首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
本文使用数学模型的方法,探讨不同工程阶段(1998年1月至2008年2月)北槽河床冲淤特征的动力机制。应用Delft3D模型建立了精度较高的长江口~北槽三维嵌套流场模型,为分析整治工程对北槽河床冲淤的影响,设计了4个数值试验来计算不同工程节点时北槽海域的流场分析,分别采用相同的外部驱动力(洪季)和不同工程节点的北槽地形与工程配置。通过比较不同工程节点的潮周期平均流场的平面分布、典型横断面分布和航道剖面分布及变化,发现:随着导堤、丁坝工程的建设,新建导堤和丁坝对应区段的主槽水动力显著增强,可见"双导堤+丁坝群"的束流效果明显;新建坝田,受导堤、丁坝影响水动力急剧减弱。不同工程阶段影响下,北槽海域水动力的"强弱变化"分布与同期河床"冲淤变化"格局基本吻合,因此,深水航道整治工程阶段影响下的水动力强弱变化是引发北槽河床冲淤变化的主要动力因素。  相似文献   

2.
长江河口北槽水沙过程对航道整治工程的响应   总被引:4,自引:3,他引:1  
北槽大型航道整治工程确定了南北槽分汊口分流界线, 阻碍了北槽和邻近滩槽的水沙自由交换过程, 使北槽水沙动力过程发生调整。基于工程前后北槽主槽纵向同步水沙观测数据的统计分析表明:入口段落潮优势显著减弱;上段枯季时落潮优势显著减弱, 而洪季时落潮优势有所增强;中段(弯曲段拐点附近)落潮优势略有减弱;下段落潮优势明显加强。北槽主槽水沙纵向输移机制分析表明:欧拉余流、潮泵作用、斯托克斯效应和垂向环流为悬沙输移的主要驱动力, 其中欧拉余流输沙指向海, 斯托克斯输沙和垂向环流输沙指向陆, 而潮泵输沙随着季节而变化。洪季, 欧拉余流输沙和潮泵输沙在工程前后的变化使大潮期河床冲淤由中段和下段普遍落淤转化为中上段集中落淤。枯季, 工程前后稳定的潮流辐散输沙作用使大潮期河床以冲刷为主, 但工程后在入口段和上段潮泵的向上游输沙占优势, 使悬沙在入口段落淤。  相似文献   

3.
陈维  匡翠萍  顾杰  秦欣 《海洋科学》2013,37(4):75-80
根据长江口南沙头通道、横沙通道和南北槽分汊口的断面水深变化及长江口南北港和南北槽的分流比变化实测资料,分析了长江口北槽深水航道淤积的原因。结果表明,北槽深水航道上段淤积受多种因素影响,其中,南沙头通道和横沙通道的发展对深水航道影响最大。南沙头通道的发展在加大落潮流量的同时,对南港南岸会产生一定的冲刷,后经沙洲的阻挡,把泥沙带向南港北岸,在北槽进口段处落淤,直接影响了进入深水航道的落潮量;横沙通道由于直接贯通了北港北槽的水沙交换,因而削弱了南港和北槽之间的水沙交换,促使北槽深水航道上段产生淤积,这也是南槽河道上段刷深的一个主要原因,而南槽河道的发展必然减少了进入北槽的落潮量,进一步加剧了北槽深水航道上段的淤积。同时,科氏力与北槽南导堤分流口鱼咀工程对深水航道也造成了一定的不可忽视的影响。研究成果对治理北槽深水航道淤积问题保障深水航道正常运行具有十分重要的科学实践意义。  相似文献   

4.
长江口12.5米深水航道2010年贯通后,发挥了巨大社会经济效益,同时航道回淤量大、维护压力大、维护费用高的问题突出。本研究基于北槽四边界水沙通量观测成果,分析提出了北槽航道回淤泥沙来源;针对回淤原因,在已建减淤工程经验总结的基础上,提出了本次减淤的研究思路,优化了减淤工程方案的比选指标体系;采用三维潮流泥沙数模、清水动床物模、经济技术综合分析等手段,通过"加高范围"、"加高高程"及"加高位置"比选,研究推荐了减淤工程方案。利用实测回淤量分析了工程减淤效果。研究结果表明,南导堤越沙是洪季北槽的重要泥沙来源,对北槽高浓度含沙量场有一定贡献。提出了可通过加高北槽南侧的导堤,实现减少通过南导堤越堤进入北槽的泥沙量,从而减小北槽含沙量水平,同时改善北槽下段流态,降低水沙横向输移,进而降低航道回淤的减淤思路。研究推荐的长江口12.5米深水航道减淤工程为南坝田挡沙堤加高工程及先期工程方案。先期工程位于S4~S9丁坝坝田,在现有南坝田挡沙堤的基础上加高S4~S8区段,并延长至S9丁坝,工程全长约23.8 km,高程+3.5 m。工程于2015年11月开工建设,2016年7月主体工程完工,工程减淤效果显著,2016—2018年年均减淤量约954×105m3/a,近三年已节省航道维护疏浚费用约5亿元。  相似文献   

5.
本文以浙江瑞安丁山促淤工程为例,分析了建造在淤泥质海岸上,具有不同坝距的丁坝群和顺岸坝组合工程的促淤效果。从工程坝田内滩面的淤积形态、淤积规律和回淤率三方面来讨论上述问题。在此基础上提出了兴建此类工程的总体布置原则和选择合理结构的意见。  相似文献   

6.
崎岖列岛海区百年冲淤特征及其原因   总被引:15,自引:0,他引:15  
陈沈良 《海洋通报》2000,19(1):58-67
由南、北两列岛屿群组成的崎岖列岛海区,近百年来总体表现为淤积,年均淤积速率约2.3cm/a。然而,不同时期表现不同的冲淤演变过程。通过图件对比分析并结合海区水文泥沙和长江口河槽演变的研究得出,近百年来该海区总体冲淤演变主要受制于长江口河槽演变:而局部的冲淤变化与该海区独特的动力泥沙及其峡道效应有关,海区的冲淤分布特点反映出峡道效庆的显著影响。  相似文献   

7.
陈茁  李薇  胡鹏  贺治国 《海洋工程》2022,40(1):149-159
基于平面二维水沙床耦合地貌模型,反演了1958年1月至1964年12月连续枯水年期间钱塘江尖山河段的主槽摆动过程,揭示了河势由顺直到弯曲的主要演变规律和内在机制.结果表明,在低径流和强潮流作用下,丰水年形成的北部落潮槽逐渐淤积形成浅滩,南部涨潮槽冲刷发展形成南、北两支,两槽间江心滩发育壮大,形成弯曲河势.河床冲淤主要集中在前两年内,潮汐周期内涨潮初期冲刷、涨憩和落潮初期淤积,区域淤积泥沙主要来源于下游杭州湾,北槽前期淤积为落潮型淤积,后期为涨潮型淤积.河势变化使得区域潮差增大潮动力增强,南槽涨落潮流速显著增大.顺直河势下,江心滩南北两侧分流比差异不大,涨潮期间南侧略高、落潮期间北槽略高.弯曲河势下,南槽水深和纳潮量增加,涨、落潮分流比均显著增大至75%以上.  相似文献   

8.
长江口深水航道三期工程后北槽洪枯季水沙运动特征研究   总被引:1,自引:0,他引:1  
利用长江口深水航道三期整治工程前后,北槽洪枯季各测点水沙资料初步探讨了北槽洪枯季水沙运动特征。研究结果表明,北槽洪枯季潮周期平均含沙量分布自上而下总体呈"低-高-低"的分布态势,中段含沙量较高。洪季北槽各测点潮周期平均含沙量与潮周期平均流速相关性较差,北槽泥沙输运以平流输移为主。枯季两者相关较好,北槽泥沙运动则以起悬输运为主。北槽悬沙输运主要以欧拉输运为主,洪季北槽悬沙净输运率要明显大于枯季。洪季北槽中段潮泵及垂向环流作用最为明显,枯季,除北槽上段外,潮泵及垂向环流作用较小,水沙输运方向较为相近。造成洪季北槽中段潮泵作用及垂向环流输沙较大的原因是由于北槽中段滩槽泥沙交换频繁,涨潮流经南槽拦门沙及九段沙滩面后,挟带一定高含沙水体进入北槽,进而造成北槽中段潮泵及垂向环流输沙明显。  相似文献   

9.
长江口北槽一期工程后滩槽沉积物分布特征及其影响因素   总被引:1,自引:0,他引:1  
根据2000年7月和2001年5—6月份长江口北槽航道及两侧滩地进行的沉积物采样分析结果,对长江口深水航道一期工程实施后的滩槽泥沙交换情况以及在自然与工程双重影响下的沉积物分布情况进行了较为详细的讨论。长江口深水航道工程的实施,影响了长江口尤其是北槽及两侧滩地的水沙条件和沉积物分布。强劲的径流和潮流作用和风浪作用造成航槽及两侧滩地的冲淤转换及沉积物分布的变化;深水航道治理工程的实施使工程段内航槽泥沙粒径粗化,两侧滩地和工程段下游泥沙中值粒径变细,这反映了在工程实施后滩槽泥沙交换的变化。  相似文献   

10.
整治工程影响下分汊河口水动力变化研究   总被引:1,自引:1,他引:0  
本文针对分汊河口一侧河道整治工程对工程汊及非工程汊水动力的影响问题,采用数学模型试验方法,建立了潮汐分汊河口概化数学模型,计算了整治工程(双导堤与丁坝)前后水动力变化,分析了主要分潮M2、M4的潮位、流速沿程变化规律以及工程后丁坝局部流速流向特征,讨论了潮波的变形及不对称性。结果显示,整治工程导致工程汊分流比减小,工程区域内流速增加,工程区外流速减小,非工程汊整体流速增加。工程汊的潮流变形及不对称性均较工程前有所增强,导致外海泥沙盐水通过航槽向上游上溯的距离更长,坝田区内流速明显小于航槽流速,并呈明显的旋转流态势,导致坝田淤积。  相似文献   

11.
缴健  高祥宇  丁磊  张新周 《海洋工程》2019,37(3):143-150
以概化分汊河口为研究对象,针对两汊中长期地貌演变对整治工程响应的问题,采用平面二维数学模型对整治工程前后分别进行20年地貌演变模拟。分析结果表明:整治工程对落潮含沙量影响较大,工程汊道落潮分沙比有显著下降;整治工程主要导致工程汊道坝田区淤积和航道冲刷,同时也增加了非工程汊道的冲刷及淤积厚度;工程后工程汊道淤积量增加,冲刷量减小,冲淤总量减小,非工程汊道淤积量不变,冲刷量增加,冲淤总量增加。  相似文献   

12.
近期长江河口冲淤演变过程研究   总被引:3,自引:0,他引:3  
基于长江河口1997年以来数字地形图和近期水文泥沙实测资料,分析研究了近期长江河口大量人工整治工程和流域水库工程建造影响下的河口河道自动调整过程。结果表明:1997-2013年河口段中上游河道微冲刷、拦门沙滩顶仍保持淤积外移、口门外侧近海域冲刷的态势略有增强,而其影响原因与历史时期的自然因素影响为主略有差异,近期人类高强度活动的影响贡献率增大。首先,南支至南港和北港中上游河段河床普遍发生冲刷,河床沙活动较活跃,床面微地貌沙波发育更明显,而口门外侧海域地形略有冲刷蚀退,这些变化与流域来沙锐减有直接关系;北支、北港口门、南槽和北槽河道拦门沙河段呈淤积,尤其北槽主航道的拦门沙河段6m水深浚深为12.5m后回淤量很大,这些与拦门沙河道动力结构环境、河口和海域再悬浮泥沙补给有关;局部河段出现强冲和强淤现象,与近期河口工程建造有关。所以,长江河口近期正处在对自然因素变化和人类活动增强的自我缓慢地自动调整和适应过程之中。  相似文献   

13.
上海南汇芦潮港岸段水下滩坡变化剖析   总被引:5,自引:0,他引:5  
由远及近简述历史时期和本世纪上半叶南汇岸滩的时空变化规律,着重分析了近30年芦潮港所在的南汇南滩水下滩坡的变化特征。这种变化与长江口河势和南槽分流分沙情势的变化密切相关。根据目前长江口河势的发展情况,芦潮港岸段水下滩坡的淤积趋势仍将持续,但其强度不会达到五十年代的鼎盛状态。  相似文献   

14.
长江河口水沙分流和输移的探讨   总被引:1,自引:0,他引:1  
据2002年9月长江口同步实测水文资料,运用标准水文法,对南、北支和南、北港的落潮分水分沙比和净泄分水分沙比进行了计算。结果表明,两者存在差异,后者更能反映分水分沙在长江河口演变中的作用,“涨潮汇沙比”更能揭示北支泥沙的倒灌。水沙平衡分析结果表明,观测期间北支仍趋于淤积,南支有冲刷迹象。经多站水沙综合分析,揭示了长江口水沙运动具有径流“主体南泄”、汊道“副淤主刷”和水沙“输移分异”等特征,并指出水沙“输移分异”是北港泥沙输运大于南港的原因之一。  相似文献   

15.
Jiao  Jian  Dou  Xi-ping  Gao  Xiang-yu  Ding  Lei  Yang  Xiao-yu 《中国海洋工程》2020,34(2):198-209
The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP) are analyzed on the basis of the measured data. A twodimensional morphodynamics numerical model of the Yangtze Estuary is established to verify the morphological evolution of the North-South Passage under the influence of the DNCP and to predict the future evolution in the next 40 years. Data analysis shows that the North Passage has experienced rapid adjustment stages and adaptive stages after the construction of the DNCP. Slow erosion occurred along the main channel, and slow siltation could be observed in the area between the groins. The South Passage showed a state of upper section erosion and down section deposition. At present, the whole South Passage is in a slight erosion state. According to the numerical model, the eroding and silting speed of the North Passage will slow down in the future. The present state that erosion occurs in the main channel and siltation occurs between the groins will continue. The South Passage will still maintain upper section erosion and down section deposition in the future. Due to the main channel erosion of the North Passage and siltation of the South Passage, the sediment division ratio of the North Passage will increase in the future but still be smaller than 50%. After morphological evolution of 40 years, the direction of residual sediment transport caused by M2 and M4 tidal components in the North Passage has not changed, but the transport rate will decrease. It is considered that the morphological evolution of the North-South Passage could reach a relatively stable state after 40 years.  相似文献   

16.
为了揭示茅尾海河口1987~2015年间的地貌格局演变和冲於演变,基于Landsat TM/OLI等多期遥感影像,结合海图、波段比值线性水深反演模型,对28年来茅尾海河口面积变化、地貌类型转换趋势、地貌冲淤演变过程进行了分析。研究结果表明:在1987~2015年间河口面积逐渐缩小;地貌类型转换趋势方面主要表现为潮沟向淤泥滩、河口沙坝的转化,淤泥滩向红树林滩转化;地貌冲淤演变方面,红树林滩淤积面积较大,达20.78km2,淤泥滩的冲刷作用显著,冲刷面积达26.78km2。研究结果可为未来茅尾海资源的开发建设、整治保护提供理论依据。  相似文献   

17.
A two-dimensional finite difference numerical model, capable of predicting depth-averaged tidal flow fields in coastal and estuarine waters, has been extended to include tide-induced non-cohesive sediment transport processes. The partial differential equations governing the conservation of mass, momentum and suspended sediment in an incompressible turbulent flow are included in a depth-integrated form in the model. For the representation of the processes of erosion and deposition of sediment from the bed an empirically based source-sink term was refined, based on the results of three mobile bed flume studies. The model has been tested by simulating tidal flows and suspended sediment fluxes in two estuaries, with particular application to the Humber estuary in the U.K. The model was calibrated and found to produce an encouraging degree of agreement between the numerical predictions and corresponding field measurements for this estuary. Furthermore, the predicted gross deposition and erosion features of the estuary were found to be in close agreement with interpretations from Eulerian tidal residual predictions.  相似文献   

18.
The macro-tidal Keum River Estuary located in the eastern Yellow Sea has been suffering siltation and morphological change since 1994. To understand the effects of the large-scale coastal developments on the sedimentation processes in the estuary, hydrodynamic and sedimentary data collected from 1985 to 2002 were analyzed and numerical experiments of hydrodynamics were performed. The sedimentation rate in the estuary increased by a factor of 1.9, from 3.5 × 106 to 6.7 × 10my−1, after the construction of a dam in the upper reaches of the estuary in 1994. Large part of the estuary is veneered by the muddy sediments noticeably, which were rarely found before dam construction. Since then, siltation has concentrated in the upper estuary rather than the lower. The upstream transport and accumulation of fine-grained sediments is due to: (1) the change to flood-dominance in the main channel, i.e. the relative intensification of flood current and the flood-directed residual current; and (2) the decrease in transport capacity in the upper estuary, i.e. the marked decrease in current velocity, which was induced by dam construction. The former has resulted in the ebb-dominance of the Gaeya channel, a distributary in the north of the main channel. The tidal pumping of fine sediments was reinforced not by the freshwater/saltwater interaction but by the residual tidal circulation. The sediment fluxes observed in 2001–2002 demonstrate year-round net inflow both at the entrance of the jetties and at the Gaeya channel, which implies that the sediments delivered by the Keum River are entirely confined to the estuary, incapable of escaping to the sea. The net inward transport of fine sediments may accumulate pollutants adsorbed to or absorbed in the sediment grains in the estuary, thus deteriorating the benthic environment gradually and the water quality eventually.  相似文献   

19.
长江口北支近期河势演变与航道资源开发研究   总被引:4,自引:0,他引:4  
从实测资料出发,分析长江口北支近期岸线与主流线的变化,并就滩涂围垦对北支河势的影响进行深入探讨.认为目前北支航道500 t级船舶基本可以达到全潮通航,1 000 t级船舶乘潮保证率也可达90%,若采取一定的工程措施,对局部浅段进行疏浚和整治,早日开辟北支1 000 t级航道是可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号