首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stratigraphic record from a boring penetrating the 104 m thick Quaternary sequence on the island of Anholt is summarized. The spatial distribution of the pre-Quaternary formations and the surface topography of these are described on the basis of reflection seismic profiles. It is concluded that Anholt is located in the crestal zone of a southeast–northwest trending anticline in the pre-Quaternary. The anticline was formed during the Late Cretaceous–Early Tertiary inversion episodes and was later deeply truncated by erosion. A southeast–northwest trending erosional channel, c. 2 km wide and with a maximum depth c. 250 m below sea level, is located southeast of Anholt along the crest of the anticline. This channel is not present at the bore locality. Although no direct correlation from the boring to the seismic profiles could be achieved it is argued that a strong reflection near the base of the Quaternary outside the channel may be correlated with the Saalian–Eemian complex found in the boring. Three younger sequences of probable Early and Middle Weichselian, Late Glacial and Holocene age respectively have been recognized. The Late Glacial and Holocene sediments appear to have been deposited in erosional troughs and channels cut into a sequence of Lower and Middle Weichselian sediments. Post-Eemian till deposits or other evidence unambiguously indicating the presence of Weichselian glaciers have not been found, either in the boring or in the seismic profiles. It is therefore assumed that the erosion of the Lower-Middle Weichselian sequence was of fluvial origin and can be ascribed to the lowstand period of the Weichselian glacial period. The western part of Anholt can possibly be regarded as an erosional remnant of the Lower-Middle Weichselian sequence.  相似文献   

2.
Winterfeld, M., Schirrmeister, L., Grigoriev, M. N., Kunitsky, V. V., Andreev, A., Murray, A. & Overduin, P. P. 2011: Coastal permafrost landscape development since the Late Pleistocene in the western Laptev Sea, Siberia. Boreas, 10.1111/j.1502‐3885.2011.00203.x. ISSN 0300‐9483. The palaeoenvironmental development of the western Laptev Sea is understood primarily from investigations of exposed cliffs and surface sediment cores from the shelf. In 2005, a core transect was drilled between the Taymyr Peninsula and the Lena Delta, an area that was part of the westernmost region of the non‐glaciated Beringian landmass during the late Quaternary. The transect of five cores, one terrestrial and four marine, taken near Cape Mamontov Klyk reached 12 km offshore and 77 m below sea level. A multiproxy approach combined cryolithological, sedimentological, geochronological (14C‐AMS, OSL on quartz, IR‐OSL on feldspars) and palaeoecological (pollen, diatoms) methods. Our interpretation of the proxies focuses on landscape history and the transition of terrestrial into subsea permafrost. Marine interglacial deposits overlain by relict terrestrial permafrost within the same offshore core were encountered in the western Laptev Sea. Moreover, the marine interglacial deposits lay unexpectedly deep at 64 m below modern sea level 12 km from the current coastline, while no marine deposits were encountered onshore. This implies that the position of the Eemian coastline presumably was similar to today's. The landscape reconstruction suggests Eemian coastal lagoons and thermokarst lakes, followed by Early to Middle Weichselian fluvially dominated terrestrial deposition. During the Late Weichselian, this fluvial landscape was transformed into a poorly drained accumulation plain, characterized by widespread and broad ice‐wedge polygons. Finally, the shelf plain was flooded by the sea during the Holocene, resulting in the inundation and degradation of terrestrial permafrost and its transformation into subsea permafrost.  相似文献   

3.
Here we present a multi‐proxy investigation of the Klein Klütz Höved (KKH) coastal cliff section in northeastern Germany, involving lithofacies analysis, micromorphology, micropalaeontology, palynology and luminescence dating of quartz and feldspar. We subdivide the local stratigraphy into three depositional phases. (i) Following a Saalian advance (MIS 6) of the Scandinavian Ice Sheet, the penultimate deglaciation (Termination II) at the site occurred between c. 139 and 134 ka, leading to the establishment of a braided river system and lacustrine basins under arctic‐subarctic climate conditions. (ii) In the initial phase of the Eemian interglacial lacustrine deposits were formed, containing warm‐water ostracods and a pollen spectrum indicating gradual expansion of woodlands eventually containing thermophile deciduous forest elements. A correlation of the local pollen assemblages with Eemian reference records from central Europe suggests that fewer than 750 years of the last interglacial period are preserved at KKH. The occurrence of brackish ostracods dates the onset of the Eemian marine transgression at the section at c. 300–750 years after the beginning of the last interglacial period. (iii) Directly above the Eemian record a ~10‐m‐thick sedimentary succession of MIS 2 age was deposited, implying a significant hiatus of c. 90 ka encompassing the time from middle and upper MIS 5e to late MIS 3. During the Late Weichselian, KKH featured a depositional shift from (glacio‐)lacustrine to subglacial to recessional terminoglacial facies, with the first documented Weichselian ice advance post‐dating 20±2 ka. Overall, the KKH section represents an exceptional sedimentary archive for palaeoenvironmental reconstructions, covering the period from the Saalian glaciation and subsequent Termination II to the early Eemian and Late Weichselian. The results refine the existing palaeogeographical and geochronological models of the late Quaternary history in the southwestern Baltic Sea area and allow correlations with other reference records in a wider area.  相似文献   

4.
The Hitura open pit exposes a sedimentary sequence up to 50 m thick representing Late Saalian to Holocene glacial and non-glacial sediments. The sequence was investigated using sedimentological methods, OSL-dating and pollen and diatom analyses to reconstruct the Middle Weichselian (MWG) glacial event in the central part of the Scandinavian Ice Sheet (SIS). The results indicate that the sediment succession represents two entire glacial advance and retreat cycles. The lowermost deposits are Late Saalian esker and delta sediments overlain by sediments that correlate with the early Eemian lacustrine phase. Remnants of the Eemian soil post-dating the lacustrine phase were also observed. The area was ice-free during the entire Early Weichselian (EWG). The first glacial advance recorded in the sediments is related to the MWG. It started 79 kyr ago, deformed underlying sediments and deposited an immature till, including large detached sediment pods containing remains of organic material, soils and fluvial sediments representing allochthonous material from EWG ice-free stadials and interstadials. The glacial deposits are conformably overlain by glaciolacustrine and littoral accumulations, indicating MWG deglaciation between 62 and 55 kyr ago. Based on the fabric measurements from the till unit overlying the MWG sediments, ice advance during the Late Weichselian (LWG) was initially from the west and later from a north-northwesterly direction. The Hitura strata provide the first dating of the MWG deglaciation (55 to 62 kyr ago) from central parts of the SIS. It can be considered as a key site for studying the growth and decay of SIS during the poorly known early parts of the glaciation.  相似文献   

5.
A paleolimnological study of lake-level changes in Lake 239 (Rawson Lake), a headwater lake in the Experimental Lakes Area in northwestern Ontario, indicates large fluctuations have occurred over the Holocene. Analyses are based on diatoms, the proportion of chrysophyte scales to diatoms and organic matter content from near-shore sediment cores. Quantitative estimates of lake level are based on a diatom-inferred depth model that was developed from surficial sediments collected along several transects in Lake 239. Declines of ∼ 1-3 m occurred during the late Holocene, whereas declines of at least 8 m occurred during the more arid mid-Holocene. These results provide the first substantive evidence of large declines in lake level in northwestern Ontario during the mid-Holocene. Conditions during the mid-Holocene may provide a partial view of future conditions under increasing global temperatures.  相似文献   

6.
A GIS-based palaeogeographic reconstruction of the development of the Baltic Ice Lake (BIL) in the eastern Baltic during the deglaciation of the Scandinavian Ice Sheet is presented. A Late Glacial shoreline database containing more than 1000 sites from Finland, NW Russia, Estonia, Latvia and modern digital terrain models were used for palaeoreconstructions. The BIL occupied five different levels, represented by 492 shoreline features. The study shows that at about 13.3 cal. ka BP the BIL extended to the ice-free areas of Latvia, Estonia and NW Russia, represented by the highest shoreline in this region. Reconstructions demonstrate that BIL initially had the same water level as the Glacial Lakes Peipsi and Võrtsjärv, because these water bodies were connected via strait systems in central Estonia. These strait systems were closed at about 12.8–11.7 cal. ka BP prior to the final drainage of the BIL due to isostatic uplift. Glacial Lake Võrtsjärv was isolated from the BIL at about 12.4–12.0 cal. ka BP. Exact timing of Glacial Lake Peipsi isolation is not clear, but according to the altitude of the threshold in northeast Estonia and shore displacement data it was completed at about 12.4–11.7 cal. ka BP.  相似文献   

7.
The coast-parallel Flakkerhuk ridge on southern Jameson Land revealed a succession of four marine formations separated by tills and glaciotectonic deformation zones representing glacier advances. Paleontological evidence. supported by 32 luminescence datings, indicates that deposition took place during the Eemian and Early Weichselian. A pronounced rise in sea-level due to glacio-isostatic depression is evidenced within the Late Eemian part of the sequence, indicating buildup of ice commencing while interglacial conditions still prevailed. A diamicton interpreted as a till deposited by a glacier moving from the interior of Jameson Land and overlying the interglacial deposits would seem to suggest the presence of a local ice cap on Jameson Land at the last interglacial/glacial transition. Three ice advances from the fjord onto the coast were identified following the last interglacial. The glaciers at no time advanced beyond 2–3 km inland from the coast in the investigated area. This demonstrates that the glaciers advancing through the Scoresby Sund fjord during the Weichselian were relatively thin, with a low longitudinal gradient. Glacier advances onto the coast were apparently strongly influenced by local topography and relative sea-level. The Flakkerhuk ridge is mainly an erosional landform originating from continued fluvial downcutting of former drainage channels from along the Early Weichselian ice margin. Only the very top of the ridge is considered to he a constructional ice marginal ridge, related to the Flakkerhuk glaciation.  相似文献   

8.
A 120 m thick marine Quaternary sequence resting on Upper Cretaceous chalk at Nørre Lyngby has been stratigraphically analysed on the basis of its foraminiferal content. The foraminiferal zones in the Nørre Lyngby boring are compared with corresponding zones from borings and outcrops in adjacent areas in Vendsyssel and Kattegat, and a general zonation covering the whole area is proposed. The lower part of the marine sequence at Nørre Lyngby represents deposits of pre-Eemian, possibly Saalian, and Eemian age. The Early Weichselian seems to be missing, while most of the Middle and Late Weichselian foraminiferal zones known from Vendsyssel occur. The foraminiferal zones and the corresponding macrofossil zones are correlated with the oxygen isotope stratigraphy. A cross-section through deposits from the Saalian-Eemian-Weichselian marine basin in North Jutland and the Kattegat illustrates the development of the basin through this period of time. The centre of basin subsidence shifted from the southwest in the pre-Eemian to the northeast in the Eemian, and remained there throughout the Weichselian.  相似文献   

9.
The Vastiansky Kon' is the largest exposure of Quaternary deposits in the Pechora lowland, northern Russia. Morphologically the site belongs to the so-called Markhida Moraine; a complex, east–west trending zone of ice-marginal landforms deposited by the Kara Sea Ice Sheet during the last glaciation. The site exhibits a succession of sediments more than 100 m thick that, according to previous studies, covers the interval from the end of the Elsterian to the beginning of the Holocene. Unfortunately both the strong glaciotectonic deformation of the sedimentary succession and few absolute dates have made the chronological interpretation of the section difficult. The present paper reviews previous studies of the site published in Russian, and presents the results of a reinvestigation focusing on the post-Eemian stratigraphy. A marine Eemian clay more than 8 m thick is overlain erosionally by 20 m of fluvial deposits of Late Eemain or Early Weichselian age. The fluvial succession is overlain by a till and a marine clay, which, according to one interpretation, may represent an Early or Middle Weichselian advance of the Kara Ice Sheet followed by a transgression. The clay shows a transition into 15 m of estuarine and fluvial sediments overlain by more than 12 m of tundra–floodplain deposits. The whole succession has been upthrusted glaciotectonically by the last ice advance, which deposited a more than 12 m thick till on top of the section. Based on a number of subtill radiocarbon age-estimates from the site, in the range 25–32 ka BP, the youngest ice advance is considered to be of late Weichselian age, although a Middle Weichselian age cannot be excluded. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
The bio- and chronostratigraphy of the Eemian interglacial (marine isotope substage 5e) and an Early Weichselian glaciation (5d-a) established from representative and detailed sequences can be correlated with the deep-sea oxygen isotope stratigraphy, ice-core data, sea-level fluctuations and coupled ice sheet-climate models. Biostratigraphic sequences from Fennoscandian key sections are correlated with reference sequences from Estonia and from sections located near or beyond the margins of the last glaciation. Organic sediments previously attributed to Early and Middle Weichselian interstadial periods in Finland are argued to be redeposited and mixed older (last interglacial) material. Pollen and diatom spectra of the undisturbed materials suggest that the Eemian climatic optimum was followed by a continuously cooling climate and a regressive marine level. If only undisturbed sequences are considered, the major climatic fluctuations of the Early Weichselian, apparent in Central and Western Europe, are not apparent in the sequences from the central part of the glaciated terrain. Instead, some sequences are truncated by sediments indicating approaching ice sheets soon after the interglacial. This may imply that the ice sheet grew over Finland during the first Early Weichselian stadial. The preservation of the interglacial beds and the lack of younger non-glacial sediments support the interpretation that the area remained ice-covered until the final deglaciation. During the Early Weichselian, the Norwegian coast was probably occasionally ice free, similar to the coastal zone of Greenland today. The authors' interpretation of the Fennoscandian organic deposits of the last glaciation may also explain similar observations from the central parts of the Laurentide ice sheet.  相似文献   

11.
Lake and peat deposits from the Timan Ridge, Arctic Russia, were pollen analysed, reconstructing the vegetation history and paleoenvironment since the Last Glacial Maximum (LGM) 20–18,000 years ago. The sites studied are located inside the margins of a large paleolake of about 20 km2, by us named Lake Timan. This lake developed in the Late Weichselian, more than 30,000 years after the deglaciation of this region, and was formed due to increased precipitation and warmer summers that accelerated the melting of stagnant ice within its catchment. The lake was drained during the early Holocene when the outlet rivers eroded the spillways. A new generation of much smaller lakes formed during the Holocene when the last remnants of buried glacier ice melted away causing the exposed floor of Lake Timan to subside. Since deglaciation, the following regional vegetation development has been recorded: (1) During the initial stage of Lake Timan, the dominant vegetation was discontinuous steppe/tundra, with patches of snow bed vegetation. (2) A dwarf-shrub tundra established during the Late Weichselian interstadial (Allerød), probably reflecting warmer and moister conditions. (3) The Younger Dryas cooling is recognised by a reversal to steppe/tundra and snowbeds on unstable mineral-soils, and higher palynological richness. (4) Soon after the transition into the Holocene, a birch-forest established on the Timan Ridge. (5) A cooling starting around 8200 cal.years BP initiated the deforestation of the exposed hills. In the most protected sites, birch trees persisted until later than 4000 years ago, reflecting a gradual development into the present treeless dwarf-shrub tundra.  相似文献   

12.
Coastal Jameson Land is characterized by thick Quaternary deposits from the last interglacial/glacial cycle. The successions at the mouth of Langelandselv exhibit a key stratigraphy where sediments from the Langelandselv interglaciation (Eemian) are overlain by three till units interbedded with glacimarine and deltaic interstadial successions. Immediately after the retreat of glaciers after the extensive Scoresby Sund glaciation (Saalian). advection of warm Atlantic surface water surpassed what is known from the Holocene. The two lowermost Weichselian tills, deposited during the Aucellaelv and Jyllandselv stades (Early Weichselian), reflect short-lasting readvances of fjord glaciers. Luminescence dates and correlation with adjacent areas suggest ages of 110–80 ka and 70–60 ka for the Hugin Sø and the Møselv interstades, respectively.  相似文献   

13.
Molluscan fossils collected from shallow water marine sediment across NW Europe and nearby Arctic regions have been analysed for the extent of isoleucine epimerization ( ratio) in indigenous protein residues. The ratios confirm that essentially all ‘classical’ Eemian sites from NW Europe are of the same age, and are correlative with the type locality near Amersfoort in the Netherlands; shells from interglacial marine sediment beneath the type Weichselian till in Poland also correlate with the type Eemian site. ratios in Holsteinian marine shells (0.29) are substantially higher than in their Eemian counterparts (0.17); ‘Late Cromerian’ shells yield even higher ratios (0.46). ratios in late glacial shells (0.06) and Middle Weichselian shells (0.09) permit differentiation from modern (0.01) and last interglacial material. Based on the position of the Matuyama-Brunhes boundary and the differences in ratios, the Eemian must correlate with isotope substage 5e, whereas the Holsteinian is most likely substage 7c, possibly stage 9 but certainly younger than stage 11. Intra-Saalian warm periods may be terrestrial equivalents of the younger substages of stage 7. Extensive pre-Eemian marine sediments along the SW coast of Denmark previously correlated with the Holsteinian are shown to be of ‘Late Cromerian’ age. The underlying till there is the first widespread evidence of a pre-Elsterian till in NW Europe. ratios in molluscs from last interglacial sites along the Arctic coast of the USSR, the Arctic Islands and eastern Greenland are substantially lower than in their European counterparts due to their low thermal histories. The combined mid- and high-latitude data are used to develop a predictive model for the expected ratio in any of several moderate epimerization-rate taxa for last interglacial sites with mean temperatures between −20 and +15°C.Not all sites could be unambiguously assigned to an established interglacial. The Fjøsanger (Norway) and Margareteberg (Sweden) sites previously thought to be Eemian, yield ratios higher than in secure nearby Eemian material. It is yet unresolved whether these are aberrant sites or if they predate the last interglacial. In situ shoreline deposits encountered in borings in SW Belgium and in exposures on the Belgium coastal plain contain molluscs that yield ratios intermediate between secure Eemian and Late Weichselian ratios, raising the possibility that a late stage 5 high-sea-level event attained near-modern levels in the southern North Sea basin. Resolution of these uncertainties is the focus of future work.  相似文献   

14.
Marine sediments from river sections in the Mezen River drainage, northwest Russia, have been analysed for dinoflagellate cysts, foraminifers and molluscs. The sediments were dated by pollen analysis and by reference to the local sea-level history, and are Late Saalian to late Eemian (c. 133 to 119.5 kyr in age). The Late Saalian deglaciation was characterized by Arctic conditions, but a few centuries into the Eemian the Gulf Stream system carried warm Atlantic water into the region. At 129.8 kyr BP there was a marked increase in the influx of Atlantic water, and the advection of warm Atlantic water was stronger and probably penetrated further eastwards than at present. The molluscs, dinoflagellate cysts and foraminifers reflect conditions warmer than present and that the optimum temperature occurred at the time of the early Eemian global sea-level rise. Around 128 kyr BP, the eustatic sea-level rise was curbed by isostatic rebound and accompanying regression and constriction of marine passages to the White Sea. Local, low-saline, stratified basins developed and characterized the next five to six millennia.  相似文献   

15.
The Late Pleistocene stratigraphy from the Severnaya Dvina‐Vychegda region of northwestern Russia is revised based on investigations of new localities, revisiting earlier localities, introduction of about 110 new OSL dates and burial depth corrections of earlier published OSL dates, in addition to six new radiocarbon dates. Most of the OSL samples studied here are from fluvial and subaquaeous sediments, which we found to be well bleached. Six chronostratigraphical units and their sedimentary environment are described, with the oldest unit consisting of pre‐Eemian glacial beds. For the first time, Early Weichselian sediments are documented from the region and a fluvial environment with some vegetation and permafrost conditions is suggested to have persisted from the end of the Eemian until at least about 92 ka ago. The period in which a Middle Weichselian White Sea Lake could have existed is constrained to 67?62 ka, but as the lake level never reached the thresholds of the drainage basin, the lake probably existed only for a short interval within this time‐span. Blocking and reversal of fluvial drainage started again around 21?20 ka ago when the Fennoscandian Ice Sheet advanced into the area, reaching its maximum 17?15 ka ago. At that time, an ice‐dammed lake reached its maximum water level, which was around 135 m above present sea level. Drainage of the lake started shortly after 15 ka ago, and the lake was emptied within 700 years. Severe periglacial conditions, with permafrost and aeolian activity, prevailed in the area until about 10.7 ka.  相似文献   

16.
The modern drainage system of central Poland developed during the Holsteinian, but it originated from the Elsterian glacial tunnel valleys and deglacial residual overflow lakes. In spite of occupation of this area by the Wartanian ice sheet and the following formation of the landscape during deglaciation, a similar river network was renewed during the Eemian. During the Weichselian the Middle Vistula valley was subjected to widespread ice-dam deposition. This resulted in rise of the base level of erosion and in westward deflection of the runoff, connected with development of the Central European spillways. The presented reconstruction of the Middle and Late Pleistocene fluvial network shows that the Holstein and Eemian sea levels were the driving force for river system development in central Poland. The Holstein and Eemian sea levels were very close to the present water level of the Baltic Sea. They made interglacial fluvial patterns roughly similar to the contemporary one, and therefore the main watersheds have been only slightly modified since that time. However, due to the considerable southward extension of the sea during the Eemian and presumably also during the Holsteinian, buried interglacial river deposits in central Poland occur at present well beneath the Holocene alluvia.  相似文献   

17.
The Quaternary sequence of a boring from the island of Anholt, Denmark, comprises both marine and non-marine sediments spanning a time interval from the Holocene to at least as far back as the Saalian. The oldest Quaternary sediments consist of a till and a glaciofluvial sand sequence. These are overlain by marine silty clays of Saalian to Eemian age. An interstadial (Flakket Interstadial) and a stadial (Kattegat Stadial) are identified in the late Saalian. This climatic fluctuation has been compared to the Allerød and Younger Dryas events at the Weichselian–Holocene transition. The Eemian sediments are followed by sand and non-marine, varved clay overlain by 2 m of marine clay, which is correlated with the Middle Weichselian of the Skærumhede series. The marine clay is covered by silty clay and a thick sand sequence of non-marine origin. The uppermost 2 m sediments may represent the Holocene coastal accretion on Anholt.  相似文献   

18.
The 6-m-long British Geological Survey vibrocore 56+01/170 from the Devil's Hole area, central North Sea, comprises glaciomarine and marine sediments of Late Weichselian and Holocene age. Besides the foraminiferal, pollen and AMS 14C data presented in this study, amino acid and ostracod data exist for the core. The accumulation of the sediment in the core began ca. 15.7 14C ka BP on an erosional surface on overconsolidated Saalian sediment. When the lower part of the core (facies 1) accumulated the core area is interpreted to have been around 40 m lower than present. This interpretation is based on two assumptions; first, that the sediment is now ca. 20 m above the global sea level at the time of deposition, and second, that the marine microfaunal content reflects a water depth of about 20 m at that time. Crustal downflexure caused by Late Weichselian glacial loading of the core area is considered as the most plausible explanation of this difference. Glacial overriding would also explain the overconsolidation of the underlying Saalian sediment, the erosional surface on the Saalian sediment and the absence of Weichselian sediment older than ca. 15.7 ka BP at the core site. Indications of a regressional trend, with a minimum age of 12.1 ka BP, support the suggestion that the Devil's Hole area was glaciated during the Weichselian, as the fall in sea-level at that time probably reflects local isostatic rebound.  相似文献   

19.
The Quaternary deposits in the Store Middelgrund–Rørdebanke area midway between the island of Anholt and Hallandsåsen on the Swedish coast are described on the basis of reflection seismic profiles with a vertical resolution of 5–10 m. The Quaternary rests on Upper Cretaceous limestone, the surface of which is nearly horizontal. Three Quaternary sequences are defined and interpreted as: (1) Late Weichselian marine or lacustrine deposits, (2) Late Weichselian glaciogenic deposits, and (3) Late Saalian–Eemian and Early–Middle Weichselian deposits. Sequence 3 is probably comparable to the upwards-coarsening sequence known from Skaerumhede in Vendsyssel. The layers in sequence 3 are dislocated in the eastern part of the Store Middelgrund–Rødebanke area mainly by gentle folding, but other types of deformations occur. Folding could be the result of horizontal push from an ice sheet approaching from the east. Alternatively the folding is an effect of vertical, gravitational forces acting on the sediments due to an unstable density profile, as described by the Rayleigh–Taylor instability model. The zone of deformation is located close to the northern flank of the tectonically active Sorgenfrei–Tornquist Zone. It is suggested that the initiation of the folding process was facilitated by tremors from small earthquakes.  相似文献   

20.
BOREAS Foged, N. 1978 03 01: Diatoms from the Middle and Late Weichselian and the Early Flandrian period on Andøya, north Norway. Boreas, Vol. 7, pp. 41–47. Oslo. ISSN 0300–9483.
From cores from a depth of 9.9 m up to 5.1 m below the present surface of a mire situated approx. 36 m above sea level on Andøya, north Norway, 47 samples were analysed for diatoms. Some 240 taxa were recorded, chiefly in Late Weichselian and Early Flandrian material. They were subdivided according to their halobion and pH relation. On the whole, the pH reaction of the environment was neutral, but it changed from faintly acid to faintly alkaline during the sedimentation of the Late Weichselian material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号