首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Waldmeier 《Solar physics》1975,43(2):351-358
Coronal interferograms in the lines of Fe xiv 5303 Å, He i 5876 Å and Fe x 6374 Å were obtained during the total solar eclipse of 10 July, 1972 (see Figure 2). He i emission was found in the chromosphere only. The upper limit of the D3 equivalent width in terms of the coronal continuous background is 0.013 Å in the inner corona (r=1.15 R⊙). The λ6374 negative was taken with low contrast. The half width of 16374 is 1.0–1.08 Å for a limited area of the corona (P=88?104°, r=1.30?1.44 R⊙). A detailed photometry of the 5303 Å line was carried out and the behaviour of the half widths and equivalent widths were studied in different regions of the corona. The half width of λ5303 increases with distance from the Sun's center in almost all the studied regions (1.2 R⊙ ? r ? 1.7 R⊙). This increase corresponds to an increase of the non-thermal velocities with a gradient of 1–2 km s-1 per 0.1 R⊙. The equivalent widths, expressed in the coronal continuous background intensity remain constant on the average.  相似文献   

2.
Considering the host galaxy contribution, a spectral decomposition method is used to reanalyzed the archive data of optical spectra for a narrow line Seyfert 1 galaxy, NGC 4051. The light curves of the continuum f λ (5100 Å), and Hβ, He ii, Fe ii emission lines are given. We find strong flux correlations between line emissions of Hβ, He ii, Fe ii and the continuum f λ (5100 Å). These low-ionization lines (Hβ, Fe ii, He ii) have “inverse” intrinsic Baldwin effects. Using the methods of the cross-correlation function and the Monte Carlo simulation, we find the time delays, with respect to the continuum, are $3.45^{+12.0}_{-0.5}~\mbox{days}$ with the probability of 34 % for the intermediate component of Hβ, $6.45^{+13.0}_{-1.0}~\mbox{days}$ with the probability of 65 % for the intermediate component of He ii. From these intermediate components of Hβ and He ii, the calculated central black hole masses are $0.86^{+4.35}_{-0.33}\times 10^{6}$ and $0.82^{+3.12}_{-0.45}\times 10^{6}~M_{\odot }$ . We also find that the time delays for Fe ii are $9.7^{+3.0}_{-5.0}~\mbox{days}$ with the probability of 36 %, $8.45^{+1.0}_{-2.0}~\mbox{days}$ with the probability of 18 % for the total epochs and “subset 1” data, respectively. It seems that the Fe ii emission region is outside of the Hβ emission region.  相似文献   

3.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

4.
A popular model of a cometary plasma is hydrogen (H+) with positively charged oxygen (O+) as a heavier ion component. However, the discovery of negatively charged oxygen (O?) ions enables one to model a cometary plasma as a pair-ion plasma (of O+ and O?) with hydrogen as a third ion constituent. We have, therefore, studied the stability of the ion-acoustic wave in such a pair-ion plasma with hydrogen and electrons streaming with velocities $V_{d\mathrm{H}^{+}}$ and V de , respectively, relative to the oxygen ions. We find the calculated frequency of the ion-acoustic wave with this model to be in good agreement with the observed frequencies. The ion-acoustic wave can also be driven unstable by the streaming velocity of the hydrogen ions. The growth rate increases with increasing hydrogen density $n_{\mathrm{H}^{+}}$ , and streaming velocities $V_{d\mathrm{H}^{+}}$ and V de . It, however, decreases with increasing oxygen ion densities $n_{\mathrm{O}^{+}}$ and $n_{\mathrm{O}^{-}}$ .  相似文献   

5.
New theoretical electron-density-sensitive Fe xii emission line ratios $$R_1 = I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} )/I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 D_{5/2} )$$ and $$R_2 = I(3s^2 3p^3 {}^2P_{3/2} - 3s3p^4 {}^2D_{5/2} )/I(3s^2 3p^3 {}^4S_{3/2} - 3s3p^2 P_{3/2} )$$ are derived using R-matrix electron impact excitation rate calculations. We have identified the Fexii \(3s^2 3p^3 {}^4S_{3/2} - 3s3p^4 {}^4P_{5/2} ,{\text{ }}3s^2 3p^3 {}^2P_{3/2} - 3s^3 3p^4 {}^2D_{5/2} ,{\text{ }}3s^2 3p^3 S_{3/2} - 3s^2 3p^3 P_{3/2} \) and \(3s^2 3p^3 {}^4S_{3/2} - 3s^2 3p^3 {}^2P_{1/2}\) transitions in an active region spectrum obtained with the Harvard S-055 spectrometer on board Skylab at wavelengths of 364.0, 382.8, 1241.7, and 1349.4 Å, respectively. Electron densities determined from the observed values of R 1 (log N e ? 11.0) and R 2(log N e ? 11.4) are significantly larger than the typical active region measurements, but are similar to those derived from some active region spectra observed with the Skylab 2082A instrument, which provides observational support for the atomic data adopted in the line ratio calculations, and also for the identification of the Fe xii transitions in the S-055 spectrum. However the observed value of R 3 = I(1349.4 Å)/I(1241.7 Å) is approximately a factor of two larger than one would expect from theory which, considering that the 1349.4 Å line lies at the edge of the S-055 wavelength coverage, may reflect errors in the instrument efficiency curve. Another possibility is that the 1349.4 Å transition is blended, probably with Si ii 1350.1 Å.  相似文献   

6.
We combined the (K s , J?K s ) data in Laney et al. (Mon. Not. R. Astron. Soc. 419:1637, 2012) with the V apparent magnitudes and trigonometric parallaxes taken from the Hipparcos catalogue and used them to fit the $M_{K_{s}}$ absolute magnitude to a linear polynomial in terms of V?K s colour. The mean and standard deviation of the absolute magnitude residuals, ?0.001 and 0.195 mag, respectively, estimated for 224 red clump stars in Laney et al. (2012) are (absolutely) smaller than the corresponding ones estimated by the procedure which adopts a mean $M_{K_{s}}=-1.613~\mbox{mag}$ absolute magnitude for all red clump stars, ?0.053 and 0.218 mag, respectively. The statistics estimated by applying the linear equation to the data of 282 red clump stars in Alves (Astrophys. J. 539:732, 2000) are larger, $\Delta M_{K_{s}}=0.209$ and σ=0.524 mag, which can be explained by a different absolute magnitude trend, i.e. condensation along a horizontal distribution.  相似文献   

7.
We study the 17 January 2010 flare–CME–wave event by using STEREO/SECCHI-EUVI and -COR1 data. The observational study is combined with an analytic model that simulates the evolution of the coronal wave phenomenon associated with the event. From EUV observations, the wave signature appears to be dome shaped having a component propagating on the solar surface ( $\overline{v}\approx280~\mathrm{km}\,\mathrm{s}^{-1}$ ) as well as one off-disk ( $\overline{v}\approx 600~\mathrm{km}\,\mathrm{s}^{-1}$ ) away from the Sun. The off-disk dome of the wave consists of two enhancements in intensity, which conjointly develop and can be followed up to white-light coronagraph images. Applying an analytic model, we derive that these intensity variations belong to a wave–driver system with a weakly shocked wave, initially driven by expanding loops, which are indicative of the early evolution phase of the accompanying CME. We obtain the shock standoff distance between wave and driver from observations as well as from model results. The shock standoff distance close to the Sun (<?0.3 R above the solar surface) is found to rapidly increase with values of ≈?0.03?–?0.09 R , which gives evidence of an initial lateral (over)expansion of the CME. The kinematical evolution of the on-disk wave could be modeled using input parameters that require a more impulsive driver (duration t=90 s, acceleration a=1.7 km?s?2) compared to the off-disk component (duration t=340 s, acceleration a=1.5 km?s?2).  相似文献   

8.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

9.
We compute the ultra-high energy (UHE) neutrino fluxes from plausible accreting supermassive black holes closely linking to the 377 active galactic nuclei (AGNs). They have well-determined black hole masses collected from the literature. The neutrinos are produced via simple or modified URCA processes, even after the neutrino trapping, in superdense proto-matter medium. The resulting fluxes are ranging from: (1) (quark reactions)— $J^{q}_{\nu\varepsilon}/(\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1})\simeq8.29\times 10^{-16}$ to 3.18×10?4, with the average $\overline{J}^{q}_{\nu\varepsilon}\simeq5.53\times 10^{-10}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ , where ε d ~10?12 is the opening parameter; (2) (pionic reactions)— $J^{\pi}_{\nu\varepsilon} \simeq0.112J^{q}_{\nu\varepsilon}$ , with the average $J^{\pi}_{\nu\varepsilon} \simeq3.66\times 10^{-11}\varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ ; and (3) (modified URCA processes)— $J^{URCA}_{\nu\varepsilon}\simeq7.39\times10^{-11} J^{q}_{\nu\varepsilon}$ , with the average $\overline{J}^{URCA}_{\nu\varepsilon} \simeq2.41\times10^{-20} \varepsilon_{d}\ \mathrm{erg}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1}$ . We conclude that the AGNs are favored as promising pure neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies and collimated in smaller opening angle θε d .  相似文献   

10.
The relative Doppler velocities and linewidths in a polar coronal hole and the nearby quiet-Sun region have been obtained from the Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations using emission lines originating at different heights in the solar atmosphere from the lower transition region (TR) to the low solar corona. The observed region is separated into the network and the cell interior, and the behavior of the above parameters were examined in the different regions. It has been found that the histograms of Doppler velocity and width are generally broader in the cell interior than in the network. The histograms of Doppler velocities of the network and cell interior do not show significant differences in most cases. However, in the case of the quiet Sun, the Doppler velocities of the cell interior are more blueshifted than those of the network for the lowermost line He?ii 304 Å, and an opposite behavior is seen for the uppermost line Mg?ix 368 Å. The linewidth histograms show that the network–cell difference is more prominent in the coronal hole. The network has a significantly larger linewidth than the cell interior for the lowermost TR line He?ii 304 Å for the quiet Sun. For the coronal hole, this is true for the three lower TR lines: He?ii 304 Å, O?iii 599 Å, and O?v 630 Å. We also obtained the correlations between the relative Doppler velocity and the width. A mild positive correlation is found for the lowermost transition-region line He?ii 304 Å, which decreases even more or become insignificant for the intermediate lines. For the low coronal line Mg?ix 368 Å, the correlation becomes strongly negative. This might be caused by standing waves or waves propagating from the lower to the upper solar atmosphere. The results may have implications for the generation of the fast solar wind and coronal heating.  相似文献   

11.
We analyze the observations of a quiescent prominence acquired by the Téléscope Heliographique pour l’Étude du Magnetisme et des Instabilités Solaires (THEMIS) in the He?i 5876 Å (He?i D3) multiplet aiming to measure the spectral characteristics of the He?i D3 profiles and to find for them an adequate fitting model. The component characteristics of the He?i D3 Stokes I profiles are measured by the fitting system by approximating them with a double Gaussian. This model yields an He?i D3 component peak intensity ratio of \(5.5\pm0.4\), which differs from the value of 8 expected in the optically thin limit. Most of the measured Doppler velocities lie in the interval ±?5 km?s?1, with a standard deviation of ±?1.7 km?s?1 around the peak value of 0.4 km?s?1. The wide distribution of the full-width at half maximum has two maxima at 0.25 Å and 0.30 Å for the He?i D3 blue component and two maxima at 0.22 Å and 0.31 Å for the red component. The width ratio of the components is \(1.04\pm0.18\). We show that the double-Gaussian model systematically underestimates the blue wing intensities. To solve this problem, we invoke a two-temperature multi-Gaussian model, consisting of two double-Gaussians, which provides a better representation of He?i D3 that is free of the wing intensity deficit. This model suggests temperatures of 11.5 kK and 91 kK, respectively, for the cool and the hot component of the target prominence. The cool and hot components of a typical He?i D3 profile have component peak intensity ratios of 6.6 and 8, implying a prominence geometrical width of 17 Mm and an optical thickness of 0.3 for the cool component, while the optical thickness of the hot component is negligible. These prominence parameters seem to be realistic, suggesting the physical adequacy of the multi-Gaussian model with important implications for interpreting He?i D3 spectropolarimetry by current inversion codes.  相似文献   

12.
We present photoelectric and spectroscopic observations of the protoplanetary object V 1853 Cyg, a B supergiant with an IR excess. Over two years of its observations, the star exhibited rapid irregular light variations with amplitudes $\Delta V = 0\mathop .\limits^m 3$ , $\Delta B = 0\mathop .\limits^m 3$ , $\Delta U = 0\mathop .\limits^m 4$ and no correlation between color and magnitude. Its mean magnitude has not changed since the first UBV observations in 1973 (Drilling 1975). Low-resolution spectroscopic observations show that the spectrum of V 1853 Cyg in 2000 corresponded to that of a B1–B2 star with T eff ~ 20000 K. High-resolution spectroscopic observations confirm the conclusion that the profiles of absorption and emission lines are variable. We identified the star’s spectral lines and measured the equivalent widths of more than 40 lines. The star’s radial velocity is 〈V r 〉= ?49 × 5 km s?1, as measured from absorption lines, and ranges from–50 to–85 km s–1 for different lines, as measured from shell emission lines. The velocity of the dust clouds on the line of sight determined from diffuse interstellar bands (DIBs) and from interstellar Na I lines is 〈V r 〉= ?16 × 5 km s?1. The P Cyg profiles of the He I λ5876 Å and λ6678 Å lines suggest an ongoing mass loss by the star. An analysis of the observational data confirms the conclusion that the star belongs to the class of intermediatemass protoplanetary objects.  相似文献   

13.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

14.
Effects of ultra-strong magnetic field on electron capture rates for 57Fe, 58Co and 59Ni have been analyzed in the nuclear shell model and under the Landau energy levels quantized approximation in the ultra-strong magnetic field, the result increase about 3 orders magnitude. The rate of change of electron abundance, $\dot{Y}_{e}$ , for every nuclide and total $\dot{Y}_{e}$ in the condition without magnetic field and B=4.414×1015 G have been calculated, and exceed about 6 orders of magnitude generally. These conclusions play an important role in future studying the evolution of magnetar.  相似文献   

15.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   

16.
Magneto-curvature stresses could deform magnetic field lines giving rise to back reaction and restoring magnetic stresses (Tsagas in Phys. Rev. Lett., 2001). Barrow and Tsagas (Phys. Rev. D, 2008) have shown that in Friedman universe the expansion slows down in its spatial section of negative Riemann curvature. Earlier, Chicone and Latushkin (Proc. Am. Math. Soc. 125(11):3391, 1995) proved that fast dynamos in compact 2D manifold implies negatively constant Riemannian curvature. Here one applies the Barrow-Tsagas ideas to cosmic dynamos of negative curvature. Fast dynamo, covariant stretching of Riemann slices of cosmic Lobachevsky plane is given. Inclusion of advection term on dynamo equations (Clarkson and Marklund in Mon. Not. R. Astron. Soc., 2005) is considered. In advection absence, slow dynamos are also obtained. It is shown the viscous and restoring forces on stretching particles decrease, as magnetic rates increase. From COBE data ( $\frac{{\delta}B}{B}\approx{10^{-5}}$ ), one is able to compute the stretching $\frac{{\delta}V^{y}}{V^{y}}=1.5\frac{{\delta}B}{B}\approx{1.5{\times}10^{-5}}$ . Zeldovich et al. have computed the maximum magnetic growth rate as γ max ≈8.0×10?1 t ?1. From COBE data a lower growth rate as γ COBE ≈6.0×10?6 t ?1, is well-within Zeldovich et al estimate. Instead of Harrison value $B\approx{t^{\frac{4}{3}}}$ one obtains a lower primordial field B≈10?6 t which yields B≈10?6 G at 1 s Big Bang time.  相似文献   

17.
We investigate in this paper the dynamics of Born-Infeld (B-I) type dark energy model with scalar potential $V_{0}e^{-\beta\varphi^{2}}$ , and consider the new statefinder diagnostic to differentiate B-I type dark energy model from LCDM which corresponds to statefinder pair {r,s}={1,0}. We study the existence of attractor solution in this model and the evolving trajectory of r?s in our model with this scalar potential. It is numerically shown that the evolving trajectory of r?s is quite different from those of other dark energy models.  相似文献   

18.
19.
In the present paper, we investigate the localization of weak inertial Alfvén wave (IAW) in the presence of finite amplitude magnetosonic fluctuations in low β plasmas (β?m e /m i ). When IAW is perturbed by these fluctuations, localized structures of IAW magnetic field intensity are formed. We have developed a semi analytical model based on paraxial approximation to study this interaction. Numerical method has also been used to analyse the localized structures and magnetic fluctuation spectrum of IAW. From the obtained results, we find that the magnetic turbulent spectrum upto k x λ e ≈3 fits power law spectrum with an index consistent with the Kolmogorov $k_{x}^{ - 5/3}$ law, here λ e is the electron inertial length. Furthermore, at shorter wavelengths the spectrum steepens to about $k_{x}^{ - 3.8}$ . Energy transfer from larger lengthscales to smaller lengthscales through this mechanism may be responsible for the observed parallel electron heating in auroral region. Results obtained from the simulation are consistent with the observations recorded from various spacecrafts like FAST, Hawkeye and Hoes 2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号