首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A numerical method has been proposed by Ross [Ross PJ. Modeling soil water and solute transport-fast, simplified numerical solutions. Agron J 2003; 95(6): 1352–1361.] to solve one-dimensional soil water movement problems. The Ross method is a noniterative numerical scheme, that can reduce computational time without sacrificing computational accuracy. The main aim of this study is to present a general form of the Ross method for two- and three-dimensional variably saturated flow. The established numerical model (R3D) is widely tested using five problems, in which the numerical solutions of R3D are compared with analytical solutions, laboratory data, and solutions from a traditional iterative numerical model. The comparison shows that R3D accommodates various hydraulic functions and boundary conditions. Results from R3D, which does not require iteration, are as accurate as results from iterative model. With the help of the primary variable switching technique, this model is unconditionally mass conservative, and computes infiltration into dry soil more efficiently. R3D is thus considered as an efficient tool for its high accuracy and efficiency for solving two- and three-dimensional variably saturated flow problems.  相似文献   

2.
Although based on exact analytical solutions, semi‐analytical solute transport models can have significant numerical error in applications with high frequency oscillatory source terms and when parameter value combinations cause series solution approximations to converge slowly. Methods for correcting these numerical errors are presented and implemented in the AT123D code, which employs Green's functions to represent point, linear, and rectangular prismatic source zones. In order to increase its computational accuracy, a Romberg numerical integration scheme was added to AT123D with prespecified error criteria, variable time stepping, and partitioning of the integral to handle rapidly changing source terms. More rapidly converging series solution approximations for the Green's functions were also incorporated to improve both accuracy and computational efficiency for finite‐depth aquifers. AT123D also has been modified to eliminate redundant calculations at points where approximate steady‐state conditions have been reached to improve computational efficiency during numerical integration. These modifications help to decrease computer run times that can be excessive for three‐dimensional problems with large numbers of computational points, small time steps, and/or long simulation time periods. Errors in the original AT123D code also were corrected in this modified version, AT123D‐AT, in order to accurately simulate finite‐duration (pulse) source releases.  相似文献   

3.
Backward location and travel time probabilities, which provide information about the former location of contamination in an aquifer, can be used to identify unknown contamination sources. Backward location probability describes the possible upgradient positions of contamination at a known time in the past, and backward travel time probability describes the time required for contamination to travel from a known upgradient location to an observation point. These probabilities are related to adjoint states of resident concentration, and their governing equation is the adjoint of a forward contaminant transport model. Using adjoint theory to obtain the appropriate governing equation, we extend the backward probability model for conservative solutes to more general non-uniform and transient flow fields. In particular, we address three important extensions, spatially-varying porosity, transient flow and temporally-varying porosity, and internal distributed sources and sinks of solute and water. For the first time we learn that forward and backward location and travel time probabilities are not necessarily equivalent to adjoint states, but are related to them. The extensions are illustrated using a vertically-integrated groundwater model, creating transient flow by a step change in pumping and using areal recharge as an internal distributed source. Both the movement and spread of probabilities are affected. With internal sources of water, there are two interpretations of backward probability, depending on whether or not the source of water is also a source of solute. The results demonstrate how the backward probability model can be applied to other, perhaps more important, non-uniform and transient flow conditions, with time- and space-varying water storage, such as time-varying pumping or unsaturated (or saturated–unsaturated) flow and transport with spatially- and temporally-varying moisture content.  相似文献   

4.
A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated‐Zone Flow (UZF1) package and MODFLOW. Referred to as UZF‐RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS‐1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one‐dimensional, two‐dimensional, and three‐dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF‐RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run‐time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic‐wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF‐RT3D can be used for large‐scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary‐pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run‐time and the ability to include site‐specific chemical species and chemical reactions make UZF‐RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large‐scale subsurface systems.  相似文献   

5.
In present‐day land and marine controlled‐source electromagnetic (CSEM) surveys, electromagnetic fields are commonly generated using wires that are hundreds of metres long. Nevertheless, simulations of CSEM data often approximate these sources as point dipoles. Although this is justified for sufficiently large source‐receiver distances, many real surveys include frequencies and distances at which the dipole approximation is inaccurate. For 1D layered media, electromagnetic (EM) fields for point dipole sources can be computed using well‐known quasi‐analytical solutions and fields for sources of finite length can be synthesized by superposing point dipole fields. However, the calculation of numerous point dipole fields is computationally expensive, requiring a large number of numerical integral evaluations. We combine a more efficient representation of finite‐length sources in terms of components related to the wire and its end points with very general expressions for EM fields in 1D layered media. We thus obtain a formulation that requires fewer numerical integrations than the superposition of dipole fields, permits source and receiver placement at any depth within the layer stack and can also easily be integrated into 3D modelling algorithms. Complex source geometries, such as wires bent due to surface obstructions, can be simulated by segmenting the wire and computing the responses for each segment separately. We first describe our finite‐length wire expressions and then present 1D and 3D examples of EM fields due to finite‐length sources for typical land and marine survey geometries and discuss differences to point dipole fields.  相似文献   

6.
The two-dimensional implementation of the analytic element method (AEM) is commonly used to simulate steady-state saturated groundwater flow phenomena at regional and local scales. However, unlike alternative groundwater flow simulation methods, AEM results are not ordinarily used as the basis for simulation of reactive solute transport. The use of AEM-simulated flow fields is impeded by the discrepancy between a continuous representation of flow and a typically discrete representation of transport, and requires translation of the flow solution to a discrete analog. This paper presents a variety of methods for analytically calculating conservative discrete water fluxes and integrated components of the dispersion tensor across cell interfaces. An Eulerian finite difference method based on these AEM-derived parameters is implemented for use in simulation of 2D (vertically averaged) solute transport. This implementation is first benchmarked against existing methods that use standard finite difference flow solutions, then used to investigate the effects of an inaccurate discrete water balance. It is shown that improper translation of AEM fluxes leads to significant water balance errors and inaccurate simulation of contaminant transport.  相似文献   

7.
Existing analytical solutions to 2D and 3D contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. An approximate method is developed herein for coordinate mapping of 2D (vertically-averaged) transport solutions to non-uniform steady-state irrotational and divergence-free flow fields in single-layer aquifers. The method enables existing analytical transport solutions to be applied to aquifer systems with wells, non-uniform saturated thickness, surface water features, and (to a limited degree) heterogeneous hydraulic conductivity and recharge. This mass-conservative coordinate mapping approach is inexact in its approximation of the dispersion process but is still sufficiently accurate for many simple flow systems. The degree of model error is directly proportional to the variation of velocity magnitude within the domain. These mapped analytical solutions are compared to numerical simulation results and the coordinate mapping errors are investigated. The methods described herein may be used in the traditional capacity of analytical transport models, i.e., screening and preliminary site assessment, without sacrificing accuracy by assuming locally uniform flow conditions or applying an ad-hoc coordinate transformation. The solutions benefit from the traditional advantages of analytical methods, particularly the removal of artifacts due to spatial and temporal discretization: no time-stepping or numerical discretization is required.  相似文献   

8.
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated‐zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume‐averaged approach in which Lagrangian‐based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF‐MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably‐Saturated Two‐Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two‐ and three‐dimensional simulations also were investigated to ensure unsaturated‐saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large‐scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF‐MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three‐dimensional variably saturated flow and transport simulations revealed UZF‐MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide‐spread use of both MODFLOW and MT3DMS, the added capability of unsaturated‐zone transport in this familiar modeling framework stands to benefit a broad user‐ship.  相似文献   

9.
A groundwater flow model has been developed in order to study the chalk aquifer of Paris Basin, based on most of the geological and hydrological available data. The numerical processes are intended to modelling the groundwater flow in the Senonian (Late Cretaceous) formations and to visualize the tracer movement in groundwater resources in the experimental site of LaSalle Beauvais (northern part Paris Basin). Both objectives were achieved as follows: (i) the comprehension of the spatial distribution of the hydraulic conductivity in the chalk aquifer taking into account the characteristics of the hydrogeological system and (ii) the use of the analytical solution for describing one‐dimensional to two‐dimensional solute transport in a unidirectional steady‐state flow tracer with scale‐dependent dispersion. Advection and diffusion mechanisms are taken into account. Comparison between the breakthrough curves of the analytical and the numerical solutions provided an excellent agreement for various ranges of scale‐related transport parameters of interest. The developed power series solution facilitates fast prediction of the breakthrough curves at each observation point. Thus, the derived new solutions are widely applicable and are very useful for the validation of numerical transport. The numerical approach is carried out by MT3DMS, a Modular 3‐D Multi‐Species Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems, and based on total variation‐diminishing method using the ULTIMATE algorithm. The estimation of the infected surface could constitute an approach in water management and allows to prevent the risks of pollution and to manage the groundwater resource from a durable development perspective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A groundwater flow model is typically used to provide the flow field for conducting groundwater solute transport simulations. The advection term of the mass conserved formulation for groundwater transport assumes that the flow field is perfectly balanced and that all water flowing into a numerical grid cell is exactly balanced by outflows after accounting for sources/sinks or internal storage. However, in many complicated regional or site‐scale models, there may be localized flow balance errors that may be difficult to eliminate through tighter flow convergence tolerances due to simulation time constraints or numerical limits on convergence tolerances. Thus, if water is erroneously gained or lost within a grid cell during the flow computation, the solutes within it will also be numerically affected in the associated transport simulation. Transport solutions neglect this error in groundwater flow as the transport equations that are solved assume no error in flow. This flow imbalance error can however have consequences on the transport solution ranging from unnoticeable errors in the resulting concentrations to spurious oscillations that can grow in time and hinder further solution. An approach has been suggested here, to explicitly handle these flow imbalances during mass conserved advective transport computations and report them in the corresponding transport mass balance output, as corrections that are needed to handle errors originating in the flow solution. Example problems are provided to explain the concepts and demonstrate the impacts.  相似文献   

11.
Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10?10) than for solute transport (10?6). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only.  相似文献   

12.
A modified version of the MODFLOW/MT3DMS‐based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably‐saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D‐UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated‐zone flow (UZF1) package. A volume‐averaged approach similar to the method used in UZF‐MT3DMS was adopted. The PHREEQC‐based computation of chemical processes within PHT3D‐UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional‐scale applications, UZF1 simulates downward‐only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably‐saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.  相似文献   

13.
A generalized, efficient, and practical approach based on the travel‐time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel‐time distribution from the injection point to the observation point. For advection‐dominant reactive transport with well‐mixed reactive species and a constant travel‐time distribution, the reactive BTC is obtained by integrating the solutions to advective‐reactive transport over the entire travel‐time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero‐, first‐, nth‐order, and Michaelis‐Menten reactions. The proposed approach is validated by a reactive transport case in a two‐dimensional synthetic heterogeneous aquifer and a field‐scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)‐bioremediation is better approximated by zero‐order reaction kinetics than first‐order reaction kinetics.  相似文献   

14.
F. De Smedt   《Journal of Hydrology》2006,330(3-4):672-680
Analytical solutions are presented for solute transport in rivers including the effects of transient storage and first order decay. The solute transport model considers an advection–dispersion equation for transport in the main channel linked to a first order mass exchange between the main channel and the transient storage zones. In case of a conservative tracer, it is shown that different analytical solutions presented in the literature are mathematically identical. For non-conservative solutes, first order decay reactions are considered with different reaction rate coefficients in the main river channel and in the dead zones. New analytical solutions are presented for different boundary conditions, i.e. instantaneous injection in an infinite river reach, and variable concentration time series input in a semi-infinite river reach. The correctness and accuracy of the analytical solutions is verified by comparison with the OTIS numerical model. The results of analytical and numerical approaches compare favourably and small differences can be attributed to the influence of boundary conditions. It is concluded that the presented analytical solutions for solute transport in rivers with transient storage and solute decay are accurate and correct, and can be usefully applied for analyses of tracer experiments and transport characteristics in rivers with mass exchange in dead zones.  相似文献   

15.
Analytical solutions for contaminant transport in a non‐uniform flow filed are very difficult and relatively rare in subsurface hydrology. The difficulty is because of the fact that velocity vector in the non‐uniform flow field is space‐dependent rather than constant. In this study, an analytical model is presented for describing the three‐dimensional contaminant transport from an area source in a radial flow field which is a simplest case of the non‐uniform flow. The development of the analytical model is achieved by coupling the power series technique, the Laplace transform and the two finite Fourier cosine transform. The developed analytical model is examined by comparing with the Laplace transform finite difference (LTFD) solution. Excellent agreements between the developed analytical model and the numerical model certificate the accuracy of the developed model. The developed model can evaluate solution for Peclet number up to 100. Moreover, the mathematical behaviours of the developed solution are also studied. More specifically, a hypothetical convergent flow tracer test is considered as an illustrative example to demonstrate the three‐dimensional concentration distribution in a radial flow field. The developed model can serve as benchmark to check the more comprehensive three‐dimensional numerical solutions describing non‐uniform flow contaminant transport. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
V. P. Singh 《水文研究》2002,16(12):2441-2477
Kinematic wave solutions are derived for transport of a conservative non‐point‐source pollutant during a rainfall‐runoff event over an infiltrating plane for two cases: (i) finite‐period mixing and (ii) soil‐mixing zone. Rainfall is assumed to be steady, uniform and finite in duration, and it is assumed to have zero concentration of pollutants. Infiltration is assumed constant in time and space. Prior to the start of rainfall, the pollutant is distributed uniformly over the plane. In the first case, when rainfall occurs, the mixing of pollutant in the runoff water occurs in a finite period of time. In the second case, the chemical concentration is assumed to be a linearly decreasing function of rainfall intensity and overland flow. The solute concentration and discharge are found to depend on the flow characteristics as well as the solute concentration parameters. The characteristics of solute concentration and discharge graphs seem to be similar to those reported in the literature and observed in laboratory experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
This article outlines analytical solutions to quantify the length scale associated with “upstream dispersion,” the artificial movement of solutes in the opposite direction to groundwater flow, in solute transport models. Upstream dispersion is an unwanted artifact in common applications of the advection-dispersion equation (ADE) in problems involving groundwater flow in the direction of increasing solute concentrations. Simple formulae for estimating the one-dimensional distance of upstream dispersion are provided. These show that under idealized conditions (i.e., steady-state flow and transport, and a homogeneous aquifer), upstream dispersion may be a function of only longitudinal dispersivity. The scale of upstream dispersion in a selection of previously presented situations is approximated to highlight the utility of the presented formulae and the relevance of this ADE anomaly in common transport problems. Additionally, the analytical solution is applied in a hypothetical scenario to guide the modification of dispersion parameters to minimize upstream dispersion.  相似文献   

18.
Three-dimensional analytical solutions for solute transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, first-order decay of aqueous phase and sorbed solutes with different decay rates, and nonequilibrium solute sorption onto the solid matrix of the porous formation. The governing solute transport equations are solved analytically by employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous media with either semi-infinite or finite thickness are considered. Furthermore, continuous as well as periodic source loadings from either a point or an elliptic source geometry are examined. The effect of aquifer boundary conditions as well as the source geometry on solute transport in subsurface porous formations is investigated.  相似文献   

19.
Exact analytical solutions for two-dimensional advection-dispersion equation (ADE) in cylindrical coordinates subject to the third-type inlet boundary condition are presented in this study. The finite Hankel transform technique in combination with the Laplace transform method is adopted to solve the two-dimensional ADE in cylindrical coordinates. Solutions are derived for both continuous input and instantaneous slug input. The developed analytical solutions are compared with the solutions for first-type inlet boundary condition to illustrate the influence of the inlet condition on the two-dimensional solute transport in a porous medium system with a radial geometry. Results show significant discrepancies between the breakthrough curves obtained from analytical solutions for the first-type and third-type inlet boundary conditions for large longitudinal dispersion coefficients. The developed solutions conserve the solute mass and are efficient tools for simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment or an in situ infiltration test with a tracer.  相似文献   

20.
The transient storage model (TSM) has been widely used in studies of stream solute transport and fate, with an increasing emphasis on reactive solute transport. In this study we perform sensitivity analyses of a conservative TSM and two different reactive solute transport models (RSTM), one that includes first-order decay in the stream and the storage zone, and a second that considers sorption of a reactive solute on streambed sediments. Two previously analyzed data sets are examined with a focus on the reliability of these RSTMs in characterizing stream and storage zone solute reactions. Sensitivities of simulations to parameters within and among reaches, parameter coefficients of variation, and correlation coefficients are computed and analyzed. Our results indicate that (1) simulated values have the greatest sensitivity to parameters within the same reach, (2) simulated values are also sensitive to parameters in reaches immediately upstream and downstream (inter-reach sensitivity), (3) simulated values have decreasing sensitivity to parameters in reaches farther downstream, and (4) in-stream reactive solute data provide adequate data to resolve effective storage zone reaction parameters, given the model formulations. Simulations of reactive solutes are shown to be equally sensitive to transport parameters and effective reaction parameters of the model, evidence of the control of physical transport on reactive solute dynamics. Similar to conservative transport analysis, reactive solute simulations appear to be most sensitive to data collected during the rising and falling limb of the concentration breakthrough curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号