without P, while the percentage encystment in the medium lacking both N and P was highest. Moreover, to investigate N or P concentration which induced the encystment, Gyrodinium instriatum was also incubated in media with different concentrations of inorganic N and P; the concentrations of NO2 + NO3 and PO4 3− were measured over time. The precursors of cysts appeared within 2 or 3 days of a decrease in NO2 + NO3 or PO4 3− concentration to values lower than 1 μM or 0.2 μM, respectively. When cysts produced in the laboratory were incubated, we observed excystment after 8–37 days, without a mandatory period of darkness or low temperature. We incubated cysts collected from nature at different temperatures or in the dark or light and observed excystments. Natural cysts excysted at temperatures from 10 to 30°C, in both light and dark, but excystment was delayed at low temperatures. These studies indicate that G. instriatum encysts in low N or P concentration and excysts over a wide temperature range, regardless of light conditions, after short dormancy periods.  相似文献   

13.
This study demonstrates reduced electron transfer system (ETS) activity of mixed copepods collected from 5,000 to 7,000 m depths [3.21 ± 1.25 μl O2 (mg protein)−1 h−1 at 10°C] as compared with mixed copepods from 0 to 200 m depths [5.93 ± 1.66 μl O2 (mg protein)−1 h−1 at 10°C] of the western subarctic Pacific. At the in situ temperature of 1.5°C, the 5,000–7,000 m ETS data, in terms of wet mass (WM)-specific respiration rates (R), is equivalent to [0.052 ± 0.021 μl O2 (mg WM)−1 h−1] which is similar to or greater than those reported for selected copepods or mixed mesozooplankton from <5,000 m depth by previous workers.  相似文献   

14.
A 24 hour time series survey was carried out during a spring tide (tidal range ca.2 m) of May 1995 on a tidal estuary in the Seto Inland Sea, Japan, in the context of an integrated program planned to quantify the dynamics of biophilic elements (carbon, nitrogen and phosphorus) and the roles played by the macrobenthos on the processes. Three stations were set along a transect line of about 1.4 km, which linked the river to the rear to the innermost part of the subtidal zone. Every hour, at each station, measurements were made of surface water temperature, salinity and dissolved oxygen concentration, and surface water was collected for the determination of nutrients [NH4 +−N, (NO3 +NO2 )−N, PO4 3−−P and Si (OH)4−Si]. During the ebb flow, riverine input of silicate and nitrate+nitrite significantly increased the concentrations of both the intertidal and the subtidal stations. Conversely, during the high tide, river nutrient concentrations were lowered by the mixing of fresh water with sea water. As a result, best (inverse) correlations were found at the river station for salinity against silicate (y=-2.9 Sal.+110.7,r 2=0.879) and nitrate+nitrite (y=-1.3 Sal.+48.4,r 2=0.796). In contrast, ammonium nitrogen concentrations were higher at intermediate salinities. Indeed, no significant correlation was found between salinity and ammonium. The effect of the macrobenthos, which is abundant on the intertidal flat, is discussed as a biological component that influences the processes of nutrient regeneration within the estuary. The effect of the tidal amplitude is an important one in determining the extent of the variations in nutrient concentrations at all three stations, which were stronger between the lower low tide and the higher high tide.  相似文献   

15.
We have measured helium isotopic ratios of thirty-seven Pacific water samples from various depths collected in adjacent regions of Honshu, Japan. The 3He/4He ratios vary significantly from 0.989 R atm to 1.208 R atm where R atm is the atmospheric ratio of 1.39 × 10−6. The mid-depth (750–1500 m) profile of 3He/4He ratios at ST-1 located Northwestern Pacific Ocean east of Japan (Off Joban; 37°00′ N, 142°40′ E) is significantly different from that at ST-2 of the Northern Philippine Sea south of Japan (Nankai Trough; 33°07′ N, 139°59′ E), suggesting that these waters were separated by a topographic barrier, the Izu-Ogasawara Ridge. Taking 3He/4He data of the Geosecs expeditions in the western North Pacific, an extensive plume of 15% excess 3He relative to the air may be traced at ST-1 over 12,000 kilometers to the northwest of the East Pacific Rise where the mantle helium may originate. The 20% excess found at ST-2 may be attributable to the additional source of the subduction-type mantle helium in the Okinawa Trough. A 15% excess of 3He has also been discovered at a depth of about 1000∼1500 m at ST-3 adjacent to Miyakejima Island (33°57′ N, 139°22′ E) and ST-4 of Sagami Bay (35°00′ N, 139°22′ E). It is confirmed that mid-depth all over the western North Pacific water is affected by the mantle helium with a high 3He/4He ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
 Hydrothermal vent fields south of the Garret Fracture zone were sampled for the isotope composition of helium and oxygen ([18O]H2O/[16OH2O). The helium isotopes end-member (3He / 4He=8.3×R a and [4He]≈1.2–2.4×10-5 cm3 STP g-1) is quite similar to other known hydrothermal sites pointing to the homogeneous helium composition of the upper mantle. The δ18O end-member value (δ18O≈0.5–0.6‰) confirms previous suggestions from other sites and from isotope modeling, that hydrothermal fluids are slightly enriched in 18O relative to the ocean as a result of water–rock interactions at high temperature. Received: 11 December 1995/Revision received: 20 December 1996  相似文献   

17.
The equipment and techniques used at H. R. Wallingford Limited (HR) for testing the properties of estuarine muds are described. Erosion under unidirectional currents is measured in an annular flume; a relationship between shear strength, τe, and density, ρd, is determined in the form: τe=a ρd b. Self-weight consolidation tests are run in settling columns, with density profiles and excess pore pressures measured during the consolidation period. An empirical relationship between effective stress, σ′, and density is determined in the form: σ′=a0+a1ρ+a2ρ2. Permeability, k, against density is determined in the form: log(k)=c0+c1ρ.  相似文献   

18.
在2011年7月利用35SO2-4培养示踪法测定九龙江河口两个站位(A站位位于咸淡混合区,盐度3~5;B站位位于海相区,盐度20~25)沉积柱中硫酸盐还原速率的垂直分布。结果显示A站位沉积柱中硫酸盐还原速率变化范围为54~2 345nmol/(cm3·d),从表层到底部先增大后减小,最大值出现在20cm深度附近;B站位硫酸盐还原速率在24~987nmol/(cm3·d)之间,分别在10cm和78cm深度附近出现两个峰值,分别为876nmol/(cm3·d)和987nmol/(cm3·d)。综合分析两个站位孔隙水中SO2-4、甲烷浓度和沉积物中总有机碳、温度和氧化还原电位的垂直变化趋势与其硫酸盐还原速率的分布规律,表明A站位沉积物中硫酸盐还原以有机矿化为主;B站位受到有机质矿化和甲烷厌氧氧化的共同作用;两个站位硫酸盐还原速率及垂直分布趋势受孔隙水中SO2-4浓度、有机质活性和温度的共同影响;根据各个层位硫酸盐还原速率估算两个站位硫酸盐还原通量(以硫计)分别为527.9mmol/(m2·d)和357.1mmol/(m2·d),表明硫酸盐还原是九龙江河口有机质厌氧矿化的重要路径。  相似文献   

19.
In order to examine temporal variations of the surface oceanic and atmospheric fCO2 and the DIC concentration, we analyzed air and seawater samples collected during the period May 1992–June 1996 in the northwestern North Pacific, about 30 km off the coast of the main island of Japan. The atmospheric CO2 concentration has increased secularly at a rate of 1.9 ppmv yr−1, and it showed a clear seasonal cycle with a maximum in spring and a minimum late in summer, produced mainly by seasonally-dependent terrestrial biospheric activities. DIC also showed a prominent seasonal cycle in the surface ocean; the minimum and maximum values of the cycle appeared in early fall and in early spring, respectively, due primarily to the seasonally-dependent activities of marine biota and partly to the vertical mixing of seawater and the coastal upwelling. The oceanic fCO2 values were almost always lower than those of the atmospheric fCO2, suggesting that this area of the ocean acts as a sink for atmospheric CO2. Values varied seasonally, mainly reflecting seasonal changes of SST and DIC, with a secular increase at a rate of 3.7 μatm yr−1. The average values of the annual net CO2 flux between the ocean and the atmosphere calculated by using the different bulk equations ranged between −0.8 and −1.7 mol m−2yr−1, and its magnitude was enhanced and reduced late in spring and mid-summer, respectively, due mainly to the seasonally varying oceanic fCO2.  相似文献   

20.
 Ikaite crystals (CaCO3×6H2O) have been found at 232- to 238-cm sediment depth in R/V Polarstern core PS2460-4 from the Laptev Sea continental margin in a water depth of 204 m. δ13C values of this phase average −36.3±0.4‰ PDB (N=2), which is significantly outside the range of normal marine carbonates. The CO2 involved in the precipitation of the ikaite is most probably derived from methane, which has extremely depleted 13C isotope values. Two possible sources of methane in these sediments are: (1) methanogenesis (decomposition of organic matter under anaerobic conditions); and (2) gas hydrates, which are known to occur in the Siberian shelf regions. Received: 20 March 1996 / Revision received: 22 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号