首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A dual étalon Fabry‐Pérot spectrometer called DEFPOS has been used for observing physical properties of HII regions and planetary nebulae since May 2007 (Aksaker et al. 2009, 2011; Şahan et al. 2009; Şahan 2011). In this study, the Hα measurements of the HII region NGC 1499 (California Nebula) have been investigated with a 4′ circular field of view over a 200 km s–1 (4.4 Å) spectral window. These measurements provide information about the densities, line widths, and radial velocities of the surrounding NGC 1499 nebula. The intensities, the radial velocities and the line widths of the Hα emission line vary from 397.75 R to 1044.14 R, –4.88 km s–1 to –1.02 km s–1, and 36.72 km s–1 to 42.81 km s–1, respectively (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Planetary nebulae (PNe) are formed in a very fast process. In just about 1000 years, the nebula evolves from a spherical and slowly expanding AGB envelope to a PN, with usually axial symmetry and high axial velocities. Molecular lines are known to probe most of the nebular material in young PNe and protoplanetary nebulae (PPNe), and are therefore very useful to study such an impressive evolution. Many quantitative results on these objects have been so obtained, including general structure, total mass and density distribution, kinetic temperatures, velocity fields, etc. Existing observations probe both the gas accelerated by post-AGB shocks and the quiescent components. But the study of crucial regions to understand PN formation (recently shocked shells, regions heated by the stellar UV and inner rotating disks) requires observations at higher frequency and with better spatial resolution.   相似文献   

3.
There are about 50 galactic planetary nebulae know to have [WR] type nuclei. We have compared their nebular properties with those of the other planetary nebulae in the Galaxy. We have found that the nebular morphological types are similarly distributed in the two groups. Bipolar nebulae constitute only 20% of the total in each group. The distribution of the nebular electron densities and abundance ratios N/O, He/H and C/O are the same in the two groups. The only marked difference is that nebular expansion velocities are larger in the group of planetary nebulae with [WR] central stars. We argue that the WR phenomenon does not preferentially occur in more massive central stars of planetary nebulae, contrary to what has been suggested in some former studies. We demonstrate that, for most of the observed [WR] type objects, the WR phenomenon cannot be triggered by a late helium shell flash event.The results of our investigation are published inAstronomy & Astrophysics 303, 893 (1995) and in the proceedings of the 2nd International Colloquium on Hydrogen-deficient Stars, C.S. Jeffery & U. Heber (eds), Astronomical Society of the Pacific Conference Series, Vol. 96, p. 209 (1996).  相似文献   

4.
We report the discovery of the first probable Galactic [WN] central star of a planetary nebula (CSPN). The planetary nebula candidate was found during our systematic scans of the AAO/UKST Hα Survey of the Milky Way. Subsequent confirmatory spectroscopy of the nebula and central star reveals the remarkable nature of this object. The nebular spectrum shows emission lines with large expansion velocities exceeding 150 km s−1, suggesting that perhaps the object is not a conventional planetary nebula. The central star itself is very red and is identified as being of the [WN] class, which makes it unique in the Galaxy. A large body of supplementary observational data supports the hypothesis that this object is indeed a planetary nebula and not a Population I Wolf–Rayet star with a ring nebula.  相似文献   

5.
We investigated the kinematics of the pulsar wind nebula (PWN) in the old supernova remnant CTB 80 using the Fabry-Perot interferometer of the 6-m Special Astrophysical Observatory telescope. In addition to the previously known expansion of the system of bright filaments with a velocity of 100–200 km s?1, we detected weak high-velocity features in the Hα line at least up to velocities of 400–450 km s?1. We analyzed the morphology of the PWN in the Hα, [S II], and [O III] lines using HST archival data and discuss its nature. The shape of the central filamentary shell, which is determined by the emission in the [O III] line and in the radio continuum, is shown to be consistent with the bow-shock model for a significant (about 60°) inclination of the pulsar’s velocity vector to the plane of the sky. In this case, the space velocity of the pulsar is twice as high as its tangential velocity, i.e., it reaches ?500 km s?1, and PSR B1951+32 is the first pulsar whose radial velocity about 40 km s?1 has been estimated from PWN observations. The shell-like Hα-structures outside the bow shock front in the east and the west could be associated with both the pulsar’s jets and the pulsar wind breakthrough due to the layered structure of the extended CTB 80 shell.  相似文献   

6.
Abstract— The primordial asteroid belt contained at least several hundred and possibly as many as 10,000 bodies with diameters of 1000 km or larger. Following the formation of Jupiter, nebular gas drag combined with passage of such bodies through Jovian resonances produced high eccentricities (e = 0.3‐0.5), low inclinations (i < 0.5°), and, therefore, high velocities (3–10 km/s) for “resonant” bodies relative to both nebular gas and non‐resonant planetesimals. These high velocities would have produced shock waves in the nebular gas through two mechanisms. First, bow shocks would be produced by supersonic motion of resonant bodies relative to the nebula. Second, high‐velocity collisions of resonant bodies with non‐resonant bodies would have generated impact vapor plume shocks near the collision sites. Both types of shocks would be sufficient to melt chondrule precursors in the nebula, and both are consistent with isotopic evidence for a time delay of ?1‐1.5 Myr between the formation of CAIs and most chondrules. Here, initial simulations are first reported of impact shock wave generation in the nebula and of the local nebular volumes that would be processed by these shocks as a function of impactor size and relative velocity. Second, the approximate maximum chondrule mass production is estimated for both bow shocks and impact‐generated shocks assuming a simplified planetesimal population and a rate of inward migration into resonances consistent with previous simulations. Based on these initial first‐order calculations, impact‐generated shocks can explain only a small fraction of the minimum likely mass of chondrules in the primordial asteroid belt (?1024‐1025g). However, bow shocks are potentially a more efficient source of chondrule production and can explain up to 10–100 times the estimated minimum chondrule mass.  相似文献   

7.
We present [N  ii ] and H α images and high-resolution long-slit spectra of the planetary nebula IC 4846, which reveal, for the first time, its complex structure and the existence of collimated outflows. The object consists of a moderately elongated shell, two (and probably three) pairs of collimated bipolar outflows at different orientations, and an attached circular shell. One of the collimated pairs is constituted by two curved, extended filaments the properties of which indicate a high-velocity, bipolar precessing jet. A difference of ≃10 km s−1 is found between the systemic velocity of the precessing jets and the centroid velocity of the nebula, as recently reported for Hu 2-1. We propose that this difference is as a result of orbital motion of the ejection source in a binary central star. The orbital separation of 30 au and period 100 yr estimated for the binary are similar to those in Hu 2-1, linking the central stars of both planetary nebulae to interacting binaries. Extraordinary similarities also exist between IC 4846 and the bewildering planetary nebula NGC 6543, suggesting a similar formation history for both objects.  相似文献   

8.
The interacting of two winds model and a nonspherical density functionin three dimensions is introduced to study the dynamical structure ofplanetary nebulae. A fast wind with a mechanical energy interacts with asuper wind mass-loss rate of 2 × 10-10 M yr and avelocity of 10 km s-1. As a result it produces a dense and luminosmedium.Taking into account the above assumptions, we introduce the code(DS3D),and numerically we calculate the following physical quantities:the shell velocity, the shell radious and thickness, and other physicalquantities throughout the entire nebula.  相似文献   

9.
We carried out the first 21-cm line observations of an extended region around the Wolf-Rayet star WR 102 and the associated nebula G2.4+1.4 with the RATAN-600 radio telescope. An irregular H I shell was identified. Its maximum expansion velocity reaches ~50 km s?1, and its outer diameter (at a distance of 3 kpc) is 56 pc. The mechanical luminosity of the stellar wind required to produce the observed shell is estimated to be ~0.8×1038 erg s?1; the age of the shell is ~3.4×105 yr. We compare the inferred parameters of the H I shell with the structure and kinematics of the ionized nebula and with the dust distribution in the region.  相似文献   

10.
A.G.W. Cameron 《Icarus》1973,18(3):407-450
Particle accumulation processes are discussed for a variety of physical environments, ranging from the collapse phase of an interstellar cloud to the different parts of the models of the primitive solar nebula constructed by Cameron and Pine. Because of turbulence in the collapsing interstellar gas, it is concluded that interstellar grains accumulate into bodies with radii of a few tens of centimeters before the outer parts of the solar nebula are formed. These bodies can descend quite rapidly through the gas toward midplane of the nebula, and accumulation to planetary size can occur in a few thousand years. Substantial modifications of these processes take place in the outer convection zone of the solar nebula, but again it is concluded that bodies in that zone can grow to planetary size in a few thousand years.From the discussion of the interstellar collapse phase it is concluded that the angular momentum of the primitive solar nebula was predominantly of random turbulent origin, and that it is plausible that the primitive solar nebula should have possessed satellite nebulae in highly elliptical orbits. It is proposed that the comets were formed in these satellite nebulae.A number of other detailed conclusions are drawn from the analysis. It is shown to be plausible that an iron-rich planet should be formed in the inner part of the outer nebular convection zone. Discussions are given of the processes of planetary gas accretion, the formation of satellites, the T Tauri solar wind, and the dissipation of excess condensed material after the nebular gases have been removed by the T Tauri solar wind. It is shown that the present radial distances of the planets (but not Bode's Law) should be predicted reasonably well by a solar nebula model intermediate between the uniform and linear cases of Cameron and Pine.  相似文献   

11.
Here we present the results of panoramic and long-slit observations of eight ULX nebular counterparts performed with the 6m SAO telescope. In two ULX nebulae (ULXNe) we detected for the first time signatures of high excitation ([O III]λ5007 / Hβ > 5). Two of the ULXs were identified with young (T ~ 5–10 Myr) massive star clusters. Four of the eight ULXNe show bright high-excitation lines. This requires existence of luminous (~ 1038 ÷ 1040 erg s?1) UV/EUV sources coinciding with the X-ray sources. The other 4 ULXNe require shock excitation of the gas with shock velocities of 20–100 km s ?1. However, all the studied ULXNe spectra show signatures of shock excitation, but even those ULXNe where the shocks are prevailing show presence of a hard ionizing source with a luminosity of at least ~ 1038 erg s?1. Most likely shock waves, X-ray and EUV ionization act simultaneously in all the ULXNe, but they may be roughly separated in two groups: shock-dominated and photoionization-dominated ULXNe. The ULXs have to produce strong winds and/or jets (~ 1039 erg s?1) for powering their nebulae. Both the wind/jet activity and the existence of a bright UV source are consistent with the suggestion that ULXs are high-mass X-ray binaries with supercritical accretion disks of the SS433 type.  相似文献   

12.
The hydrogen Balmer‐α emission line spectrum of ten diffuse ionization sources in the Milk Way – NGC 40 (WC8), NGC 2022, NGC 6210, NGC 6618 (M17, Sh2‐45), NGC 6720 (M57), NGC 6781, NGC 6888 (Sh2‐105), NGC 6992 (Sh2‐103), NGC 7635 (Sh2‐162,) and IC 1848 (Sh2‐199) – has been investigated using a dual etalon Fabry‐Pérot optical spectrometer (DEFPOS) aatached to the 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey: 36° 51′ N; 30° 20′ E; elevation: 2547 m). All of our galactic Hα observations discussed in this paper were carried out during the nights of 2013 June 21–24 with exposure time of 3600 s. As main results the intensity, the full width at half maximum, and the radial velocity with respect to the LSR have been determined for each data set. The intensities, the radial velocities, and the line widths of the Hα emission line vary from 59.15 to 8923.44 R, –46.72 to +54.07 km s–1, and 31.4 to 48.01 km s–1, respectively. The radial velocities and the half‐widths of the Hii regions and planetary nebulae determined from our measurements are found tobe consistent with values given in literature, especially with those in Schneider et al. (1983) and Fich et al. (1990). (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Abstract– One transient heating mechanism that can potentially explain the formation of most meteoritic chondrules 1–3 Myr after CAIs is shock waves produced by planetary embryos perturbed into eccentric orbits via resonances with Jupiter following its formation. The mechanism includes both bow shocks upstream of resonant bodies and impact vapor plume shocks produced by high‐velocity collisions of the embryos with small nonresonant planetesimals. Here, we investigate the efficiency of both shock processes using an improved planetesimal accretion and orbital evolution code together with previous simulations of vapor plume expansion in the nebula. Only the standard version of the model (with Jupiter assumed to have its present semimajor axis and eccentricity) is considered. After several hundred thousand years of integration time, about 4–5% of remaining embryos have eccentricities greater than about 0.33 and shock velocities at 3 AU exceeding 6 km s?1, currently considered to be a minimum for melting submillimeter‐sized silicate precursors in bow shocks. Most embryos perturbed into highly eccentric orbits are relatively large—half as large as the Moon or larger. Bodies of this size could yield chondrule‐cooling rates during bow shock passage compatible with furnace experiment results. The cumulative area of the midplane that would be traversed by highly eccentric embryos and their associated bow shocks over a period of 1–2 Myr is <1% of the total area. However, future simulations that consider a radially migrating Jupiter and alternate initial distributions of the planetesimal swarm may yield higher efficiencies.  相似文献   

14.
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and long-slit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Mártir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N  ii ]λ6584 image of Hb 12. We measured from our spectroscopy radial velocities of  ∼120 km s−1  for these knots.
We have derived the inclination angle of the hourglass-shaped nebular shell to be ∼65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula, then both nebula and binary would be expected to share a common inclination angle.
Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in Hα and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.  相似文献   

15.
The planetary nebula populations of relatively nearby galaxies can be easily observed and provide both a distance estimate and a tool with which dynamical information can be obtained. Usually the requisite radial velocities are obtained by multi-object spectroscopy once the planetary nebulae have been located by direct imaging. Here we report on a technique for measuring planetary nebula kinematics using the double-beam ISIS spectrograph at the William Herschel Telescope in a novel slitless mode, which enables the detection and radial velocity measurements to be combined into a single step. The results on our first target, the Sab galaxy NGC 4736, allow the velocity dispersion of the stellar population in a disc galaxy to be traced out to four scalelengths for the first time and are consistent with a simple isothermal sheet model.  相似文献   

16.
In a search for new Galactic planetary nebulae from our systematic scans of the Anglo-Australian Observatory/United Kingdom Schmidt Telescope (AAO/UKST) Hα Survey of the Southern Galactic Plane, we have identified a Population I Wolf–Rayet star of type WN7h associated with an unusual ring nebula that has a fractured rim. We present imagery in Hα, the 843-MHz continuum from the Molonglo Observatory Synthesis Telescope (MOST), the mid-infrared from the Midcourse Space Experiment ( MSX ), and confirmatory optical spectroscopy of the character of the nebula and of its central star. The inner edge of the Hα shell shows gravitational instabilities with a well-defined wavelength around its complete circumference.  相似文献   

17.
We found 36 emission lines in the spectrum of the planetary nebula NGC 2438, and we determined its exc. class to be about 6–7. The nebular RVhel = 60.3 ± 3.6 km/s (5 spectra) is in agreement with RVhel = 60.8 ± 4.0 km/s of 4 cluster stars (10 spectra). We conclude that contrary to earlier statements the nebula is probably associated with the cluster.  相似文献   

18.
We present radio observations of the unique, recently formed, planetary nebula (PN) associated with a very long-period OH/IR variable star V1018 Sco that is unequivocally still in its asymptotic giant branch phase. Two regions within the optical nebula are clearly detected in non-thermal radio continuum emission, with radio spectral indices comparable to those seen in colliding-wind Wolf–Rayet binaries. We suggest that these represent shocked interactions between the hot, fast stellar wind and the cold nebular shell that represents the PN's slow wind moving away from the central star. This same interface produces both synchrotron radio continuum and the optical PN emission. The fast wind is neither spherical in geometry nor aligned with any obvious optical or radio axis. We also report the detection of transient H2O maser emission in this nebula.  相似文献   

19.
A Fabry-Pérot spectrophotometer is used to derive values of the intensity ratio H/[Nii] at 98 points in the seven bright diffuse nebulae M8, M20, M16, M17, NGC7000, M42, IC434. The fraction of nitrogen in the singly ionized state is estimated in the different objects, and is found to be sufficiently constant within any one nebula so that the above intensity ratio may be used to derive accurate electron temperature distributions. The position of the peak of the nebular line, its excess non-thermal width, its shape and relative intensity are used to derive kinematical models of these objects.It is found that values of H/[Nii]1 are representative of the bright central cores of these nebulae. Temperatures between 7000K and 12000K were derived in the different objects. Although some of this apparent variation is due to the different conditions of excitation in the various nebulae, it is shown that a convincing progression of temperature in M8, M16, M17 is supported by radio recombination line results. The temperature variation within any one object was generally significantly less than 1500K.No evidence was found for velocities of mass motion at more than twice the speed of sound. Relative radial velocities of generally less than 15 km sec–1 characterized the velocity fields of M8, M20, M16, M42. The velocities in M17 were measured as about 20 km sec–1. Motions in NGC 7000 and IC 434 were much lower (5 km sec–1) although here the number of points taken was too small to construct meaningful kinematical models.It is concluded that the internal motions of radiatively ionizedHii regions of Pop. I will not significantly affect the results of existing surveys for determining the rotation of the galaxy with radial velocities deduced from nebular emission lines.  相似文献   

20.
The modern self-consistent photoionization model of planetary nebula luminescence is described. All of the processes which play an important role in the ionization and thermal equilibrium of the nebular gas are taken into consideration. The diffuse ionizing radiation is taken into account completely. The construction of the model is carried out for the radial distribution of gas density in the nebular envelope which is consistent with isophotal map of the nebula. The application of the model is illustrated on the example of the planetary nebulae BD+30°3639 and NGC 7293. It is shown that the continuum of the central star at 912 Å does not correspond to the blackbody spectrum but agrees with the spectrum of corresponding non-LTE model atmosphere. The radial distributions of electron density, electron temperature, and other parameters in the nebular envelopes are found.The evolution of the radial distribution of gas density in the planetary nebulae envelopes is investigated. Approximative analytical expression which describe both such distribution and its change with time is adjusted. It is shown that the nebular envelope is formed as a result of quiet evolution of the slow stellar wind of star-precursor, and the formation of the envelope begins from the decrease of star-precursor's mass loss rate. Obtained radial distributions of gas density in the envelopes of young nebulae rule out the idea that the planetary nebula is formed as a result of a rapid ejection of clear-cut envelope. So, there is no necessity for the superwind which is used for this purpose in theoretical calculations.A new method of the determination of planetary nebulae abundances is proposed. Unobserved ionization stages are taken into account with aid of the correlations between relative abundances of various ions which had been obtained from the grid of the photoionization models of planetary nebulae luminescence. Simple approximative expressions for the determination of He/H, C/H, N/H, O/H, Ne/H, Mg/H, Si/H, S/H, and Ar/H are found. The chemical composition of 130 Galactic planetary nebulae is revised. A comparative analysis of the abundances in the Galactic disk, bulge, and halo nebulae is carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号