首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Energy Decay of the 2004 Sumatra Tsunami in the World Ocean   总被引:1,自引:0,他引:1  
The catastrophic Indian Ocean tsunami generated off the coast of Sumatra on 26 December 2004 was recorded by a large number of tide gauges throughout the World Ocean. This study uses gauge records from 173 sites to examine the characteristics and energy decay of the tsunami waves from this event in the Indian, Atlantic and Pacific oceans. Findings reveal that the decay (e-folding) time of the tsunami wave energy within a given oceanic basin is not uniform, as previously reported, but depends on the absorption characteristics of the shelf adjacent to the coastal observation site and the time for the waves to reach the site from the source region. In general, the decay times for island and open-ocean bottom stations are found to be shorter than for coastal mainland stations. Decay times for the 2004 Sumatra tsunami ranged from about 13 h for islands in the Indian Ocean to 40–45 h for mainland stations in the North Pacific.  相似文献   

2.
M TSU : Recovering Seismic Moments from Tsunameter Records   总被引:1,自引:0,他引:1  
We define a new magnitude scale, MTSU, allowing the quantification of the seismic moment M0 of an earthquake based on recordings of its tsunami in the far field by ocean-bottom pressure sensors (``tsunameters') deployed in ocean basins, far from continental or island shores which are known to affect profoundly and in a nonlinear fashion the amplitude of the tsunami wave. The formula for MTSU, MTSU = log10 M0 − 20 = log10 X (ω) + CDTSU + CSTSU + C0, where X (ω) is the spectral amplitude of the tsunami, CDTSU a distance correction and CSTSU a source correction, is directly adapted from the mantle magnitude Mm introduced for seismic surface waves by Okal and Talandier. Like Mm, its corrections are fully justified theoretically based on the representation of a tsunami wave as a branch of the Earth's normal modes. Even the locking constant C0, which may depend on the nature of the recording (surface amplitude of the tsunami or overpressure at the ocean floor) and its units, is predicted theoretically. MTSU combines the power of a theoretically developed algorithm, with the robustness of a magnitude measurement that does not take into account such parameters as focal geometry and exact depth, which may not be available under operational conditions in the framework of tsunami warning. We verify the performance of the concept on simulations of the great 1946 Aleutian tsunami at two virtual gauges, and then apply the algorithm to 24 records of 7 tsunamis at DART tsunameters during the years 1994–2003. We find that MTSU generally recovers the seismic moment M0 within 0.2 logarithmic units, even under unfavorable conditions such as excessive focal depth and refraction of the tsunami wave around continental masses. Finally, we apply the algorithm to the JASON satellite trace obtained over the Bay of Bengal during the 2004 Sumatra tsunami, after transforming the trace into a time series through a simple ad hoc procedure. Results are surprisingly good, with most estimates of the moment being over 1029 dyn-cm, and thus identifying the source as an exceptionally large earthquake.  相似文献   

3.
Power  William  Tolkova  Elena 《Ocean Dynamics》2013,63(11):1213-1232

The response/transfer function of a coastal site to a remote open-ocean point is introduced, with the intent to directly convert open-ocean measurements into the wave time history at the site. We show that the tsunami wave at the site can be predicted as the wave is measured in the open ocean as far as 1,000+ km away from the site, with a straightforward computation which can be performed almost instantaneously. The suggested formalism is demonstrated for the purpose of tsunami forecasting in Poverty Bay, in the Gisborne region of New Zealand. Directional sensitivity of the site response due to different conditions for the excitation of the shelf and the bay’s normal modes is investigated and used to explain tsunami observations. The suggested response function formalism is validated with available records of the 2010 Chilean tsunami at Gisborne tide gauge and at the nearby deep-ocean assessment and reporting of tsunamis (DART) station 54401. The suggested technique is also demonstrated by hindcasting the 2011 Tohoku tsunami and 2012 Haida Gwaii tsunami at Monterey Bay, CA, using an offshore record of each tsunami at DART station 46411.

  相似文献   

4.
Tsunami is one of the most devastating natural coastal disasters. Most of large tsunamis are generated by submarine earthquakes occurring in subduction zones. Tsunamis can also be triggered by volcano eruptions and large landslides. There are many records about "sea-overflow" in Chinese ancient books, which are not proved to be tsunamis. Tectonics and historical records analysis are import to forecast and prevention of tsunami. Consider the tectonic environment of the China sea, the possibility of huge damage caused by the offshore tsunami is very small. And the impact of the ocean tsunami on the Bohai sea, the Yellow sea, and the East China sea is also small. But in the South China Sea, the Manila subduction zone has been identified as a high hazardous tsunamigenic earthquake source region. No earthquake larger than MW7.6 has been recorded in the past 100a in this region, suggesting a high probability for larger earthquakes in the future. If a tsunamigenic earthquake were to occur in this region in the near future, a tragedy with the magnitude similar to the 2004 Indian Ocean tsunami could repeat itself. In this paper, based on tectonics and historical records analysis, we have demonstrated that potential for a strong future earthquake along the Manila subduction zone is real. Using a numerical model, we have also shown that most countries in the South China Sea will be affected by the tsunamis generated by the future earthquake. For China, it implies that the maximum wave height over 4.0 meter on China mainland, especially the Pearl River Estuary. But the island, local relief maybe influence the maximum wave. But it takes nearly 3 hours to attack China mainland, if there is the operational tsunami warning system in place in this region, should be greatly reduced losses. And the simulated results are conformable to historical records. It indicates that the tsunami hazards from Manila trench to China mainland worthy of our attention and prevention.  相似文献   

5.
In order to understand and simulate site effects on strong ground motion records of recent earthquakes in Mexico City, it is fundamental to determine the in situ elastic and anelastic properties of the shallow stratigraphy of the basin. The main properties of interest are the shear wave velocities and Q-quality factors and their correlation with similar parameters in zones of the city. Despite population density and paved surfaces, it is feasible to gather shallow refraction data to obtain laterally homogeneous subsoil structures at some locations. We focused our analysis in the Texcoco Lake region of the northeastern Mexico City basin. This area consists of unconsolidated clay sediments, similar to those of the lake bed zone in Mexico City, where ground motion amplification and long duration disturbances are commonly observed. We recorded Rayleigh and Love waves using explosive and sledgehammer sources and 4.5 Hz vertical and horizontal geophones, respectively. Additionally, for the explosive source, we recorded three-component seismograms using 1 Hz seismometers. We obtained phase velocity dispersion curves from ray parameter-frequency domain analyses and inverted them for vertical distribution of S wave velocity. The initial model was obtained from a standard first-break refraction analysis. We also obtained an estimation of the QS shear wave quality factor for the uppermost stratigraphy. Results compare well with tilt and cone penetrometer resistance measurements at the same test site, emphasizing the importance of these studies for engineering purposes.  相似文献   

6.
Trapping of long water waves that are induced by submarine earthquakes and that attack circular islands is studied by applying a theoretical model (Tinti andVannini, 1994) that is based on the linear shallow water approximation. The solution is computed as the superposition of the eigenmodes of the water basin. The tsunami trapping is seen in terms of the capability of the source to excite the trapped eigenmodes of the basin. The bottom depth dependence around the island is shown to be quite important in determining the trapping capability of the island: a depth profile that is downwardly concave as the distance from the island coasts increases is substantially more efficient in amplifying the incoming waves and in trapping their energy than a profile exhibiting an upward concavity.  相似文献   

7.
Tsunamis are one of the most destructive disasters in the ocean.Large tsunamis are mostly generated by earthquakes,and they can propagate across the ocean without significantly losing energy.During the shoaling process in coastal areas,the wave amplitude increases dramatically,causing severe life loss and property damage.There have been frequent tsunamis since the 21 st century,drawing the attention of many countries on the study of tsunami mechanism and warning.Tsunami records also play an essential role in deriving earthquake rupture models in subduction zones.This paper reviews the recent progress and limitations of tsunami research,from the aspects of tsunami generation,propagation,inversion and warning.Potential tsunami warning strategies are discussed and future prospects on tsunami research are provided.  相似文献   

8.
We studied the 11 March 2011 Tohoku tsunami through analysis of the sea level records from 21 tide gauge and 16 DART (Deep-ocean Assessment and Reporting of Tsunamis) stations from across the Pacific Ocean. The extreme power of this trans-oceanic tsunami was indicated by the trough-to-crest heights of 3.03 m at Arena Cove on the western coast of the USA and 3.94 m at Coquimbo on the southern coast of Chile. The average value of the maximum amplitude was 163.9 cm for the examined tide gauge records. At many coastal tide gauge stations the largest wave arrived several hours after the first arrival of the tsunami wave, and the tsunami lasted for a long time with an average duration of 4 days. On the contrary, at most of the DART stations in the deep ocean, the first wave was the largest, the tsunami amplitudes were smaller with an average maximum of 51.2 cm, and the durations were shorter with an average of 2 days. The two dominant tsunami periods on the DART records were 37 and 67.4 min, which are possibly attributed to the width and length of the tsunami source fault, respectively. The dimensions of the tsunami source was estimated as 233 km × 424 km. Wavelet analyses of tide gauge and DART records showed that most of the tsunami energy was distributed at the wide period band of around 10–80 min during the first hour after the tsunami arrival, then it was concentrated in a relatively narrower band. The frequency-time plots showed the switches and lapses of tsunami energy at the 35- and 65-min period bands.  相似文献   

9.
William Power  Elena Tolkova 《Ocean Dynamics》2013,63(11-12):1213-1232
The response/transfer function of a coastal site to a remote open-ocean point is introduced, with the intent to directly convert open-ocean measurements into the wave time history at the site. We show that the tsunami wave at the site can be predicted as the wave is measured in the open ocean as far as 1,000+ km away from the site, with a straightforward computation which can be performed almost instantaneously. The suggested formalism is demonstrated for the purpose of tsunami forecasting in Poverty Bay, in the Gisborne region of New Zealand. Directional sensitivity of the site response due to different conditions for the excitation of the shelf and the bay’s normal modes is investigated and used to explain tsunami observations. The suggested response function formalism is validated with available records of the 2010 Chilean tsunami at Gisborne tide gauge and at the nearby deep-ocean assessment and reporting of tsunamis (DART) station 54401. The suggested technique is also demonstrated by hindcasting the 2011 Tohoku tsunami and 2012 Haida Gwaii tsunami at Monterey Bay, CA, using an offshore record of each tsunami at DART station 46411.  相似文献   

10.
We report the statistical and wavelet analyses of the 21 May 2003 tsunami produced by an M w 6.8–6.9 thrust earthquake in the western Mediterranean Sea using 19 tide gauge records. The largest trough-to-crest wave height was 196 cm recorded at the Sant Antoni station in the lee of the incoming tsunami wave. Except at one station, the first wave was not the largest wave at all the analyzed stations, and the largest wave arrived several hours after the first arrival. In addition, the tsunami waves persisted for more than 1 day at most stations. As the spectra of coastal tide gauge stations are strongly influenced by topographic features, special care was taken here while interpreting the results of spectral and wavelet analysis. Our wavelet analysis shows that only a peak at around 23 min is persistent for long duration, and other peaks at 14, 30, 45, and 60 min appeared at short durations. The 23-min signal is possibly associated with the width of the source fault whereas the fault length contributed to the 45-min signal. Based on these dominant periods, the tsunami source dimensions are estimated as 95 km × 45 km. The statistical and wavelet analyses performed here provide some new insights into the characteristics of the tsunami that was generated and propagated in the western Mediterranean basin.  相似文献   

11.
The Transoceanic 1755 Lisbon Tsunami in Martinique   总被引:1,自引:0,他引:1  
On 1 November 1755, a major earthquake of estimated M w=8.5/9.0 destroyed Lisbon (Portugal) and was felt in the whole of western Europe. It generated a huge transoceanic tsunami that ravaged the coasts of Morocco, Portugal and Spain. Local extreme run-up heights were reported in some places such as Cape St Vincent (Portugal). Great waves were reported in the Madeira Islands, the Azores and as far as the Antilles (Caribbean Islands). An accurate search for historical data allowed us to find new (unpublished) information concerning the tsunami arrival and its consequences in several islands of the Lesser Antilles Arc. In some places, especially Martinique and the Guadeloupe islands, 3?m wave heights, inundation of low lands, and destruction of buildings and boats were reported (in some specific locations probably more enclined to wave amplification). In this study, we present the results of tsunami modeling for the 1755 event on the French island of Martinique, located in the Lesser Antilles Arc. High resolution bathymetric grids were prepared, including topographic data for the first tens of meters from the coastline, in order to model inundations on several sites of Martinique Island. In order to reproduce as well as possible the wave coastal propagation and amplification, the final grid was prepared taking into account the main coastal features and harbour structures. Model results are checked against historical data in terms of wave arrival, polarity, amplitude and period and they correlate well for Martinique. This study is a contribution to the evaluation of the tele-tsunami impact in the Caribbean Islands due to a source located offshore of Iberia and shows that an 8.5 magnitude earthquake located in the northeastern Atlantic is able to generate a tsunami that could impact the Caribbean Islands. This fact must be taken into account in hazard and risk studies for this area.  相似文献   

12.
—?T-phase propagation from ocean onto land is investigated by comparing data from hydrophones in the water column with data from the same events recorded on island and coastal seismometers. Several events located on Hawaii and the emerging seamount Loihi generated very large amplitude T phases that were recorded at both the preliminary IMS hydrophone station at Point Sur and land-based stations along the northern California coast. We use data from seismic stations operated by U. C. Berkeley along the coast of California, and from the PG&;E coastal California seismic network, to estimate the T-phase transfer functions. The transfer function and predicted signal from the Loihi events are modeled with a composite technique, using normal mode-based numerical propagation codes to calculate the hydroacoustic pressure field and an elastic finite difference code to calculate the seismic propagation to la nd-based stations. The modal code is used to calculate the acoustic pressure and particle velocity fields in the ocean off the California coast, which is used as input to the finite difference code TRES to model propagation onto land. We find both empirically and in the calculations that T phases observed near the conversion point consist primarily of surface waves, although the T phases propagate as P waves after the surface waves attenuate. Surface wave conversion occurs farther offshore and over a longer region than body wave conversion, which has the effect that surface waves may arrive at coastal stations before body waves. We also look at the nature of T phases after conversion from ocean to land by examining far inland T phases. We find that T phases propagate primarily as P waves once they are well inland from the coast, and can be observed in some cases hundreds of kilometers inland. T-phase conversion at tenuates higher frequencies, however we find that high frequency energy from underwater explosion sources can still be observed at T-phase stations.  相似文献   

13.
To a tsunami wave, bays and harbors represent oscillatory systems, whose resonance (normal) modes determine the response to tsunami and consequently the potential hazard. The direct way to obtain the resonance modes of a water reservoir is by solving the boundary problem for the eigenfunctions of the linearized shallow-water wave equation. The principal difficulty of posing such a problem for a basin coupled to an ocean is specifying the boundary between the two. The technique developed in this work allows the normal modes of a semi-enclosed water body to be obtained without a-priori restricting the resonator area. The technique utilizes complex Empirical Orthogonal Function analysis of modeled tsunami wave fields. On the examples of Poverty Bay in New Zealand and Monterey Bay in California (United States), we demonstrate that the normal modes can be identified and isolated using the EOFs of a data set comprised of the concatenated time-series collected from different tsunami scenarios in a basin. The analysis of the modeled tsunami wave fields for the normal modes can also answer the question of how likely and under which conditions the different modes are exited, due to feasible natural events.  相似文献   

14.
快速准确的海啸源模型是近场海啸精确预警的关键.尽管目前还没有办法直接对其进行正演定量计算,但是可以通过多源地震、海啸观测数据进行反演或联合反演推算.不同的海啸源可能导致不同的预警结论,了解不同类型海啸源适用性、评估海啸源特征差异对近场海啸的影响,无论对于海啸预警还是海啸模拟研究尤为重要.本文评估分析了6种不同同震断层模型对2011年3月11日日本东北地震海啸近场数值预报的影响,重点对比分析了有限断层模型与均一滑动场模型对近场海啸产生、传播、淹没特征的影响及各自的误差.研究表明:近场海啸波能量分布主要取决于海啸源分布特征,特别是走向角的差异对海啸能量分布影响较大;有限断层模型对海啸灾害最为严重的39°N以南沿岸地区的最大海啸爬坡高度明显优于均一滑动场模型结果;综合对比DART浮标、GPS浮标及近岸潮位站共32个站次的海啸波幅序列结果发现有限断层模型整体平均绝对/相对误差比均一滑动场模型平均误差要低,其中Fujii海啸源的平均绝对/相对误差最小,分别是0.56m和26.71%.UCSB海啸源的平均绝对/相对误差次之.3个均一滑动场模型中USGSCMT海啸源模拟精度最高.相对于深海、浅海观测站,有限断层模型比均一滑动场模型对近岸观测站计算精度更高.海啸源误差具有显著的方向性,可能与反演所采用的波形数据的代表性有关;谱分析结果表明Fujii海啸源对在12至60min主频波谱的模拟要优于UCSB海啸源.海啸源中很难真实反映海底地震破裂过程,然而通过联合反演海啸波形数据推算海啸源的方法可以快速确定海啸源,并且最大限度的降低地震破裂过程与海啸产生的不确定性带来的误差.  相似文献   

15.
On the 30th of December 2002 two tsunamis were generated only 7 min apart in Stromboli, southern Tyrrhenian Sea, Italy. They represented the peak of a volcanic crisis that started 2 days before with a large emission of lava flows from a lateral vent that opened some hundreds of meters below the summit craters. Both tsunamis were produced by landslides that detached from the Sciara del Fuoco. This is a morphological scar and is the result of the last collapse of the northwestern flank of the volcanic edifice, that occurred less than 5 ka b.p. The first tsunami was due to a submarine mass movement that started very close to the coastline and that involved about 20×106 m3 of material. The second tsunami was engendered by a subaerial landslide that detached at about 500 m above sea level and that involved a volume estimated at 4–9×106 m3. The latter landslide can be seen as the retrogressive continuation of the first failure. The tsunamis were not perceived as distinct events by most people. They attacked all the coasts of Stromboli within a few minutes and arrived at the neighbouring island of Panarea, 20 km SSW of Stromboli, in less than 5 min. The tsunamis caused severe damage at Stromboli.In this work, the two tsunamis are studied by means of numerical simulations that use two distinct models, one for the landslides and one for the water waves. The motion of the sliding bodies is computed by means of a Lagrangian approach that partitions the mass into a set of blocks: we use both one-dimensional and two-dimensional schemes. The landslide model calculates the instantaneous rate of the vertical displacement of the sea surface caused by the motion of the underwater slide. This is included in the governing equations of the tsunami, which are solved by means of a finite-element (FE) technique. The tsunami is computed on two different grids formed by triangular elements, one covering the near-field around Stromboli and the other also including the island of Panarea.The simulations show that the main tsunamigenic potential of the slides is restricted to the first tens of seconds of their motion when they interact with the shallow-water coastal area, and that it diminishes drastically in deep water. The simulations explain how the tsunamis that are generated in the Sciara del Fuoco area, are able to attack the entire coastline of Stromboli with larger effects on the northern coast than on the southern. Strong refraction and bending of the tsunami fronts is due to the large near-shore bathymetric gradient, which is also responsible for the trapping of the waves and for the persistence of the oscillations. Further, the first tsunami produces large waves and runup heights comparable with the observations. The simulated second tsunami is only slightly smaller, though it was induced by a mass that is approximately one third of the first. The arrival of the first tsunami is negative, in accordance with most eyewitness reports. Conversely, the leading wave of the second tsunami is positive.  相似文献   

16.
A numerical model for the global tsunamis computation constructed by Kowalik et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80°S to 69°N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.  相似文献   

17.
We use a numerical tsunami model to describe wave energy decay and transformation in the Pacific Ocean during the 2011 Tohoku tsunami. The numerical model was initialised with the results from a seismological finite fault model and validated using deep-ocean bottom pressure records from DARTs, from the NEPTUNE-Canada cabled observatory, as well as data from four satellite altimetry passes. We used statistical analysis of the available observations collected during the Japan 2011 tsunami and of the corresponding numerical model to demonstrate that the temporal evolution of tsunami wave energy in the Pacific Ocean leads to the wave energy equipartition law. Similar equipartition laws are well known for wave multi-scattering processes in seismology, electromagnetism and acoustics. We also show that the long-term near-equilibrium state is governed by this law: after the passage of the tsunami front, the tsunami wave energy density tends to be inversely proportional to the water depth. This fact leads to a definition of tsunami wave intensity that is simply energy density times the depth. This wave intensity fills the Pacific Ocean basin uniformly, except for the areas of energy sinks in the Southern Ocean and Bering Sea.  相似文献   

18.
—The 1994 great Kuril earthquake generated an unusual tsunami that was observed at five tide gauges on the Hokkaido coast of the Okhotsk Sea. The tsunami arrived at tide gauges considerably earlier than the expected time, calculated on the assumption that the tsunami source area coincides with the aftershock area. Numerical simulation of the tsunami shows that the first wave of the tsunami in the Okhotsk Sea was generated by the significant subsidence north of the Kuril Islands. It is assumed that this subsidence is due to the earthquake. The coseismic deformation area of the ocean bottom extended over a vastly larger area than the aftershock area or the rupture area for the Kuril earthquake. The numerical simulation also shows that the tsunami observed at Utoro during the first hour after the origin time of the earthquake was mainly generated by the horizontal movement of the sloping ocean bottom near the Shiretoko Peninsula.  相似文献   

19.
The M w=9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra in the Indian Ocean generated a catastrophic tsunami that caused widespread damage in coastal areas and left more than 226,000 people dead or missing. The Sumatra tsunami was accurately recorded by a large number of tide gauges throughout the world's oceans. This paper examines the amplitudes, frequencies and wave train structure of tsunami waves recorded by tide gauges located more than 20,000 km from the source area along the Pacific and Atlantic coasts of North America.  相似文献   

20.
在东海潜在震源区冲绳海槽假定了五个震源点,根据Steven地震海啸地震参数经验值作为初始条件,分别考虑6.5、7.0、7.5、8.0、8.5、9.0级地震条件下的30个震例,采用数值模拟的方法,对海啸在东海传播过程进行情境分析,特别是对上海沿岸地区可能会遭受的海啸灾害做了较为精细的研究.结果发现:小于8.0级的震例对上海地区几乎不会造成影响;8.0级震例只有最北端震源点震例会对上海地区有明显影响;8.5级以及9.0级震级基本上均会对上海沿岸地区造成较大的影响.特别是冲绳海槽北段9.0级震例可能会对上海沿岸局部地区造成危害,最大波高可达3.9m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号