首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil plugging in open-ended piles leads to an increase in compressive bearing capacity but also influences pile driving resistance. Many different factors affect the tendency for soil plugging, for example, pile diameter, penetration depth and installation method. In this paper, the influence of the installation method on soil plugging is investigated. In situ measurements during the installation of two instrumented tubular piles are carried out to investigate the internal and external stresses acting on the pile during the installation process. Furthermore, the cone penetration resistance inside one pile is measured during the installation, and the accelerations and strains at the pile head are monitored to predict the bearing capacity. The installation method is varied between vibratory and impact pile driving. The results show that a significant increase in horizontal stresses inside the pile occurs during impact driving which leads to the conclusion that a soil plug is formed. During vibratory pile driving, no stress increase was observed.  相似文献   

2.
In geotechnical engineering, numerical analysis of pile capacity is often performed in such a way that piles are modeled using only the geometry of their final position in the ground and simply loaded to failure. In these analyses, the stress changes caused by the pile installation are neglected, irrespective of the installation method. For displacement piles, which are either pushed or hammered into the ground, such an approach is a very crude simplification. To model the entire installation process of displacement piles a number of additional nonlinear effects need to be considered. As the soil adjacent to the pile is displaced significantly, small deformation theory is no longer applicable and a large deformation finite element formulation is required. In addition, the continuously changing interface between the pile and the soil has to be considered. Recently, large deformation frictional contact has been used to model the pile installation and cone penetration processes. However, one significant limitation of the analysis was the use of linear elements, which have proven to be less accurate than higher order elements for nonlinear materials such as soils.

This paper presents a large deformation frictional contact formulation which can be coupled consistently with quadratic solid elements. The formulation uses the so-called mortar-type discretisation of the contact surfaces. The performance of this contact discretisation technique is demonstrated by accurately predicting the stress transfer between the pile and the soil surfaces.  相似文献   


3.
The installation of displacement piles in sand leads to severe changes in the stress state, density and soil properties around the pile tip and shaft, and therefore has a significant influence on the pile bearing capacity. Most current numerical methods predicting pile capacity do not take installation effects into account, as large deformations can lead to mesh distortion and non-converging solutions. In this study, the material point method (MPM) is applied to simulate the pile installation process and subsequent static pile loading tests. MPM is an extension of the finite element method (FEM), which is capable of modelling large deformations and soil-structure interactions. This study utilizes the moving mesh algorithm where a redefined computational mesh is applied in the convective phase. This allows a fine mesh to be maintained around the pile tip during the installation process and improves the accuracy of the numerical scheme, especially for contact formulation. For the analyses a hypoplastic constitutive model for sand is used, which takes into account density and stress dependent behaviour. The model performs well in situations with significant stress level changes because it accounts for very high stresses at the pile tip. Numerical results agree with centrifuge experiments at a gravitational level of 40 g. This analysis confirms the importance of pile installation effects in numerical simulations, as well as the proposed numerical approach’s ability to simulate installation and static load tests of jacked displacement piles.  相似文献   

4.
Field studies have shown that the driving of a displacement pile into cohesive soil generates large excess pore pressures in the vicinity of the pile. These pore pressures are often larger than the effective overburden pressure and facilitate the installation of the pile. The subsequent increase in bearing capacity of the pile is largely controlled by the dissipation of the excess pore pressures and a consequent increase in the effective stresses acting on the pile. The paper presents a closed formanalytical solution for the radial consolidation of the soil around a driven pile, assuming that the soil skeleton deforms elastically. This assumption is examined in the light of the predicted effective stress changes in the soil and is shown to lead to, a realistic model for the decay of pore pressure near the pile with time after driving. Although the solution may be applied to any initial distribution of excess pore pressure, attention is focussed on that due to the expansion of a cylindrical cavity in an ideal elastic, perfectly plastic soil. The resulting logarithmic variation of excess pore pressure with radius is considered to be close to that generated around a pile as a result of driving. In addition to giving estimates of the time needed for a driven pile to achieve its maximum strength, the solution may also be used in the analysis of pressuremeter tests to provide in-situ measurements of the coefficient of consolidation of the soil.  相似文献   

5.
A simplified analysis of the problem of horizontal soil stress changes around circular displacement piles, caused by pile placement, is presented. Pile installation is assumed to cause soil displacements in the horizontal direction only, thus yielding an axisymmetric problem. The soil surrounding the pile is modelled as a weightless non-linear elastic material. Material non-linearity is handled in a simplified manner by adopting secant shear moduli defined in terms of a proportionality coefficient and a softening factor. The resulting equilibrium equation is solved analytically and an expression is obtained which is also conveniently presented in graphical form. The derived expression can be used to estimate horizontal soil stress changes and is incorporated into a simple procedure to estimate the ultimate load or the efficiency of pile groups. Comparisons are made between efficiencies calculated according to this procedure and efficiencies measured in full-scale group load tests in sand.  相似文献   

6.
This paper presents an embedded beam formulation for discretization independent finite element (FE) analyses of interactions between pile foundations or rock anchors and the surrounding soil in geotechnical and tunneling engineering. Piles are represented by means of finite beam elements embedded within FEs for the soil represented by 3D solid elements. The proposed formulation allows consideration of piles and pile groups with arbitrary orientation independently from the FE discretization of the surrounding soil. The interface behavior between piles and the surrounding soil is represented numerically by means of a contact formulation considering skin friction as well as pile tip resistance. The pile–soil interaction along the pile skin is considered by means of a 3D frictional point‐to‐point contact formulation using the integration points of the beam elements and reference points arbitrarily located within the solid elements as control points. The ability of the proposed embedded pile model to represent groups of piles objected to combined axial and shear loading and their interactions with the surrounding soil is demonstrated by selected benchmark examples. The pile model is applied to the numerical simulation of shield driven tunnel construction in the vicinity of an existing building resting upon pile foundation to demonstrate the performance of the proposed model in complex simulation environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
王翔鹰  陈育民  江强  刘汉龙 《岩土力学》2018,39(6):2184-2192
抗液化排水刚性桩是一种将刚性桩与竖向排水体相结合的新桩型。基于某建筑桩基工程,开展了抗液化排水刚性桩和不含排水体的普通刚性桩的沉桩对比现场试验,采用了动态土压力传感器实时监测沉桩过程中桩周土体内产生的土压力响应,对比了排水桩与普通桩沉桩对桩周土体水平方向应力及有效应力影响的差异。试验结果表明:抗液化排水刚性桩能够有效减小沉桩过程对桩周深部可液化土体的扰动,在桩身近侧(距桩心0.6 m)深部埋深(-15 m)位置,排水桩的水平土压力响应峰值仅为普通桩的1/4;排水桩能够有效降低沉桩对可液化土层有效应力的影响,使桩周土体更加稳定;在单次沉桩过程中,对于浅部埋深(-5 m),排水桩对桩周土压力峰值的影响作用较小,对于存在可液化土层的深部埋深(-10、-15 m),排水桩对土压力峰值的有效影响半径可达4倍桩径。现场试验数据为抗液化排水刚性桩的桩间距选择提供了有力的设计参考依据。  相似文献   

8.
This paper presents the results from a pile load testing program for a bridge construction project in Louisiana. The testing includes two 54-in. open-ended spun cast concrete cylinder piles, one 30-in. open-ended steel pile and two (30- and 16-in.) square prestressed concrete (PSC) piles driven at two locations with very similar soil conditions. Both cone penetration tests (CPTs) and soil borings/laboratory testing were used to characterize the subsurface soil conditions. All the test piles were instrumented with vibrating wire strain gauges to measure the load distribution along the length of the test piles and measure the skin friction and end-bearing capacity, separately. Dynamic load tests were performed on all test piles at different times after pile installations to quantify the amount of setup with time. Static load tests were also performed on the PSC and open-ended steel piles. Due to expected large pile capacities, the statnamic test method was used on the two open-ended cylinder piles. The pile capacities of these piles were evaluated using various CPT methods (such as Schmertmann, De Ruiter and Beringen, LCPC, Lehane et al. methods). The result showed that all the methods can estimate the skin friction with good accuracy, but not the end-bearing capacity. The normalized cumulative blow counts during pile installation showed that the blow count was always higher for the PSC piles compared to the large-diameter open-ended cylinder pile, regardless of pile size and hammer size. Setup was observed for all the piles, which was mainly attributed to increase in skin frictions. The setup parameters “A” were back-calculated for all the test piles and the values were between 0.31 and 0.41.  相似文献   

9.
The development of a soil plug inside an open-ended pile with respect to the installation method is examined using numerical simulations. In this paper, the penetration process of an open-ended tubular pile with diameter D = 61 cm into granular soil is investigated. The aim is to achieve a better understanding of the mechanisms of soil plugging inside open-ended piles with respect to the installation method. As an example, the horizontal stress distribution inside the tubular pile after installation shows significant increase depending on the installation method. The numerical results are compared to experimental data.  相似文献   

10.
This paper presents a ‘Eulerian‐like’ finite element technique to simulate the large accumulated displacements of piles subjected to multiple hammer blows. For each hammer blow, results are obtained using a standard small strain finite element model and, at the end of each hammer blow, material flow is taken into account with reference to a fixed finite element mesh. Residual stresses calculated at the Gauss integration points of the deformed finite element mesh are mapped on to the fixed finite element mesh, and these stresses are used as initial stresses for the next hammer blow. At the end of each hammer blow, stiffness and mass matrices are recalculated for the volume of material remaining inside the fixed finite element mesh. Results obtained with and without allowing material to flow through the fixed mesh are compared for several hammer blows. Build up of residual stresses, soil flow and yielded points around the pile are presented for plugged, partially‐plugged and unplugged piles. Using the new finite element technique, the driving of a pile from the soil surface is studied. The ability to analyse this and other large deformation problems is the main advantage of the new finite element technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
High residual pore pressure observed in the vicinity of piles driven in saturated soil indicates that the soil around the pile may be liquefied. In the present paper, the problem of deformation of saturated sand around a vibrating pile is formulated with the use of a high-cycle accumulation model capable of describing a large number of cycles. The problem is solved numerically for locally undrained conditions in spherically symmetric formulation suitable for the lower part of a cylindrical closed-ended pile near the toe. The aim of the study is to calculate the evolution of the liquefaction zone around the pile for a large number of cycles. A parametric study is carried out to show how the growth of the liquefaction zone depends on the pile displacement amplitude, the relative soil density, the effective stress in the far field and the pore fluid compressibility.  相似文献   

12.
曹兆虎  孔纲强  周航  耿之周 《岩土力学》2015,36(5):1363-1367
楔形桩是一种可以有效提高桩侧摩阻力的纵向变截面异形桩,然而针对该变截面桩沉桩效应特性方面的研究却相对较少。基于透明土材料和粒子图像测速技术(简称PIV),开展静压楔形桩沉桩模型试验,测得沉桩过程中桩周土体的位移场变化规律;沉桩过程中桩周土体位移场由激光射入透明土材料,与透明土材料之间的相互作用产生的独特散斑场,通过CCD(charge-coupled device)电荷耦合元件相机成像处理而获得。同时进行了等截面桩的沉桩模型试验,并对等混凝土材料用量情况下楔形桩和等截面桩的沉桩效应进行对比分析。最后,将此试验结果与基于常规试验手段的静压楔形桩沉桩模型试验和圆孔扩张理论计算结果进行对比分析,验证了基于透明土材料的静压楔形桩沉桩模型试验的准确性和可靠性。研究结果表明,基于透明土材料和PIV技术可以有效地开展静压楔形桩沉桩模型试验研究;楔形桩静压施工过程中对桩周土的影响范围约为等混凝土用量等截面桩的1.2倍。  相似文献   

13.
The plugging of pipe piles is an important phenomenon, which is not adequately accounted for in the current design recommendations. An open-ended pipe pile is said to be plugged when the soil inside the pile moves down with the pile, resulting in the pile becoming effectively closed-ended. Plugging is believed to result in an increase in the horizontal stresses between the pile and the surrounding soil, which results in an increase in skin friction. A total number of 60 model pile tests are carried out to investigate the behavior of plugs on the pile load capacity and the effects of plug removal. Different parameters are considered, such as pile diameter–to–length ratio, types of installation in sands of different densities, and removal of the plug in three stages (50, 75, and 100 %) with respect to the length of plug. The changes in the soil plug length and incremental filling ratio (IFR) with the penetration depth during pile driving show that the open-ended piles are partially plugged from the outset of the pile driving. The pile reached a fully plugged state for pressed piles in loose and medium sand and partially plugged (IFR = 10 %) in dense sand. For driven piles, the IFR is about 30 % in loose sand, 20 % in medium sand, and 30 % in dense sand. The pile load capacity increases with increases in the length of the plug length ratio (PLR). The rate of increase in the value of the pile load capacity with PLR is greater in dense sand than in medium and loose sand. Based on test results, new empirical relation for the estimation of the load carrying capacity of open-ended piles based on the IFR is proposed.  相似文献   

14.
In this paper, the CPT-based predicted ultimate pile resistances (Rp) were compared with the measured pile resistances (Rm) at different elapsed time for the piles driven into saturated soft clays where piles displayed significant set-up effect. The measured pile resistances were based on 115 restrike records collected from 95 production piles, and 74 records of 9 tested piles. The predicted ultimate pile resistances were calculated from the LCPC, the Schmertmann, and the de Ruiter–Beringen methods, respectively. With the significant pile set-up effect taken into account, the relationship between measured resistances and predicted capacities at different times after pile installation were investigated. The ratios of the measured pile resistances to the predicted capacities scattered in a large spectrum. The ratios fluctuated and stayed within a range of 0.6–1.6 for different CPT methods since end of initial driving until more than 2 months after pile installation. Plots of the ratios versus the predicted pile capacities using different CPT methods have revealed that the ratio (Rm/Rp) presented a strong dependence on the predicted capacities. Great research efforts have been devoted to the analyses of the ratios of the 24-h measured resistance to the predicted capacity based on different CPT methods, in an attempt to find a feasible empirical correlation. It is found that a simple linear relationship exists between the quad root of the ratio and the predicted capacity. The developed empirical equations will give pile foundation engineers an insight into the ultimate resistances of driven piles demonstrating significant pile set-up effects. Pile set-up makes pile resistances grow with time, and it might be one of the reasons that cause the frequently reported large discrepancy between calculated static capacity and measured resistance at a certain time after pile installation.  相似文献   

15.
Pile group interaction effects on the lateral pile resistance are investigated for the case of a laterally loaded row of piles in clay. Both uniform undrained shear strength and linearly increasing with depth shear strength profiles are considered. Three-dimensional finite element analyses are presented, which are used to identify the predominant failure modes and to calculate the reduction in lateral resistance due to group effects. A limited number of two-dimensional analyses are also presented in order to examine the behaviour of very closely spaced piles. It is shown that, contrary to current practice, group effects vary with depth; they are insignificant close to the ground surface, increase to a maximum value at intermediate depths and finally reduce to a constant value at great depth. The effect of pile spacing and pile–soil adhesion are investigated and equations are developed for the calculation of a depth dependent reduction factor, which when multiplied by the limiting lateral pressure along a single pile, provides the corresponding variation of soil pressure along a pile in a pile row. This reduction factor is used to perform py analyses, which show that, due to this variation of group effects on the lateral soil pressures with depth, the overall group interaction effects depend on the pile length. Comparisons are also made with approaches used in practice that assume constant with depth reduction factors.  相似文献   

16.
张继红  朱合华 《岩土力学》2015,36(8):2339-2344
将抗拔桩侧阻力分解为与桩侧正压力不相关的桩-土黏结强度 、与桩侧有效正压力成正比的摩擦力 两部分,采用摩擦定律计算摩擦力 。基于轴对称条件,假定土体为半无限弹性体,以Mindlin公式积分计算分析极限平衡状态下桩-土共同作用,依据平面应变条件下柱状孔扩张的弹性力学解建立桩-土界面位移协调方程,推导出抗拔桩极限平衡方程,给出了求解方法及计算参数确定方法。该方程能反映桩与土的材料特性、桩体尺寸、桩顶埋深、群桩效应、卸荷效应等多因素对抗拔桩极限承载力的影响。结合海上风电大直径超长抗拔钢管桩足尺试验进行验证。对比分析结果表明,该方法计算的抗拔极限承载力与实测值接近,计算精度远高于现行规范推荐方法,其结果可为工程应用及抗拔桩承载力机制研究提供参考。  相似文献   

17.
以瓯江北口大桥南锚碇巨型沉井场地地基处理为科研背景,研究厚垫层-砂桩复合地基的适用性及其承载力的影响因素,针对不同的垫层材料、垫层厚度和砂桩间距共进行了9组静载试验。为得到砂桩施工对周围已完成砂桩的影响程度,还进行了砂桩施工相互影响试验。试验结果表明:厚垫层-砂桩加固软土地基效果非常好,是大型沉井地基处理较为理想的方式;垫层含水率、垫层材料和垫层厚度对其承载力的影响程度均大于砂桩间距;砂桩施工过程对周围已完成砂桩的影响和对周围土体的影响具有很大差别,利用传统沉桩挤土理论分析砂桩施工对周围已完成砂桩的影响将产生较大偏差;砂桩施工对周围已完成砂桩会产生较大影响,最大影响范围主要集中在地表以下1/3桩长范围内,影响程度与土层的种类和性质有密切关系,土性越好,影响程度越小;可利用增大砂桩间距和已有砂桩的阻隔效应减小影响程度。  相似文献   

18.
Zheng  Changjie  Kouretzis  George  Luan  Lubao  Ding  Xuanming 《Acta Geotechnica》2021,16(3):895-909

This paper presents an analytical solution for determining the time-harmonic response of single open-ended pipe piles subjected to vertically propagating seismic P-waves. Following the presentation of the formulation, we employ the solution to derive closed-form expressions of seismic pipe pile displacements, as well as robust expressions to determine the depth- and frequency-dependent parameters of complex Winkler springs, for use with beam-on-dynamic-Winkler-foundation models. Finally, the importance of considering the contribution of the inner soil in the seismic analysis of pipe piles is quantified via a parametric sensitivity analysis.

  相似文献   

19.
闫澍旺  李嘉  贾沼霖  孙立强 《岩土力学》2015,36(Z2):559-564
桩基础是海洋石油平台常用的基础形式,受海上环境的限制通常分段制造、运输和锤击贯入,各桩段通过焊接连为整体,若接桩等造成停锤时间较长,后继打桩可能产生拒锤现象。打桩过程中桩周土体会积累很大的超静孔隙水压力,使桩周一定范围内土体发生水力劈裂现象,导致桩周土体排水固结及强度恢复速度加快,停锤时间越长,土体强度恢复程度越大,造成后继打桩困难甚至拒锤。提出了一种通过疲劳因子? 考虑停锤期间土体强度的恢复,利用GRLWEAP软件计算后继打桩贯入所需锤击数并判断拒锤风险的分析方法。将工程实例和实测结果进行了对比,文中方法计算得到后继打桩贯入锤击数和实测值接近,表明其可行且应用性较强,可为工程设计和施工提供指导。  相似文献   

20.
In this paper research was presented on the development of a growth-rate-dependent model for pile set-up prediction using the restrike and static/statnamic load testing data collected from different projects. The data included: a) restrike records from ninety-five production piles and restrike and load test results of nine instrumented piles driven in soft clays from the relocation project of Highway No. 1 in Louisiana (LA-1); and b) restrike and static load testing data of five fully instrumented square PPC piles driven at four different bridge sites in various soil layers from sands to clays in Florida. Research effort was focused on the prediction of the ultimate shaft resistances with pile set-up formulated using the pile resistance growth rate-dependent model. The timeframe of interest was studied for a practical set-up magnitude such as 90% of the ultimate shaft resistance (Q90). As an application of the rate-dependent model, it was found that piles at the LA-1 relocation project, in general, reached about 95% of the ultimate shaft resistances at the time of 2 weeks after pile installation. The strategy of incorporation of pile set-up in adjusting pile driving criteria or/and design during pile construction, such as the experience-based plan of a two-week waiting period adopted by Louisiana DOTD, was investigated and justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号