首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Besides new observations, mining old photographic plates and CCD image archives represents an opportunity to recover and secure newly discovered asteroids, also to improve the orbits of Near Earth Asteroids (NEAs), Potentially Hazardous Asteroids (PHAs) and Virtual Impactors (VIs). These are the main research aims of the EURONEAR network. As stated by the IAU, the vast collection of image archives stored worldwide is still insufficiently explored, and could be mined for known NEAs and other asteroids appearing occasionally in their fields. This data mining could be eased using a server to search and classify findings based on the asteroid class and the discovery date as “precoveries” or “recoveries”. We built PRECOVERY, a public facility which uses the Virtual Observatory SkyBoT webservice of IMCCE to search for all known Solar System objects in a given observation. To datamine an entire archive, PRECOVERY requires the observing log in a standard format and outputs a database listing the sorted encounters of NEAs, PHAs, numbered and un‐numbered asteroids classified as precoveries or recoveries based on the daily updated IAU MPC database. As a first application, we considered an archive including about 13 000 photographic plates exposed between 1930 and 2005 at the Astronomical Observatory in Bucharest, Romania. Firstly, we updated the database, homogenizing dates and pointings to a common format using the JD dating system and J2000 epoch. All the asteroids observed in planned mode were recovered, proving the accuracy of PRECOVERY. Despite the large field of the plates imaging mostly 2.27° × 2.27° fields, no NEA or PHA could be encountered occasionally in the archive due to the small aperture of the 0.38m refractor insufficiently to detect objects fainter than V ∼ 15. PRECOVERY can be applied to other archives, being intended as a public facility offered to the community by the EURONEAR project. This is the first of a series of papers aimed to improve orbits of PHAs and NEAs using precovered data derived from archives of images to be data mined in collaboration with students and amateurs. In the next paper we will search the CFHT Legacy Survey, while data mining of other archives is planned for the near future (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The ESO/MPG WFI and the INT WFC wide field archives comprising 330 000 images were mined to search for serendip‐itous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 152 as‐teroids (44 PHAs and 108 other NEAs) were identified using the PRECOVERY software, their astrometry being measured on 761 images and sent to the Minor Planet Centre. Both recoveries and precoveries were reported, including prolonged orbital arcs for 18 precovered objects and 10 recoveries. We analyze all new opposition data by comparing the orbits fitted before and after including our contributions. We conclude the paper presenting “Mega‐Precovery”, a new online service focused on data mining of many instrument archives simultaneously for one or a few given asteroids. A total of 28 instrument archives have been made available for mining using this tool, adding together about 2.5 million images forming the “Mega‐Archive”  相似文献   

3.
Abstract— We have calculated pyroxene mineralogies of seven near‐Earth asteroids (NEAs) with reflectance spectra similar to HEDs (howardites, eucrites, and diogenites). Two different sets of formulas (Gaffey et al. 2002; Burbine et al. 2007) are used to calculate the pyroxene mineralogies of the NEAs from their Band I and II centers. The band centers have been adjusted to compensate for the low temperatures on the asteroid surfaces. All of the derived mineralogies from the Gaffey et al. (2002) formulas and the Burbine et al. (2007) formulas overlap. The derived wollastonite (Wo) contents are very similar with differences being only approximately 1 mol%. The derived ferrosilite (Fs) contents differ by only 3 to 8 mol%. The determined pyroxene mineralogies for all seven near‐Earth vestoids are consistent with eucrites or howardites. None of the objects have pyroxene mineralogies consistent with diogenites. The absence of near‐Earth vestoids with pyroxene mineralogies similar to diogenites may indicate that it is difficult to produce sizeable (km‐sized or larger) bodies that are predominantly composed of diogenitic material, suggesting these objects are rubble piles of mixed ejecta.  相似文献   

4.
Three bright fireballs belonging to the August θ‐Aquillid (ATA) meteor shower were photographed by the Tajikistan fireball network in 2009. Two of them are classified as the meteorite‐dropping fireballs according to the determined parameters of the atmospheric trajectories, velocities, masses, and densities. Detection of the more dense bodies among cometary meteoroids points to a heterogeneous composition of the parent comet, and supports the suggestion that some meteorites might originate in the outer solar system, in the given case from the Jupiter‐family comet reservoir. A search for the stream's parent was undertaken among the near‐Earth asteroids (NEAs); as a result, the asteroid 2004MB6 was identified as a possible progenitor of the ATA meteoroid stream. Investigation of the orbital evolution of the 2004MB6 and the fireball‐producing meteoroid TN170809A showed that both objects have similar secular variations in the orbital elements during 7 kyr. The comet‐like orbit of the 2004MB6 and its association with the ATA shower suppose a cometary origin of the asteroid.  相似文献   

5.
The distribution of near‐Earth asteroid (NEA) rotation rates differs considerably from the similar distribution of Main Belt asteroids (MBAs) by the presence of excesses of fast and slow rotators, which are not observed or not so prominent in the distribution for MBAs. Among possible reasons for the difference, there can be influence of solar radiation on spin rate of small NEAs, the so‐called “YORP effect,” which appears due to reflection, absorption, and IR re‐emission of the sunlight by an irregularly shaped rotating asteroid. It is known that the YORP‐effect action strongly depends on the amount of solar energy obtained by the body (insolation), its size, and albedo. The analysis of observation data has shown that: (1) the mean diameter of NEAs decreases from the middle of the distribution to its ends, that is, the excesses of slow rotators (ω ≤ 2 rev day?1) and fast rotators (ω ≥ 8 rev day?1) are composed of smaller NEAs than in the middle of the distribution; (2) NEAs of both excesses are in the orbits where their insolation is about 8–10% larger than that of NEAs in the middle of the distribution; and (3) the objects in both excesses have a little lower albedo on average than that of objects in the middle of the distribution. All these results qualitatively agree well with the YORP‐effect action and may be considered as independent arguments in favor of it.  相似文献   

6.
Abstract— We present a novel Markov‐Chain Monte‐Carlo orbital ranging method (MCMC) for poorly observed single‐apparition asteroids with two or more observations. We examine the Bayesian a posteriori probability density of the orbital elements using methods that map a volume of orbits in the orbital‐element phase space. In particular, we use the MCMC method to sample the phase space in an unbiased way. We study the speed of convergence and also the efficiency of the new method for the initial orbit computation problem. We present the results of the MCMC ranging method applied to three objects from different dynamical groups. We conclude that the method is applicable to initial orbit computation for near‐Earth, main‐belt, and transneptunian objects.  相似文献   

7.
8.
近地小行星是一类可能对地球安全造成潜在威胁的太阳系小天体, 目前绝大部分的近地小行星是由地基望远镜发现的, 且数目仍在不断增加. 为了对我国未来开展近地小行星发现监测提供参考和借鉴, 利用国际小行星中心公开的数据库对所有近地小行星首次发现时刻的观测资料开展了多维度统计分析. 发现望远镜探测能力的限制会对近地小行星的发现造成选择效应, 导致不同轨道类型近地小行星发现的相对比例逐年变化且与直径有关. 另外, 结合数值模拟获得的轨道数据, 对近地小行星首次发现时的观测场景进行了还原, 获得了发现时刻近地小行星位置在不同天球坐标系的分布, 分析了其分布特征与季节、测站纬度和小行星直径的依赖关系. 最后, 通过分析数据定量考察了太阳、月球和银道面对近地小行星发现的影响, 发现地基望远镜一般难以发现来自太阳方向90$^\circ$范围内直径140m以下的近地小行星, 并且随着小行星直径的减小该限制范围也将变大; 月光污染对近地小行星发现的影响也非常显著, 望月前后几天的观测限制可导致约29%的目标无法被发现, 而且分析表明农历上半月发现的目标一般比下半月发现的更难以被跟踪观测; 银道面特别是银心方向会对近地小行星发现产生影响, 使得黄道面附近存在与季节相关的观测``盲区''.  相似文献   

9.
We obtain the size and orbital distributions of near-Earth asteroids (NEAs) that are expected to be in the 1 : 1 mean motion resonance with the Earth in a steady state scenario. We predict that the number of such objects with absolute magnitudes H<18 and H<22 is 0.65±0.12 and 16.3±3.0, respectively. We also map the distribution in the sky of these Earth coorbital NEAs and conclude that these objects are not easily observed as they are distributed over a large sky area and spend most of their time away from opposition where most of them are too faint to be detected.  相似文献   

10.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

11.
Near-Earth Asteroids (NEAs) are Solar system special class objects attracting the attention of astronomical community especially during several of the last decades. To some extent the NEAs have an advantage over the minor planets of the main belt: due to close and regular approaches to the Earth the radar observations of NEAs can be obtained for the greater number of objects than for those of the main belt of the minor planets. In this paper the use of all available radar observations together with optical ones resulting in the combined data analysis solution is discussed for different problems such as the asteroid orbits and catalog orientation parameters determination. In particular the problem of the motion of the dynamical equinox in the Hipparcos reference system is considered. About 13000 radar and optical observations of 24 NEAs and main belt minor planets have been used to obtain the precise asteroid orbits, FK5 catalogue orientation parameters and the motion of the dynamical equinox from 1750 till 2000 in the Hipparcos system.  相似文献   

12.
The Canada‐France‐Hawaii Legacy Survey (CFHTLS) comprising about 25 000 MegaCam images was data mined to search for serendipitous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 143 asteroids (109 NEAs and 34 PHAs) were found on 508 candidate images which were field corrected and measured carefully, and their astrometry was reported to Minor Planet Centre. Both recoveries and precoveries (apparitions before discovery) were reported, including data for 27 precovered asteroids (20 NEAs and 7 PHAs) and 116 recovered asteroids (89 NEAs and 27 PHAs). Our data prolonged arcs for 41 orbits at first or last opposition, refined 35 orbits by fitting data taken at one new opposition, recovered 6 NEAs at their second opposition and allowed us to ameliorate most orbits and their Minimal Orbital Intersection Distance (MOID), an important parameter to monitor for potential Earth impact hazard in the future (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We report on the follow-up and recovery of 100 program NEAs, PHAs and VIs using the ESO/MPG 2.2 m, Swope 1 m and INT 2.5 m telescopes equipped with large field cameras. The 127 fields observed during 11 nights covered 29 square degrees. Using these data, we present the incidental survey work which includes 558 known MBAs and 628 unknown moving objects mostly consistent with MBAs from which 58 objects became official discoveries. We planned the runs using six criteria and four servers which focus mostly on faint and poorly observed objects in need of confirmation, follow-up and recovery. We followed 62 faint NEAs within one month after discovery and we recovered 10 faint NEAs having big uncertainties at their second or later opposition. Using the INT we eliminated four PHA candidates and VIs. We observed in total 1286 moving objects and we reported more than 10,000 positions. All data were reduced by the members of our network in a team effort, and reported promptly to the MPC. The positions of the program NEAs were published in 27 MPC and MPEC references and used to improve their orbits. The OC residuals for known MBAs and program NEAs are smallest for the ESO/MPG and Swope and about four times larger for the INT whose field is more distorted. For the astrometric reduction, the UCAC-2 catalog is recommended instead of USNO-B1. The incidental survey allowed us to study statistics of the MBA and NEA populations observable today with 1–2 m facilities. We calculate preliminary orbits for all unknown objects, classifying them as official discoveries, later identifications and unknown outstanding objects. The orbital elements a, e, i calculated by FIND_ORB software for the official discoveries and later identified objects are very similar with the published elements which take into account longer observational arcs; thus preliminary orbits were used in statistics for the whole unknown dataset. We present a basic model which can be used to distinguish between MBAs and potential NEAs in any sky survey. Based on three evaluation methods, most of our unknown objects are consistent with MBAs, while up to 16 unknown objects could represent NEO candidates and four represent our best NEO candidates. We assessed the observability of the unknown MBA and NEA populations using 1 and 2 m surveys. Employing a 1 m facility, one can observe today fewer unknown objects than known MBAs and very few new NEOs. Using a 2 m facility, a slightly larger number of unknown than known asteroids could be detected in the main belt. Between 0.1 and 0.8 new NEO candidates per square degree could be discovered using a 2 m telescope.  相似文献   

14.
Abstract— The newly discovered asteroid 2002 AA29 moves in a very Earth‐like orbit that relative to Earth has a unique horseshoe shape and allows transitions to a quasi‐satellite state. This is the first body known to be in a simple heliocentric horseshoe orbit, moving along its parent planet's orbit. It is similarly also the first true co‐orbital object of Earth, since other asteroids in 1:1 resonance with Earth have orbits very dissimilar from that of our planet. When a quasi‐satellite, it remains within 0.2 AU of the Earth for several decades. 2002 AA29 is the first asteroid known to exhibit this behavior. 2002 AA29 introduces an important new class of objects offering potential targets for space missions and clues to asteroid orbit transfer evolution.  相似文献   

15.
关于近地小行星轨道演化的初步探索   总被引:2,自引:0,他引:2  
刘林  季江徽 《天文学报》1997,38(4):337-352
本文采用改进的显式辛算法和嵌套的PKF7(8)积分器同时对86颗已命名(或编号)的近地小行星的轨道演化进行了数值研究,在103-104年的时间尺度上,给出了这些小行星轨道演化的状况以及它们与几颗大行星靠近的最小距离,特别是与地球接近的最小距离可小于0.01天文单位,甚至可能比月球还更靠近地球.  相似文献   

16.
The European Near Earth Asteroid Research (EURONEAR) is a project which envisions to build a coordinated network which will follow-up and recover potentially hazardous asteroids (PHAs) and near earth asteroids (NEAs). We aim to include in EURONEAR two automated 1 m telescopes located in Chile and Europe, in addition to other non-permanent facilities. Astrometry will be the main aim of the project in order to secure and follow-up newly discovered NEAs, also to recover PHAs at their second or following oppositions, while photometry of bright PHAs will bring information on their physical properties. In this paper, first we review briefly the existent and past NEAs programs. Next, we include the results obtained in 2006 from three observing runs at Pic du Midi using the 1 m telescope, Haute-Provence employing the 1.2 m telescope, and Bucharest using a small 23 cm telescope. These add a total of 153 positions for 16 PHAs and NEAs, which were accepted by Minor Planet Center. Recently, a 1 m telescope was allocated by ESO in La Silla to be automated and used as the Southern dedicated facility by EURONEAR.  相似文献   

17.
Earth, Moon, and Planets - One meter class telescopes could bring important contributions in the acquisition of lightcurves of near earth asteroids (NEAs), based on which rotations and other...  相似文献   

18.
A modified Laplacian technique is described for initial orbit determination of asteroids from CCD observations and its applications for orbit determination of the main belt asteroids and near Earth asteroids. The proposed modification is based on a simultaneous improvement of both the orbital elements and the derivatives of spherical coordinates in frames of Laplace's method. It provides an orbit which represents the used observations with the residuals comparable with errors of these observations. The improved values of the derivatives might be used as ephemeris parameters for identification of newly discovered objects.  相似文献   

19.
Abstract— The fireball accompanying the Park Forest meteorite fall (L5) was recorded by ground‐based videographers, satellite systems, infrasound, seismic, and acoustic instruments. This meteorite shower produced at least 18 kg of recovered fragments on the ground (Simon et al. 2004). By combining the satellite trajectory solution with precise ground‐based video recording from a single site, we have measured the original entry velocity for the meteoroid to be 19.5 ± 0.3 km/s. The earliest video recording of the fireball was made near the altitude of 82 km. The slope of the trajectory was 29° from the vertical, with a radiant azimuth (astronomical) of 21° and a terminal height measured by infrared satellite systems of 18 km. The meteoroid's orbit has a relatively large semi‐major axis of 2.53 ± 0.19 AU, large aphelion of 4.26 ± 0.38 AU, and low inclination. The fireball reached a peak absolute visual magnitude of ?22, with three major framentation episodes at the altitudes of 37, 29, and 22 km. Acoustic recordings of the fireball airwave suggest that fragmentation was a dominant process in production of sound and that some major fragments from the fireball remained supersonic to heights as low as ?10 km. Seismic and acoustic recordings show evidence of fragmentation at 42, 36, 29, and 17 km. Examination of implied energies/initial masses from all techniques (satellite optical, infrasound, seismic, modeling) leads us to conclude that the most probable initial mass was (11 ± 3) × 103 kg, corresponding to an original energy of ?0.5 kt TNT (2.1 times 1012 J) and a diameter of 1.8 m. These values correspond to an integral bolometric efficiency of 7 ± 2%. Early fragmentation ram pressures of <1 MPa and major fragmentations occurring with ram pressures of 2–5 MPa suggest that meter‐class stony near‐Earth asteroids (NEAs) have tensile strengths more than an order of magnitude lower than have been measured for ordinary chondrites. One implication of this observation is that the rotation period for small, fast‐rotating NEAs is likely to be >30 seconds.  相似文献   

20.
The Yarkovsky effect, which causes a slow drifting of the orbital elements (mainly the semimajor axis) of km-sized asteroids and meteors, is the weak non-gravitational force experienced by these bodies due to the emission of thermal photons. This effect is believed to play a role in the delivery of near-Earth asteroids (NEAs) from the main belt, in the spreading of the orbital elements of asteroid families, and in the orbital evolution of potentially hazardous asteroids.Here we present preliminary results of simulationing indicating that the perturbations induced by the Yarkovsky effect on the positions of some tens of NEAs can be observed by means of the high-precision astrometric observations that will be provided by the ESA mission Gaia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号