首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The impact of climate change on a large river reservoir ecosystem was investigated. Long-term meteorological data showed that recent climate change, including warmer winters, increased precipitation intensity and extended dry periods, may have influenced the basin of Lake Paldang, the most downstream reservoir of a series of on-river reservoirs. Extreme hydrologic events and climate warming, acting independently and in combination, appear to be related to changes in the Lake Paldang ecosystem. A significant increase in chlorophyll a concentrations in early spring corresponded to the timing of ice break-up. An increase in winter temperatures, which resulted in a shorter time period of ice-cover and earlier ice break-up, appears to have stimulated phytoplankton growth in winter and early spring. Repeated intensive and extended influxes of turbid water, associated with more frequent extreme rainfall events, have increased concentration of suspended solids and may have influenced the biotic community structure of Lake Paldang. In the mid-2000s, the area vegetated by submerged hydrophytes, the abundance and biomass of the phylum Mollusca, as well as the abundance of fish from the subfamily Acheilognathinae, which spawn in the body of bivalve molluscs, was all smaller than in the late 1980s and early 1990s. Together, these results suggest that climate change may have contributed directly and indirectly to changes in each trophic level of the Lake Paldang ecosystem.  相似文献   

2.
Existing multi-proxy climate reconstruction methods assume the suitably transformed proxy time series are linearly related to the target climate variable, which is likely a simplifying assumption for many proxy records. Furthermore, with a single exception, these methods face problems with varying temporal resolutions of the proxy data. Here we introduce a new reconstruction method that uses the ordering of all pairs of proxy observations within each record to arrive at a consensus time series that best agrees with all proxy records. The resulting unitless composite time series is subsequently calibrated to the instrumental record to provide an estimate of past climate. By considering only pairwise comparisons, this method, which we call PaiCo, facilitates the inclusion of records with differing temporal resolutions, and relaxes the assumption of linearity to the more general assumption of a monotonically increasing relationship between each proxy series and the target climate variable. We apply PaiCo to a newly assembled collection of high-quality proxy data to reconstruct the mean temperature of the Northernmost Atlantic region, which we call Arctic Atlantic, over the last 2,000 years. The Arctic Atlantic is a dynamically important region known to feature substantial temperature variability over recent millennia, and PaiCo allows for a more thorough investigation of the Arctic Atlantic regional climate as we include a diverse array of terrestrial and marine proxies with annual to multidecadal temporal resolutions. Comparisons of the PaiCo reconstruction to recent reconstructions covering larger areas indicate greater climatic variability in the Arctic Atlantic than for the Arctic as a whole. The Arctic Atlantic reconstruction features temperatures during the Roman Warm Period and Medieval Climate Anomaly that are comparable or even warmer than those of the twentieth century, and coldest temperatures in the middle of the nineteenth century, just prior to the onset of the recent warming trend.  相似文献   

3.
Joel Guiot 《Climatic change》1987,10(3):249-268
This paper presents an attempt to summarize various sparse proxy series into continuous and exhaustive climatic data. Freeze-up and break-up dates, early meteorological records and tree-ring data have been combined for the Hudson Bay region and 22 continuous proxy series extending from 1700 to 1979 have been deduced. These new series in term provided the basis for a regressive reconstruction of six seasonal temperature series. Verification tests are successful mainly for the high frequencies components. The low frequencies variability is better estimated by a best analogues method. Both kinds of reconstructions have been combined to improve the results. The main characteristic of the reconstructions is a warming trend beginning at the end of the 19th century. Evidence for a beat wave resulting from 22-year solar and 18.6-year lunar nodal tidal cycles is presented. A phase analysis showed results consistent with other studies of summer temperature variability: temperature maxima correspond to sunspot minima ending an even cycle and are emphasized by the lunar maxima. Different phenomena are pointed out for autumn and winter temperatures: their maxima coincide to sunspot even maxima amplified by lunar minima. In spring, the transition season, these signals are not apparent.  相似文献   

4.
In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ13C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.  相似文献   

5.
We statistically reconstruct austral summer (winter) surface air temperature fields back to ad 900 (1706) using 22 (20) annually resolved predictors from natural and human archives from southern South America (SSA). This represents the first regional-scale climate field reconstruction for parts of the Southern Hemisphere at this high temporal resolution. We apply three different reconstruction techniques: multivariate principal component regression, composite plus scaling, and regularized expectation maximization. There is generally good agreement between the results of the three methods on interannual and decadal timescales. The field reconstructions allow us to describe differences and similarities in the temperature evolution of different sub-regions of SSA. The reconstructed SSA mean summer temperatures between 900 and 1350 are mostly above the 1901?C1995 climatology. After 1350, we reconstruct a sharp transition to colder conditions, which last until approximately 1700. The summers in the eighteenth century are relatively warm with a subsequent cold relapse peaking around 1850. In the twentieth century, summer temperatures reach conditions similar to earlier warm periods. The winter temperatures in the eighteenth and nineteenth centuries were mostly below the twentieth century average. The uncertainties of our reconstructions are generally largest in the eastern lowlands of SSA, where the coverage with proxy data is poorest. Verifications with independent summer temperature proxies and instrumental measurements suggest that the interannual and multi-decadal variations of SSA temperatures are well captured by our reconstructions. This new dataset can be used for data/model comparison and data assimilation as well as for detection and attribution studies at sub-continental scales.  相似文献   

6.
华中地区2030年前气温和降水量变化预估   总被引:3,自引:0,他引:3  
 根据区域气候模式对华中地区1961-1990年和2001-2030年的逐月平均气温和降水量的模拟值(0.5°×0.5°经纬度格点,A2情景),以1961-1990年为基准,计算并分析了该区域未来30 a(2001-2030年)的年、季平均气温和降水量的变化趋势。对气温变化而言,未来30 a华中地区年平均气温呈上升趋势,平均升温0.3℃,东部增温大于西部;春、夏季平均气温上升,分别为0.1~1.3℃、0.8~2.2℃;秋季北部地区气温下降,南部地区气温升高;冬季平均气温下降0.0~1.0℃。就降水而言,未来30 a华中地区年平均降水量大部分地区呈减少趋势,空间分布有南增北减的特点;春、夏、冬季平均降水量大部分地区减少,冬季平均降水量的减幅要大于春、夏季;秋季大部分地区平均降水量增加。  相似文献   

7.
根据区域气候模式对华中地区1961-1990年和2001-2030年的逐月平均气温和降水量的模拟值(0.5°×0.5°经纬度格点,A2情景),以1961-1990年为基准,计算并分析了该区域未来30 a(2001-2030年)的年、季平均气温和降水量的变化趋势。对气温变化而言,未来30 a华中地区年平均气温呈上升趋势,平均升温0.3℃,东部增温大于西部;春、夏季平均气温上升,分别为0.1~1.3℃、0.8~2.2℃;秋季北部地区气温下降,南部地区气温升高;冬季平均气温下降0.0~1.0℃。就降水而言,未来30 a华中地区年平均降水量大部分地区呈减少趋势,空间分布有南增北减的特点;春、夏、冬季平均降水量大部分地区减少,冬季平均降水量的减幅要大于春、夏季;秋季大部分地区平均降水量增加。  相似文献   

8.
气候变暖与天津粮食生产的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了近60年(1932—1989)天津气温与降水的变化,指出天津的增暖与北半球的增暖相当一致,冬季最明显;在80年代全球增暖期,天津夏季降水减少,春季与初夏降水增多;从气温和降水演变的周期性及全球增暖的背景分析,华北未来10年仍将持续温暖而干旱的气候。气候变暖对天津地区小麦和玉米的增产有利,而干旱使水稻的增产受到限制,夏季的增温与干旱对大豆增产不利。  相似文献   

9.
摘要:利用新疆天山北坡经济带12个国家气象站逐日最低气温和平均气温资料,研究该区域近55 a来持续低温指数CCDI的变化规律及其对气温变化的响应,结果表明:近55 a来研究区的年、季平均气温均呈显著升高趋势,其中冬季升温幅度最大,夏季升温幅度最小;受气候变暖的影响,近55 a研究区CCDI呈显著减少趋势,其中冬季减少幅度最大、夏季最小;55 a来研究区CCDI和平均气温之间呈显著的反相关,年、季都经历了气温距平由负转正、同时对应CCDI距平由正转负的过程;近55 a来年、季CCDI对平均气温的敏感系数均为负值,说明CCDI值随着气温的升高而减少,敏感系数绝对值春、夏、秋三季均呈显著减小趋势,即CCDI对气候变暖的响应在减弱,而冬季则呈显著增大趋势即CCDI对气候变暖的响应在增强。  相似文献   

10.
1901-2007年澳门地面气温变化的分析   总被引:3,自引:0,他引:3       下载免费PDF全文
 利用澳门的气温观测资料, 分析了澳门1901-2007年地面气温变化的基本特征。结果表明:近107 a的升温率为0.066℃/10a, 明显低于全球平均升温率。季节平均气温的年代际变化有明显的季节差异,最大的增暖发生在春季和冬季,夏季的增暖最小;冬、夏季的变化分别有明显的时间尺度约为60 a和30 a的振动。年平均最高气温的升温率仅为最低气温的一半左右。最高气温的年代际变化呈缓慢的气候波动现象,20世纪80年代中期以后的升幅与历史上的增暖大致相当;最低气温近20多年来的增暖趋势可能是其长期(变暖)趋势的延续。年平均日较差整体来说是趋于减少的,但近30 a却趋于增加。  相似文献   

11.
Using 1,981 pieces of temperature records extracted from a selection of tree rings, ice cores, sediments, and other materials with high-resolution historical temperature proxy data, a temperature series of the past 2,000 years on the Tibetan Plateau (TP) with 10-year intervals was reconstructed by the method of single sample correction—multi-sample average integration equations. This series shows that the warm periods mainly appeared before 235 A.D., 775–1275 A.D. and 1845–2000 A.D., while the cold periods occurred 245–765 A.D., 1045–1145 A.D., and 1285–1835 A.D. The Little Ice Age left clear evidence on the TP and its coldest period was between 1635 and 1675 A.D. The Medieval Warm Period on the TP was not as warm as that in the late twentieth century. During the nineteenth century, overall temperature tends to be warmer with a clear rising trend, and in the late twentieth century new highs broke the record of the past 2,000 years. Power spectrum analysis shows that temperature on the TP changes consistently and evidently in a 150-year cycle. This integrated series also shows clear correlations with sunspot activity and solar radiation, as high sunspot activities generally led to warmer periods, and vice versa. Solar activities and intense radiation of recent years are naturally conducive to the global warming since the nineteenth century. The combination of greenhouse gases and natural fluctuations in climate has been the main culprit behind the global warming in the twentieth century.  相似文献   

12.
For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.  相似文献   

13.
Abstract

Trends in Canadian temperature and precipitation during the 20th century are analyzed using recently updated and adjusted station data. Six elements, maximum, minimum and mean temperatures along with diurnal temperature range (DTR), precipitation totals and ratio of snowfall to total precipitation are investigated. Anomalies from the 1961–1990 reference period were first obtained at individual stations, and were then used to generate gridded datasets for subsequent trend analyses. Trends were computed for 1900–1998 for southern Canada (south of 60°N), and separately for 1950–1998 for the entire country, due to insufficient data in the high arctic prior to the 1950s.

From 1900–1998, the annual mean temperature has increased between 0.5 and 1.5°C in the south. The warming is greater in minimum temperature than in maximum temperature in the first half of the century, resulting in a decrease of DTR. The greatest warming occurred in the west, with statistically significant increases mostly seen during spring and summer periods. Annual precipitation has also increased from 5% to 35% in southern Canada over the same period. In general, the ratio of snowfall to total precipitation has been increasing due mostly to the increase in winter precipitation which generally falls as snow and an increase of ratio in autumn. Negative trends were identified in some southern regions during spring. From 1950–1998, the pattern of temperature change is distinct: warming in the south and west and cooling in the northeast, with similar magnitudes in both maximum and minimum temperatures. This pattern is mostly evident in winter and spring. Across Canada, precipitation has increased by 5% to 35%, with significant negative trends found in southern regions during winter. Overall, the ratio of snowfall to total precipitation has increased, with significant negative trends occurring mostly in southern Canada during spring.

Indices of abnormal climate conditions are also examined. These indices were defined as areas of Canada for 1950–1998, or southern Canada for 1900–1998, with temperature or precipitation anomalies above the 66th or below the 34th percentiles in their relevant time series. These confirmed the above findings and showed that climate has been becoming gradually wetter and warmer in southern Canada throughout the entire century, and in all of Canada during the latter half of the century.  相似文献   

14.
The climate of crete in the sixteenth and seventeenth centuries   总被引:1,自引:0,他引:1  
The climatic history of the eastern Mediterranean has been neglected; that of Crete is selected for initial investigation. The principal characteristics of twentieth century climate are surveyed. The most important documentary sources for the sixteenth and seventeenth centuries are introduced, their potentialities discussed and examples of documentary evidence given. Detailed consideration is given to the period 1548 to 1648, and its main climatic features tabulated. In some years, and groups of years, weather conditions occurred which were apparently anomalous by twentieth century standards, especially winter and spring droughts, exceptionally severe winters, and summer rain. Specific cases are discussed. Some winter droughts were longer-lasting and more extreme than any since instrumental measurements began. These could affect wide regions and are taken to have been caused by the extension of southerly air masses from the Sahara. The incidence of severe winters leads to consideration of evidence for snowfall having been heavier and longer lasting than in the nineteenth and twentieth centuries. Deluges seem to have been similar in intensity to twentieth century storm events, but some may have been more extreme and extended more widely. Records of summer rains were found to be rare compared with those of winter drought and severe winters. The period under review was one in which northern and central Europe experienced individual years and clusters of years in which weather conditions departed strongly from twentieth century means. It is surmised that climatic anomalies, which did not necessarily occur simultaneously in the eastern and western Mediterranean, were associated with low index situations, that is with weak circumpolar westerlies, and with blocking highs further north in Europe, causing diversion of depression tracks.  相似文献   

15.
Global climate models predict that terrestrial northern high-latitude snow conditions will change substantially over the twenty-first century. Results from a Community Climate System Model simulation of twentieth and twenty-first (SRES A1B scenario) century climate show increased winter snowfall (+10–40%), altered maximum snow depth (?5 ± 6 cm), and a shortened snow-season (?14 ± 7 days in spring, +20 ± 9 days in autumn). By conducting a series of prescribed snow experiments with the Community Land Model, we isolate how trends in snowfall, snow depth, and snow-season length affect soil temperature trends. Increasing snowfall, by countering the snowpack-shallowing influence of warmer winters and shorter snow seasons, is effectively a soil warming agent, accounting for 10–30% of total soil warming at 1 m depth and ~16% of the simulated twenty-first century decline in near-surface permafrost extent. A shortening snow season enhances soil warming due to increased solar absorption whereas a shallowing snowpack mitigates soil warming due to weaker winter insulation from cold atmospheric air. Snowpack deepening has comparatively less impact due to saturation of snow insulative capacity at deeper snow depths. Snow depth and snow-season length trends tend to be positively related, but their effects on soil temperature are opposing. Consequently, on the century timescale the net change in snow state can either amplify or mitigate soil warming. Snow state changes explain less than 25% of total soil temperature change by 2100. However, for the latter half of twentieth century, snow state variations account for as much as 50–100% of total soil temperature variations.  相似文献   

16.
We review here proxy records of temperature and precipitation in China during the Holocene, especially the last two millennia. The quality of proxy data, methodology of reconstruction, and uncertainties in reconstruction were emphasized in comparing different temperature and precipitation reconstruction and clarifying temporal and spatial patterns of temperature and precipitation during the Holocene. The Holocene climate was generally warm and wet. The warmest period occurred in 9.6-6.2 cal ka BP, whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.0-5.0 cal ka BP. There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes. During past two millennia, a warming trend in the 20th century was clearly detected, but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene. Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900), but the warming of the Medieval Warm Period (AD 900-AD 1300) was not distinct in China, especially west China. The spatial pattern of precipitation showed significant regional differences in China, especially east China. The modern warm period has lasted 20 years from 1987 to 2006. Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.  相似文献   

17.
In the 20 th century, Eurasian warming was observed and was closely related to global oceanic warming(the first leading rotated empirical orthogonal function of annual mean sea surface temperature over the period 1901–2004). Here, large-scale patterns of covariability between global oceanic warming and circulation anomalies are investigated based on NCEP–NCAR reanalysis data. In winter, certain dominant features are found, such as a positive pattern of the North Atlantic Oscillation(NAO), low-pressure anomalies over northern Eurasia, and a weakened East Asian trough. Numerical experiments with the CAM3.5, CCM3 and GFDL models are used to explore the contribution of global oceanic warming to the winter Eurasian climate. Results show that a positive NAO anomaly, low-pressure anomalies in northern Eurasia, and a weaker-than-normal East Asian trough are induced by global oceanic warming. Consequently, there are warmer winters in Europe and the northern part of East Asia. However, the Eurasian climate changes differ slightly among the three models. Eddy forcing and convective heating from those models may be the reason for the different responses of Eurasian climate.  相似文献   

18.
Temperature variations on the Tibetan Plateau during the last millennium are revealed by comparing a Qamdo tree-ring δ13C, the Dasuopu ice-core δ18O series, and a previous composite temperature reconstruction. Results show that an obvious warm period during 1200-1400 AD corresponds to the Medieval Warm Period (MWP) when summer temperature was 1.2℃ higher than the recent 1000 years average, and a cool phase from 1400 to 1700 AD, with summer temperature being 0.5℃lower than long-term average, can be correlated to the Little Ice Age (LIA). The 13th century was the warmest phase during the past 1000 years, while the coldest period occurred during 1000-1200 AD. The 20th century warming was characterized by rapid winter temperature rise while summer temperature at that time displayed a slight downward trend.  相似文献   

19.
1951--2006年南京气温变化特征   总被引:4,自引:0,他引:4  
利用南京市1951年1月-2007年4月逐日温度观测资料,分析了南京市平均气温、极端气温、冷积温和热积温的变化趋势和特征。结果表明,在全球气候变暖的背景下,56a来南京平均气温明显上升,尤其是春、冬季升温显著,且春季升温大于冬季升温,而年极端最低气温和冷积温显著上升,年极端最高气温和热积温略有下降;冷冬皆分布在20世纪80年代以前,暖冬主要分布在90年代以后;春季提前并略有加长;夏季加长了约4候;秋季延迟并缩短了约2候;冬季缩短了约3候。  相似文献   

20.
利用南京市1951年1月-2007年4月逐日温度观测资料,分析了南京市平均气温、极端气温、冷积温和热积温的变化趋势和特征。结果表明,在全球气候变暖的背景下,56a来南京平均气温明显上升,尤其是春、冬季升温显著,且春季升温大于冬季升温,而年极端最低气温和冷积温显著上升,年极端最高气温和热积温略有下降;冷冬皆分布在20世纪80年代以前,暖冬主要分布在90年代以后;春季提前并略有加长;夏季加长了约4候;秋季延迟并缩短了约2候;冬季缩短了约3候。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号