首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
软黏土中PHC管桩打入过程中土塞效应研究   总被引:1,自引:1,他引:0  
谢永健  王怀忠  朱合华 《岩土力学》2009,30(6):1671-1675
当开口管桩打入土层中,土体进入桩内形成土塞,土塞效应对桩的打入特性和承载能力具有重要影响。基于上海典型软土地基中长PHC桩的现场试验,统计分析3个不同场地共44根桩打桩过程中的土塞数据,探讨软土地基中PHC桩打桩过程中土塞长度与内径之比、土塞增量与桩打入深度增量之比(IFR)随打入桩长与内径之比变化的规律,并线性拟合出土塞增量与桩打入深度增量之比与土塞高度和桩打入深度之比(PLR)的经验公式。研究表明,大部分PHC桩在打桩过程中,土塞部分闭塞,桩从浅部较硬土层打入较软土层,IFR值减小,土塞闭塞作用大;桩从较软土层打入深部较硬土层,IFR值逐渐增大,土塞闭塞作用小,且土塞长度增量与桩打入深度增量之比与土塞长度与桩打入深度之比基本呈线性关系。  相似文献   

2.
砂土中开口管桩沉桩过程的颗粒流模拟研究   总被引:1,自引:0,他引:1  
基于颗粒流理论,采用PFC2D程序,模拟再现不同型号开口管桩在沉桩过程中土塞的形成演化规律、土颗粒细观结构变化以及桩周土应力场分布情况,并通过分析土体细观变化模式揭示沉桩过程中宏观力学响应的内在机制。计算结果表明,管桩直径对土塞效应影响很大,外径为30 mm的开口管桩,沉桩过程中土塞增量填充率(IFR)值较小,土塞效应明显,土塞高度小,类似闭口桩;随着管桩直径的增大,土塞效应迅速减小,大直径管桩在砂土中沉桩全部闭塞的可能性很小。细观因素(孔隙率和滑动比例)与土体宏观位移表现之间存在着明显的相互对应关系,并依此将桩周土划分3个区域。桩周土体水平应力、竖向应力和剪应力都在桩底附近形成“应力核”,不同型号管桩桩周土应力场分布相近。  相似文献   

3.

The present study investigates the increasing in ultimate pile capacity and studied the soil plugging phenomenon and the incremental filing ratio for a modified type of open-ended pipe pile. The modification performed by adding steel plates as wings with special dimensions and fixed on the exterior face of the pipe pile wall at a location near the pile tip with specified dimensions. Five wings have used for each new model of pipe pile. These wings distributed in equal spacing along with the circumstances of the exterior wall of the open-ended pipe piles. The efficiency of the proposed type studied by modelling and manufacturing twelve piles (40 mm diameter, L/D = 15 and L/D = 20). Complete setup manufactured for installing and loading the piles in a constant rate of penetration. The model piles installed in poorly graded loose dry sand. The obtained results show that the proposed type has a higher ultimate bearing capacity. The percentage of increase reaches more than 50%. The development of the load capacity is due to the three effects. The first is increases of the exterior shaft friction, and the second effect creates a new end-bearing capacity under the constrained soil between the exterior wings. And the third effect is developing the end-bearing capacity under the soil plug inside open-ended pipe pile due to the first and the second effects.

  相似文献   

4.
Although the loads applied on piles are usually a combination of both vertical and lateral loads, very limited experimental research has been done on the response of pile groups subjected to combined loads. Due to pile–soil–pile interaction in pile groups, the response of a pile group may differ substantially from that of a single pile. This difference depends on soil state and pile spacing. This paper presents results of experiments designed to investigate pile interaction effects on the response of pile groups subjected to both axial and lateral loads. The experiments were load tests performed on model pile groups (2 × 2 pile groups) in calibration chamber sand samples. The model piles were driven into the sand samples prepared with different relative densities using a sand pluviator. The combined load tests were performed on the model pile groups subjected to different axial load levels, i.e., 0 (pure lateral loading), 25, 50, and 75% of the ultimate axial load capacity of the pile groups, defined as the load corresponding to a settlement of 10% of the model pile diameter. The combined load test results showed that the bending moment and lateral deflection at the head of the piles increased substantially for tests performed in the presence of axial loads, suggesting that the presence of axial loads on groups of piles driven in sand is detrimental to their lateral capacity.  相似文献   

5.
我国长江中下游沿岸地基中分布有较厚的砂土层,砂土层是桩基的良好持力层。该地区砂性土埋藏浅,厚度大,往往夹杂粉土或粉质黏土,一般随深度增大,砂土变密实。已有研究成果中,针对桩身穿过多层砂土条件下桩基承载力的研究较少。砂土地基中打入桩试验结果表明,砂性土的状态对打入式预制桩的施工产生很大的影响,在松散或稍密的砂性土中沉桩一般比较容易,而在中密或密实的砂性土中则较为困难。本文通过某电厂工程灌注桩现场静载试验,研究了砂土地基中桩身沉降随荷载变化规律,分析了桩身轴力随地层深度变化特征及不同土层的桩侧摩阻力。设计钻孔灌注桩桩径为800mm,桩长为47.2m,桩身混凝土强度等级为C35,桩身穿过9层土层,由现场3根桩静载试桩结果可知,荷载与沉降关系呈非线性,Q-s曲线分为弹性阶段、弹塑性阶段和整体破坏3个阶段, 15m深度以下的粉细砂层侧摩阻力对桩身轴力影响较大, 15m以上粉质黏土和淤泥质土对桩轴力影响较小。根据Q-s曲线确定单桩极限载荷约为4800~5400kN,平均值为5201kN,可满足设计要求,地基中下部砂土层承载力较大,砂土侧摩阻力大于黏性土的侧摩阻力,最大可达到70kPa。所得结论可为该类地基进一步的理论研究及工程设计提供有益的参考。  相似文献   

6.
In the present study, the end bearing capacity of screw and straight pipe pile under similar pile tip area and ground conditions were investigated. The effect of increasing overburden pressure was also considered in this research. Pile load tests on close-ended screw and straight pipe piles were conducted in the small scale. Dry Toyoura sand was used to develop the model ground. The sand was compacted at relative density of 70, 80 and 92 %. It was observed that in case of straight pipe pile, load settlement curve plunges downward without increase in load around settlement equals to 10 % of pile tip diameter, whereas in case of screw pile, the load settlement curve plunges around settlement equals to 15 % of pile tip diameter. Moreover, the screw piles having helix-to-shaft diameter ratio 2–4.1 showed 2–12 times higher end bearing capacity than straight pipe piles with similar pile shaft diameter. It was also observed from the test results that the end bearing capacity of single-helix screw pile was in average 16.25 % less than straight pipe pile with similar pile tip area and ground conditions irrespective of the effect of increasing overburden pressure.  相似文献   

7.
The plugging mechanism of infinitely-long open-ended piles is examined using numerical simulation of the wave propagation inside the soil plug and pile. It is shown that the key parameters for the plugging mechanism are the pile radius, the shape of the impact load, the shear wave velocity of the soil inside the pile, and the friction at the pile–soil interface. Consequently, the tendency of the pile to plug during driving can be assessed prior to the driving process by consideration of these key parameters. Existing one-dimensional models for the shaft response of open-ended piles are discussed and an improved model is presented. The differences between using one-dimensional models and finite element models to simulate the plugging process are examined. The differences are found to vary with the key parameters. Pile-in-pile and lumped-mass one-dimensional models are found to give satisfactory performance for some parameter combinations, while for others an axisymmetric finite element model must be used. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
A piled raft foundation is a combined foundation, which is developed to utilize the load-carrying capabilities of both raft and piles. To obtain an optimum piled raft design, it is important to properly evaluate and consider the load-sharing behavior between the raft and piles, which changes according to the settlement level of the piled raft. In this study, 27 three-dimensional finite element models were analyzed to investigate the piled raft coefficient with linear and nonlinear load-settlement behaviors. The length of piles was varied between 10, 15, and 20 m. The spacing between pile centers was varied between 3D, 5D, and 7D, and the pile diameter was kept constant. The number of piles and the distance between the exterior piles and the edge of the raft were maintained at 9 and 1 m, respectively. The sand conditions varied between dense, medium, and loose. The results indicated that the piled raft coefficient increases when the load-settlement curve is linear and decreases when the load-settlement curve is nonlinear. The influence of the incremental increase in pile length on the piled raft coefficient is more pronounced in short piles than in longer piles. The raft thickness has a negligible effect on the piled raft coefficient.  相似文献   

9.
This paper presents the results from a pile load testing program for a bridge construction project in Louisiana. The testing includes two 54-in. open-ended spun cast concrete cylinder piles, one 30-in. open-ended steel pile and two (30- and 16-in.) square prestressed concrete (PSC) piles driven at two locations with very similar soil conditions. Both cone penetration tests (CPTs) and soil borings/laboratory testing were used to characterize the subsurface soil conditions. All the test piles were instrumented with vibrating wire strain gauges to measure the load distribution along the length of the test piles and measure the skin friction and end-bearing capacity, separately. Dynamic load tests were performed on all test piles at different times after pile installations to quantify the amount of setup with time. Static load tests were also performed on the PSC and open-ended steel piles. Due to expected large pile capacities, the statnamic test method was used on the two open-ended cylinder piles. The pile capacities of these piles were evaluated using various CPT methods (such as Schmertmann, De Ruiter and Beringen, LCPC, Lehane et al. methods). The result showed that all the methods can estimate the skin friction with good accuracy, but not the end-bearing capacity. The normalized cumulative blow counts during pile installation showed that the blow count was always higher for the PSC piles compared to the large-diameter open-ended cylinder pile, regardless of pile size and hammer size. Setup was observed for all the piles, which was mainly attributed to increase in skin frictions. The setup parameters “A” were back-calculated for all the test piles and the values were between 0.31 and 0.41.  相似文献   

10.
The behavior of pile groups in sand under different loading rates is investigated. A total of 60 tests were conducted in the laboratory using model steel piles embedded in a medium dense sand. The model piles have an outside diameter of 25 mm and embedment length of 500 mm. Five different configurations of pile groups (2 × 1, 3 × 1, 2 × 2, 2 × 3, 3 × 3) with center to center spacing between the piles of 3d, 6d and 9d (d is the pile diameter) were tested. The piles were subjected to axial compressive loads under four different loading rates: 1.0, 0.5, 0.1 and 0.05 mm/min. Test results indicated that the axial compressive capacity of pile group increases with the loading rate such that the pile capacity versus logarithm of loading rate data plot approximately along a straight line. The slope of this line increases as the number of piles in a group increases and it decreases by increasing the spacing between piles in a group.  相似文献   

11.
This investigation aimed to examine the load carrying capacity of model piles embedded in sandy soil and to develop a predictive model to simulate pile settlement using a new artificial neural network (ANN) approach. A series of experimental pile load tests were carried out on model concrete piles, comprised of three piles with slenderness ratios of 12, 17 and 25. This was to provide an initial dataset to establish the ANN model, in attempt at making current, in situ pile-load test methods unnecessary. Evolutionary Levenberg–Marquardt (LM) MATLAB algorithms, enhanced by T-tests and F-tests, were developed and applied in this process. The model piles were embedded in a calibration chamber in three densities of sand; loose, medium and dense. According to the statistical analysis and the relative importance study, pile lengths, applied load, pile flexural rigidity, pile aspects ratio, and sand-pile friction angle were found to play a key role in pile settlement at different contribution levels, following the order: P?>?δ?>?lc/d?>?lc?>?EA. The results revealed that the optimum model of the LM training algorithm can be used to characterize pile settlement with good degree of accuracy. There was also close agreement between the experimental and predicted data with a root mean square error, (RMSE) and correlation coefficient (R) of 0.0025192 and 0.988, respectively.  相似文献   

12.
Load displacement response and ultimate resistance of piles in sand under uplift load are predicted by load transfer approach. The pile is divided into number of segments and assigned geometrical and material properties according to actual soil pile situation. The shaft resistance is obtained analytically in accordance with existing studies. The proposed method takes into account the length, diameter and relevant surface characteristics of pile and soil properties. The load displacement characteristics and the value of uplift capacity of vertical piles from field test have been predicted. Reasonable agreement has been found out between predicted and observed values of uplift capacity. Load transfer mechanism is capable of predicting the nonlinear variation of load-displacement response of piles.  相似文献   

13.
Han  Fei  Ganju  Eshan  Salgado  Rodrigo  Prezzi  Monica 《Acta Geotechnica》2019,14(6):1785-1803

Slow-maintained static load tests were performed on closed-ended and open-ended steel pipe piles driven side by side in a gravelly sand soil profile. The site investigation consisted of multiple cone penetration tests (CPTs) and standard penetration tests (SPTs), as well as laboratory tests on soil samples collected at various depths from the test site to determine basic soil properties. The test piles were densely instrumented with a combination of electrical-resistance and vibrating-wire strain gauges. The open-ended test pile was a specially fabricated double-wall, fully-instrumented pile, allowing for separation of the measurements of the inner and outer shaft resistances. Detailed comparison of the load test results, in terms of driving resistance, load response and profiles of unit shaft and base resistances for the two test piles, is presented and discussed. The applicability of three CPT-based pile design methods is assessed through a layer-by-layer comparison of the estimated resistances with those measured in the static load tests.

  相似文献   

14.
This study is conducted with a numerical method to investigate the seismic behaviour among certain soils, single piles, and a structure. A series of numerical simulations of the seismic behaviour of a single‐pile foundation constructed in a two‐layer ground is carried out. Various sandy soils, namely, dense sand, medium dense sand, reclaimed soil, and loose sand, are employed for the upper layer, while one type of clayey soil is used for the lower layer. The results reveal that when a structure is built in a non‐liquefiable ground, an amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated at the pile heads. When a structure is built in a liquefiable ground, a de‐amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated firstly at the pile heads and then in the lower segment at the boundary between the soil layers when liquefaction takes place. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
This study aims to provide knowledge on the thermo-mechanical behaviour of heat exchanger piles, through a laboratory scale model. The model pile (20 mm in external diameter) was embedded in dry sand. The behaviour of the axially loaded pile under thermal cycles was investigated. After applying the axial load on the pile head, the pile temperature was varied between 5 and 30 °C. Seven tests, corresponding to various axial loads ranging from 0 to 70 % of the pile estimated bearing capacity, were performed. The results on pile head displacement show that heating under low axial load induced heave and cooling induced settlement; the pile temperature-displacement curve was found to be reversible and compatible with the thermal expansion curve of the pile. However, at higher axial loads, irreversible settlement of the pile head was observed after a few thermal cycles. The axial load profile measured by the strain gauges evidenced that the pile head load was mainly transferred to the pile toe. Nevertheless, thermal cycles modified significantly the mobilised skin friction along the pile. The total pressure measured at various locations in the soil mass was also slightly influenced by the thermal cycles.  相似文献   

17.
Static load test program was performed on a single pile and two 16-pile groups with equal and different pile lengths. The soil profile consists of sand fill to 0.5 m depth placed on a thick deposit of soft, normally consolidated and compressible clay. The closed end steel pipe piles in 60 mm diameter were installed from 1.5 m through 2.1 m depth within soft clay deposit. The center-to-center distance of piles in group is about 3 times of pile diameter. The strain gages were installed at one level above and two through four levels below ground surface. Tests were carried out about 7 days after driving by method of a series of load increments placed every 5-min until plunging failure occurred. The load at plunging failure for the single pile, the equal-length pile group and the different-length pile group were about 3, 40 and 48 kN, respectively. The movements at start of failure were about 12, 18, and 17 mm, respectively. The analysis of strain gage measurements indicates that the load distribution on piles in the different-length pile group has become significantly uniform.  相似文献   

18.
The screw anchor piles are installed in ground by screwing which is done with the help of torque motors. In this paper, the lateral load capacity of screw anchor piles is examined through an experimental investigation carried on model piles embedded in dry sand. The tests were carried on screw anchor piles with different number of helices provided in continuation. Lateral loads were applied at different height above the soil surface. The embedment length of screw anchor piles was also varied to study the behaviour of screw anchor piles under lateral loads. Some tests were conducted on plain shaft pile to compare the lateral load capacity of screw anchor piles with that of plain shaft piles. An empirical equation for computation of lateral loads has been developed considering lateral resistance, bearing resistance, uplift resistance and lateral resistance offered by soil in pile on the basis of experimental results. A theoretical model for predicting lateral load capacity of screw anchor piles in dry sand, consistent with the experimental findings has been developed in this study.  相似文献   

19.
Using pile segment analysis, the mobilized shaft resistance of axially loaded nondisplacement piles in sand is investigated here. It is accepted that the shaft capacity of piles constructed in granular soils is highly influenced by the mechanical behavior of soil–structure interfaces forming adjacent the piles skin. Adopting the thin interface layer as a load transfer mechanism, a simple but accurate critical state compatible interface constitutive model is introduced. After evaluation, the interface model in conjunction with the pile segment analysis is applied for the prediction of the shaft resistance mobilized in nondisplacement piles. The proposed approach takes into account the influences of pile diameter and surface roughness together with the effects of the surrounding soil density and stiffness on the mobilized shaft resistance. The performance of the proposed method is verified by comparing its predictions with the experimental data of various model piles covering wide ranges of length, diameter, roughness, and surrounding soil properties. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A small-scale pile has been developed in the laboratory to investigate the thermo-mechanical behavior of energy piles subjected to a significant number of thermal cycles. The pile (20 mm external diameter), installed in dry sand, was initially loaded at its head to 0, 20, 40 and 60% of its ultimate bearing capacity (500 N). At the end of each loading step, 30 heating/cooling cycles were applied. The long-term behavior of the pile was observed in terms of head settlement, axial force profile, soil and pile temperature, and stress in soil. The results evidence the irreversible settlement of the pile head induced by thermal cycles under constant load head. In addition, the incremental irreversible settlement that accumulates after each thermal cycle decreases when the number of cycles increases. The evolution of irreversible pile head settlement versus number of cycles can be reasonably predicted by an asymptotic equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号