首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To deeply understand the cracking mechanical behavior of brittle rock materials, numerical simulations of a rock specimen containing a single preexisting crack were carried out by the expanded distinct element method (EDEM). Based on the analysis of crack tips and a comparison between stress- and strain-based methods, the strain strength criterion was adopted in the numerical models to simulate the crack initiation and propagation processes under uniaxial and biaxial compression. The simulation results indicated that the crack inclination angle and confining pressure had a great influence on the tensile and shear properties, peak strength, and failure behaviors, which also showed a good agreement with the experimental results. If the specimen was under uniaxial compression, it was found that the initiation stress and peak strength first decreased and then increased with an increasing inclination angle α. Regardless of the size of α, tensile cracks initiated prior to shear cracks. If α was small (such as α ≤ 30°), the tensile cracks dominated the specimen failure, the wing cracks propagated towards the direction of uniaxial compression, and the propagation of shear cracks was inhibited by the high concentration of tensile stress. In contrast, if α was large (such as α ≥ 45°), mixed cracks dominated the specimen failure, and the external loading favored the further propagation of shear cracks. Analyzing the numerical results of the specimen with a 45° inclination angle under biaxial compression, it was revealed that lateral confinement had a significant influence on the initiation sequence and the mechanical properties of new cracks.  相似文献   

2.
Crack evolution is initiated by the occurrence of tensile wing cracks and is then further promoted due to the crack coalescence caused by the extension of a central tensile crack segment between two relatively adjacent flaws. To understand such progressive failures in rock, a parallelized peridynamics coupled with a finite element method is utilized. Through this method, the initiation position of tensile wing cracks is observed with respect to varying inclination angles of a flaw, and then its corresponding shifting mechanism is investigated. In addition, the phenomenon of the position shifting being sensitive to various flaw shapes is discussed. Moreover, it is observed that the inclination angle of a central flaw affects the initiation position of other flaws; therefore, the initiation positions of tensile wing crack emanating from other neighboring flaws are analyzed with their angles. Following tensile wing cracks, a central tensile crack segment occurs in the bridging region between a central flaw and other neighboring flaws; the developmental patterns caused by the crack segment are discussed as well. Finally, the role a central tensile crack segment plays in the formation of crack coalescence and specimen failure is investigated in detail. The numerical results in this paper demonstrate good fidelity with established physical test results and complement them, thereby expanding the understanding of fracturing morphology in rock specimens with various flaws.  相似文献   

3.
施明明  张友良  谭飞 《岩土力学》2013,34(5):1313-1318
由应变能密度因子理论得出裂纹沿着形状改变比能密度因子最小的方向扩展,但理论中所使用的应力强度因子是在拉应力作用下计算得出的,而自然界中的岩体通常处于压应力场中。因此,在修正的应变能密度因子理论的基础上,结合压缩荷载作用下的裂纹尖端应力强度因子,并考虑裂纹面之间的摩擦作用得出了针对压缩荷载作用下的岩石裂纹扩展的应变能密度因子理论,并运用该理论分析了裂纹倾角、围压以及裂面摩擦力对破裂角的影响,将分析结果与已有的试验和数值分析结果进行比较,取得了良好的一致性。分析得出,在单轴压缩荷载作用下临界破裂荷载随着裂纹倾角的增大而先减小、后增大,并且一个裂纹倾角对应多个破裂角,即裂纹朝多个方向发展;在三轴压缩荷载作用下,破裂角与围压大小有关。此研究成果可为压应力场中岩石裂纹扩展的数值模拟提供参考。  相似文献   

4.
李斌  黄达  马文著 《岩土力学》2020,41(3):858-868
层理弱面对层状岩石的力学特性影响较显著,为了研究层理面特性对岩石断裂力学特性的影响,开展了具有不同层理方向的砂岩试样三点弯试验,探讨了砂岩断裂韧度及断裂模式的各向异性。之后基于有限元中的黏聚单元建立了数值模型,采用数值模拟方法研究了层理面强度对各层理角度试样断裂力学行为的影响规律。结果表明:层理方向影响下砂岩的断裂韧度及模式存在各向异性;同一层理方向试样的断裂韧度随层理面强度的增大而增大,且试样的层理面与加载方向夹角越小,断裂韧度受层理面强度变化影响越明显;试样的断裂模式不仅与层理面强度有关,还受层理倾角的控制,层理面与加载方向夹角θ = 0o试样断裂模式基本不受层理面强度影响,θ = 30o试样主要沿层理面张拉或剪切破坏,且沿层理面的破裂长度随层理面强度的降低逐渐增大;层理面强度较大时,θ = 45o试样主要沿层理面张拉破坏,θ = 60o~90o试样主要以贯穿层理的张拉破坏为主;层理面强度较小时,θ = 45o~90o试样均以沿层理面的剪切破坏为主,其中θ = 45o试样沿层理剪切长度最大。另外,通过数值模拟结果分析了层理面强度及方向对试样的起裂角及裂纹扩展路径产生的影响。该研究成果可作为层状岩石断裂力学理论的有益补充。  相似文献   

5.
Cracking and coalescence behavior in a rectangular rock-like specimen containing two parallel (stepped and coplanar) pre-existing open flaws under uniaxial compression load has been numerically studied by a parallel bonded-particle model, which is a type of bonded-particle model. Crack initiation and propagation from two flaws replicate most of the phenomena observed in prior physical experiments, such as the type (tensile/shear) and the initiation stress of the first crack, as well as the coalescence pattern. Eight crack coalescence categories representing different crack types and trajectories are identified. New coalescence categories namely “New 1” and “New 2”, which are first observed in the present simulation, are incorporated into categories 3 and 4, and category 5 previously proposed by the MIT Rock Mechanics Research Group, respectively. The flaw inclination angle (β), the ligament length (L) (spacing between two flaws) and the bridging angle (α) (inclination of a line linking up the inner flaw tips, between two flaws) have different effects on the coalescence patterns, coalescence stresses (before, at or post the peak stress) as well as peak strength of specimens. Some insights on the coalescence processes, such as the initiation of cracks in the intact part of specimens at a distance away from the flaw tips, and coalescence due to the development and linkage of a number of steeply inclined to vertical macro-tensile cracks are revealed by the present numerical study.  相似文献   

6.
By employing both a physical mesh and a mathematical mesh to formulate a physical problem, the numerical manifold method (NMM) can lead to a very simple meshing task, which allows directly capturing the discontinuities across the crack surfaces without further incorporating unknowns to the related nodes through enrichment functions. These features enable the NMM to handle complex crack problems. In this study, based on the contact technique of the NMM and the incorporation of the Mohr–Coulomb crack initiation criterion, the effects of the friction and cohesion on the crack growth from a closed flaw (crack) under compression were investigated. A limited number of comparisons between the numerical results and the physical experiments show that with the Mohr–Coulomb crack initiation criterion, the NMM can not only accurately predict the pure tensile or pure shear crack growth, but the NMM can also satisfactorily predict the development of mixed shear–tensile crack types. Using a parametric analysis, the effects of the confining stress, the flaw inclination angle, the flaw friction angle and the material strengths on the crack development (crack initiation stress, crack initiation angle, crack type developed) have been investigated.  相似文献   

7.
A micromechanics-based approach is proposed to predict the shear failure of brittle rocks under compression. Formulation of this approach is based on an improved wing microcrack model, the Mohr-Coulomb failure criterion, and a micro-macro damage model. The improved wing microcrack model considers the effects of crack inclination angle on mechanical behaviors of rocks. The micro-macro damage model describes the relation between crack growth and axial strain. Furthermore, comparing experimental and theoretical relations between crack initiation stress and confining pressure, model parameters (i.e., μ, a, β, and φ) hardly measured by test are solved. Effects of crack inclination angle, crack size, and friction coefficient on stress-strain relation, compressive strength, internal friction angle, cohesion, shear failure plane angle, and shear strength are discussed in details. A most disadvantaged crack angle is found, which is corresponding to the smallest compressive strength, cohesion, internal friction angle, and shear strength of rocks. Rationality of the theoretical results is verified by the published experimental results. This approach provides a theoretical prediction for effects of microcrack geometry on macroscopic shear properties in brittle rocks under compression.  相似文献   

8.
This paper investigates the influence of a flaw on crack initiation, the failure mode, deformation field and energy mechanism of the rock-like material under uniaxial compression. The results of laboratory test and numerical simulation demonstrate the flaw inclination effect can be classified into three groups: 0–30°, 30–60° and 75–90°. The characteristic stresses increase as the flaw angle increases. The tensile cracks initiate from gentle flaws (α  30°) and shear cracks appear at tips of steep flaws (α  45°). The input energy, strain energy and dissipation energy of a specimen show approximate increasing trends as the flaw angle increases.  相似文献   

9.
Crack initiation and coalescence behavior of rock or rock-like specimens containing artificial flaws under uniaxial compression have been subjects of intensive investigation in the past. Most of these investigations however focused on crack initiation and coalescence between two or more parallel flaws. Although there have been few experimental studies on non-parallel flaws, these studies did not address the influence of geometrical factors such as ligament length and ligament angle on the crack initiation and coalescence behavior of non-parallel flaws. To investigate whether the individual geometrical factors have similar effects on the crack initiation and coalescence behavior of both parallel and non-parallel flaws, we conducted uniaxial compression tests to investigate crack cracking and coalescence processes in rock like material containing two non-parallel flaws. The paper presents the influence of individual geometrical factors on the crack initiation process and coalescence pattern of non-parallel flaws. Initiation of primary first cracks from all the tips of the two flaws did not occur simultaneously in all the flaw configurations. The flaw configuration of the non-parallel flaws influences the crack initiation, crack trajectories and coalescence behavior. The crack coalescence pattern changes with an increasing ligament angle from indirect to shear crack or mixed tensile-shear crack to tensile crack coalescence. The chance of direct coalescence is reduced with an increase in ligament length. In conclusion, the crack initiation and coalescence behavior of prismatic rock-like specimens with non-parallel flaws, as influenced by the geometrical factors, are analogous to the cracking and coalescence pattern observed in specimens with parallel flaws.  相似文献   

10.
Crack coalescence in rock masses was studied by performing a series of biaxial compresion tests on specimens made of rock-like material. Specimens of size 63.5 × 27.9 × 20.3 cm, made of 72% silica sand, 16% cement (Type I) and 12% water by weight were tested. The joint inclination angle was maintained at 45°, while the offset angle i.e. angle between the plane of the joint and the line that connects the two inner tips of the joints, was changed from 0° to 90° with an increment of 15°. Three levels of lateral stress were used; 0.35 MPa, 0.7 MPa and 1.5 MPa on each sample. HP data acquisition system was used to record the data for each sample. In each sample, four LVDTs were fixed to measure the axial and lateral displacement along the sample. The failure mechanisms were monitored by eye inspection and a magnifier to detect crack initiation and propagation. For each test, the failure surfaces were investigated to determine the characteristics of each surface. Wing cracks initiated at the tip of the joint for the low confining stress applied, while at higher confining stresses wing cracks also initiated at the middle of the joint. Secondary cracks initiated at the tip of the joint due to shear stress. Three modes of failure took place due to coalescence of the secondary and wing cracks. The bridge inclination was the main variable that controlled the mode of failure. For bridge inclination of 0°, the coalescence occured due to shear failure and for bridge inclination of 90° the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occured due to mixed tensile and shear failure.  相似文献   

11.
郑安兴  罗先启 《岩土力学》2015,36(7):1892-1898
考虑岩石闭合裂纹壁面间存在的摩擦力对裂纹尖端应力场的影响,应用最大周向应力理论得到压剪复合裂纹的断裂角。在此基础上,依据岩石裂纹尖端双向受力时的破坏特征,结合最大周向应力准则与修正的格里菲斯(Griffith)强度理论,建立了考虑摩擦效应的闭合裂纹失稳扩展的岩石压剪断裂判据。研究结果表明:断裂角受裂纹和荷载方向的夹角、裂纹壁面之间的摩擦系数、侧压力系数的影响;当压剪裂纹的断裂角是某个定值时,纯II型裂纹的断裂韧度与纯I型裂纹的断裂韧度的比值只与岩石裂纹表面的摩擦系数取值有关,而与其他岩石力学参数无关。此研究成果可为压剪应力作用下裂隙岩体的失稳破坏提供参考。  相似文献   

12.
考虑裂隙水压力的岩体压剪裂纹扩展规律研究   总被引:3,自引:2,他引:1  
邓华锋  李建林  刘杰  朱敏  郭靖  鲁涛 《岩土力学》2011,32(Z1):297-0302
在库水位大幅度升、降变化时,容易导致岩体内增量裂隙压力的集中,使断裂面上有效应力降低,裂纹面尖端的应力强度因子增加。当达到临界强度因子时,可能使岩体内裂纹、裂隙贯通、扩展,形成连续的复式破坏面,从而使边坡稳定性降低,造成边坡的失稳。基于此,从断裂力学角度分析了裂隙水压力对裂纹强度因子的影响,对考虑裂隙水压力作用的Ⅰ、Ⅱ型复合裂纹扩展规律进行了研究,结果表明:Ⅰ、Ⅱ型复合裂纹的裂纹扩展角的变化,不仅与裂纹的闭合程度、斜裂纹倾角、双向应力大小有关,还与裂隙水压力的大小、裂纹面的摩擦系数有关;并且在相同情况下,未闭合裂纹的扩展角要大于闭合裂纹的扩展角;对于闭合裂纹,裂纹面摩擦系数越小,扩展角越大;最后,推导了基于摩尔-库仑准则考虑裂隙水压力的岩体断裂韧度KIc、KIIc和压剪状态下Ⅰ、Ⅱ型复合断裂判据。研究成果为分析水岩作用下裂隙岩体的失稳破坏提供了重要的参考。  相似文献   

13.
李晓照  邵珠山  戚承志 《岩土力学》2019,40(11):4249-4258
岩石内部细观裂纹的存在,对压缩作用下岩石剪切断裂的宏观现象有着重要的影响。然而,能够通过解析解阐释细观裂纹几何特性、围压等影响因素对压缩作用下剪切断裂面角度变化趋势的研究很少。基于Ashby模型中提出的裂纹尖端应力强度因子,提出了一种改进的考虑裂纹角度影响的应力强度因子表达式。利用该改进的应力强度因子表达式,推出了一个可以预测岩石峰值强度的裂纹扩展、应变与应力之间的本构关系。结合本构关系的峰值强度与摩尔-库仑失效准则,得到了岩石损伤与内摩擦角、黏聚力、剪切强度及失效断裂面角度之间的理论关系;讨论了围压、裂纹尺寸、角度及摩擦系数对岩石宏观剪切断裂面角度的影响,通过试验结果验证了模型合理性。结果表明:随着损伤增大,内摩擦角、黏聚力及剪切强度不断减小;随着围压增大、摩擦系数增大和初始裂纹尺寸减小,剪切断裂面角度不断增大;随着裂纹角度增大,剪切断裂纹面角度先减小后增大。  相似文献   

14.
In a cracked material, the stress intensity factors (SIFs) at the crack tips, which govern the crack propagation and are associated with the strength of the material, are strongly affected by the crack inclination angle and the orientation with respect to the principal direction of anisotropy. In this paper, a formulation of the boundary element method (BEM), based on the relative displacements of the crack tip, is used to determine the mixed‐mode SIFs of isotropic and anisotropic rocks. Numerical examples of the application of the formulation for different crack inclination angles, crack lengths, and degree of material anisotropy are presented. Furthermore, the BEM formulation combined with the maximum circumferential stress criterion is adopted to predict the crack initiation angles and simulate the crack propagation paths. The propagation path in cracked straight through Brazilian disc specimen is numerically predicted and the results of numerical and experimental data compared with the actual laboratory observations. Good agreement is found between the two approaches. The proposed BEM formulation is therefore suitable to simulate the process of crack propagation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
在研究双向压缩条件下压剪复合型裂纹应力分布特征及断裂破坏机制基础上,考虑渗透压对初始裂隙面上有效正应力的影响,提出高低渗透压环境的判定准则,并基于滑动裂纹模型理论及最大周向拉应力破坏准则,得到不同渗透压环境下初始裂隙尖端微裂纹起裂特征与规律。研究结果表明:压剪复合应力条件下,初始裂隙尖端发育微裂纹的最优倾角与裂隙面摩擦系数直接相关,随裂隙面摩擦系数的增大,最优初始裂隙倾角由45°起逐渐增大;低渗透压条件下,渗流场的存在使裂纹面摩擦系数发生弱化,进而使得最优初始裂隙倾角向45°靠近,而渗透压直接降低裂隙面上有效正应力且与裂隙倾角无关,其仅仅影响裂隙体材料的初裂强度;高渗透压条件下,初始裂隙面由压剪复合应力状态转化为拉剪复合应力状态,并在拉剪复合应力场作用下,尖端微裂纹起裂角随KI/KII的不断增大,由70.5°逐渐趋近于0°。  相似文献   

16.
揭示双轴循环荷载条件下类玄武岩内裂纹起裂、扩展及岩桥贯通模式。配制类玄武岩相似材料,预制裂纹倾角=30、裂纹长度2a=20mm、裂纹厚度l=0.3mm的双裂纹,设计不同岩桥长度L、岩桥倾角试样,采用双轴压缩、双轴循环加卸载方式,研究裂纹扩展及岩桥贯通模式。试验结果表明:(1)双轴循环加卸载条件下,裂纹扩展-岩桥贯通过程可分为翼裂纹起裂、翼裂纹扩展和次生裂纹起裂及扩展、岩桥贯通3个阶段;(2)岩桥贯通类型可分为剪性贯通、张剪复合贯通和张性贯通3类。双轴压缩条件下,岩桥贯通模式可进一步划分为9种模式,双轴循环加卸载条件下,岩桥贯通模式可分为8种模式;(3)双轴循环加卸载试验比双轴压缩试验更易发生剪性贯通,且在部分试样岩桥处出现局部压碎隆起现象;(4)岩桥倾角和岩桥长度L对岩桥贯通模式影响显著,随着岩桥倾角的增大,岩桥贯通模式逐渐转变为剪性或张剪性贯通。双轴压缩条件下,岩桥长度增加,贯通模式由张剪复合贯通过渡为剪性贯通,而双轴循环加卸载试验则恰恰相反。  相似文献   

17.
范杰  朱星  胡桔维  唐垚  贺春蕾 《岩土力学》2022,43(4):1009-1019
裂纹监测对岩石损伤演化的认识至关重要。为研究岩石裂纹扩展及损伤变形特性,开展了含不同倾角(0°~90°)预制裂隙的标准细黄砂岩样的单轴压缩试验。利用三维数字图像相关技术(3D-DIC)获取岩样三维空间坐标下的应变分布,并结合声发射从光学与声学的角度监测了裂纹的扩展演化。由此提出了一种裂纹主应变的计算方法,定量表征岩石劣化的损伤变量D值。最后,探讨了由声发射与损伤变量D值确定岩样特征强度的影响因素。结论如下:(1)裂纹主应变反映了岩样受荷过程中同源裂纹在时间上的变化速率与空间上的扩展趋势,能较好地表征岩石的开裂行为;(2)声发射适用于确定岩样的起裂应力,不适用于损伤应力的确定,损伤变量D值所确定的起裂应力滞后于声发射,但适用于损伤应力特征值的确定;(3)结合声发射与DIC技术确定的归一化起裂应力范围为0.63~0.94、归一化损伤应力的范围为0.83~0.99;(4)预有裂隙会影响岩石的材料力学性能。随着倾角的增加,岩石的起裂应力、损伤应力及峰值应力呈增长的趋势,由于难以形成局部应变场聚集,裂纹的萌生与起裂更加困难。结果表明,3D-DIC技术的利用可以提高对岩石开裂行为的理解,对岩石的损伤监测与判识更有重要的意义。  相似文献   

18.
Mixed-Mode Fracturing of Rocks Under Static and Cyclic Loading   总被引:1,自引:1,他引:0  
Static diametrical compression tests conducted on inclined cracked chevron notched Brazilian disc (CCNBD) Brisbane tuff specimens showed that the notched cracks at the centre of the specimens opened (Mode I) up to 30° crack inclination angle (β), whereas crack closure (Mode II) started for β > 33°, and closure became more pronounced at even higher β of 45° and 70°. Both the experimental and numerical results showed that the crack initiation angle (θ) was a function of the β. Scanning electron microscope (SEM) images showed that fatigue damage on cyclic loading of Brisbane tuff is strongly influenced by the failure of the matrix due to both intergranular and transgranular fracturing.  相似文献   

19.
In this paper, white Portland cement was used as an experimental material. Prismatic specimens with pre-existing flaws at different angles of inclination (α) varying through 0°, 30°, 45°, 60°, 75° to 90° and cylindrical specimens with different numbers of pre-existing flaws (n) varying through 0, 1, 2 to 3 were tested under uni-axial compression tests. Crack initiation, propagation, coalescence, and failure were observed. The corresponding analytical expression for the stress intensity factor under uni-axial compression was derived, the coefficient of friction and the stress intensity factor of the specimens on the surfaces of the crack were analysed, and the corrective coefficient for the stress intensity factor was introduced. Fatigue tests with a loading frequency of f = 100 Hz were carried out on cylindrical specimens with constant amplitude of the cyclic load which is a proportion of the compressive load at failure (F f) obtained from the uni-axial compression tests. The fatigue property of the specimens was analysed and the relationship (S max − lg N f) between the maximum stress and the number of loading cycles at failure for specimens with pre-existing flaws was proposed. The effect of pre-existing flaws on the fatigue life (N f) and dynamic load (S D) which can be applied was investigated.  相似文献   

20.
应力比影响下的破裂角、闭锁角、摩擦系数及其耦合关系   总被引:1,自引:0,他引:1  
裂纹扩展和摩擦系数分属两个学科而鲜有联系,摩擦系数理论较少,主要依赖实验获得。在Griffith椭圆形裂纹基础上讨论摩擦面状裂纹力学模型,计算了单轴、三轴压应力情况下微裂纹扩展的期望方向及应力集中,那些方向偏离宏观破裂方向较大角度的裂纹因闭锁而无法延伸,应力比 越大,可扩展的微裂纹越向宏观裂纹面方向集中,随着围压 的增加,闭锁范围增大,实现了裂纹张性向剪性的转变。摩擦系数、方向集中度、应力比呈耦合关系,一方面,摩擦系数越大越利于微裂纹方向集中;另一方面微裂纹的方向集中导致了宏观裂纹面(裂缝)上凸起角度降低,进而减小摩擦系数。围压和裂纹扩展期的应力状况是影响摩擦系数的重要因素, 往往成为裂纹扩展的应力条件,凸起斜面摩擦系数越大,临界应力比越小。裂纹粗糙度(或分维数)对形成期的应力状况具有一定记忆功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号