首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U/Pb SHRIMP ages of nine Variscan leucocratic orthogneisses from the central Tauern Window (Austria) reveal three distinct pulses of magmatism in Early Carboniferous (Visean), Late Carboniferous (Stephanian) and Early Permian, each involving granitoid intrusions and a contemporaneous opening of volcano-sedimentary basins. A similar relationship has been reported for the Carboniferous parts of the basement of the Alps further to the west, e.g. the “External massifs” in Switzerland. After the intrusion of subduction-related, volcanic-arc granitoids (374?±?10?Ma; Zwölferkogel gneiss), collisional intrusive-granitic, anatectic and extrusive-rhyolitic/dacitic rocks were produced over a short interval at ca. 340?Ma (Augengneiss of Felbertauern: 340?±?4?Ma, Hochweißenfeld gneiss: 342?± 5?Ma, Falkenbachlappen gneiss: 343?±?6?Ma). This Early Carboniferous magmatism, which produced relatively small volumes of melt, can be attributed to the amalgamation of the Gondwana-derived “Tauern Window” terrane with Laurussia–Avalonia. Probably due to the oblique nature of the collision, transtensional phenomena (i.e. volcano-sedimentary troughs and high-level intrusives) and transpressional regimes (i.e. regional metamorphism and stacked nappes with anatexis next to thrust planes) evolved contemporaneously. The magmas are mainly of the high-K I-type and may have been generated during a short phase of decompressional melting of lithospheric mantle and lower crustal sources. In the Late Carboniferous, a second pulse of magmatism occurred, producing batholiths of calc-alkaline I-type granitoids (e.g. Venediger tonalite: 296?±?4?Ma) and minor coeval bodies of felsic and intermediate volcanics (Heuschartenkopf gneiss: 299?±?4?Ma, Peitingalm gneiss: 300?±?5?Ma). Prior to this magmatism, several kilometres of upper crust must have been eroded, because volcano-sedimentary sequences hosting the Heu- schartenkopf and Peitingalm gneisses rest unconformably on 340-Ma-old granitoids. The youngest (Permian) period of magma generation contains the intrusion of the S-type Granatspitz Central Gneiss at 271?±?4?Ma and the extrusion of the rhyolitic Schönbachwald gneiss protolith at 279?±?9?Ma. These magmatic rocks may have been associated with local extension along continental wrench zones through the Variscan orogenic crust or with a Permian rifting event. The Permian and the above-mentioned Late Carboniferous volcano-sedimentary sequences were probably deposited in intra-continental graben structures, which survived post-Variscan uplift and Alpine compressional tectonics.  相似文献   

2.
Twenty granodioritic rocks and one amphibolitic enclave of the “basement” of the Suomussalmi-Kuhmo Archaean (2.65 Ga) greenstone belts (central-eastern Finland), have been chosen together with one greenstone sample for Rb-Sr and Sm-Nd geochronological and isotopic studies.The granitoïd rocks are subdivided into three groups: two generations of grey gneisses and a post-belt augen gneiss. The Rb-Sr ages of the first and second generation of grey gneisses are 2.86 ± 0.09 and 2.62 ± 0.07 Ga, respectively. These results are corroborated by Sm-Nd data. The post-belt augen gneiss gives an age of 2.51 ± 0.11 Ga. The results show that the two generations of grey gneisses, the greenstone belts and the post-greenstone augen gneiss, were developed over a period > 350 Ma. The two generations of grey gneisses show identical ISr values (0.7023 ± 8 and 0.7024 ± 6) which contrast with that of the augen gneiss (0.7049 ± 8). The low ISr and the near-chondritic ?TCHUR values indicate that the grey gneisses cannot derived from much older continental materials. Trace element studies suggest that these grey gneisses have had a multi-stage development. The augen gneiss with a moderately high ISr is likely to be derived from a granodiorite originated by partial melting of older sialic crust. The more probable parent rock seems to be the first generation grey gneisses. The ISr and average Rb/Sr values preclude the greenstone belt and the second generation of grey gneisses as the protolith.  相似文献   

3.
Mafic to felsic gneisses along the northern margin of the North China Craton (NMNCC), in western Liaoning province, China, were previously assumed to be part of Archean metamorphic basement but are here identified as younger (Permian–Early Triassic) intrusions. LA–ICP–MS zircon U–Pb isotopic dating reveals that the magmatic precursors of the mafic gneisses were emplaced from 295 ± 3 to 259 ± 2 Ma and that the magmatic precursors of the dioritic and monzogranitic gneisses were emplaced at 267 ± 1 and 251 ± 2 Ma, respectively, thus recording a continuum of Permian to Early Triassic magmatism. The mafic and dioritic rocks exhibit zircon εHf(t) values from ?20.7 to ?3.3, suggesting they were mainly derived from a metasomatized lithospheric mantle source, possibly involving some crustal contamination. The monzogranitic rocks display their zircon εHf(t) values of +0.9 to +4.7, indicating the acidic magma was derived from partial melting of juvenile crustal materials from the depleted mantle source. Crustal model ages (T DM C ) obtained from zircon Hf isotopes of these monzogranitic rocks range from 976 to 1,215 Ma, with an average of 1,074 ± 32 Ma, possibly implying an episode of Grenvillian crustal growth in western Liaoning province. These new lines of evidence show that the NMNCC witnessed abundant magmatic activity and interaction of the crust and mantle during the Permian and Early Triassic and that the mafic magmatism was earlier than the monzogranitic activity. These findings indicate that the monzogranitic activity was the result of underplating of mafic magma with an enriched mantle source. In the context of regional Late Paleozoic to Early Mesozoic magmatic activity, the Permian magmatism occurred in an Andean-style continental margin setting when the Paleo-Asian oceanic plate was subducted beneath the NMNCC, and in this context, the Late Permian to Early Triassic magmatism may have been linked to post-collisional extension and asthenospheric upwelling, suggesting that the western Liaoning province in the NMNCC may be an eastward extension of the Late Paleozoic to Early Mesozoic active continental margin.  相似文献   

4.
The Neoproterozoic-Eoplalaeozoic Brasiliano orogeny at the eastern margin of the Rio de la Plata craton in southernmost Brazil and Uruguay comprises a complex tectonic history over 300?million years. The southern Brazilian Shield consists of a number of tectono-stratigraphic units and terranes. The S?o Gabriel block in the west is characterized by c.760?C690?Ma supracrustal rocks and calc-alkaline orthogneisses including relics of older, c. 880?Ma old igneous rocks. Both igneous and metasedimentary rocks have positive ??Nd(t) values and Neoproterozoic TDM model ages; they formed in magmatic arc settings with only minor input of older crustal sources. A trondhjemite from the S?o Gabriel block intruding dioritc and tonalitic gneisses during the late stages of deformation (D3) yield an U?CPb zircon age (LA-ICP-MS) of 701?±?10?Ma giving the approximate minimum age of the S?o Gabriel accretionary event. The Encantadas block further east, containing the supracrustal Porongos belt and the Pelotas batholith, is in contrast characterized by reworking of Neoarchean to Palaeoproterozoic crust. The 789?±?7?Ma zircon age of a metarhyolite intercalated with the metasedimentary succession of the Porongos belt provides a time marker for the basin formation. Zircons of a sample from tonalitic gneisses, constituting the Palaeoproterozoic basement of the Porongos belt, form a cluster at 2,234?±?28?Ma, interpreted as the tonalite crystallization age. Zircon rims show ages of 2,100?C2,000?Ma interpreted as related to a Palaeoproterozoic metamorphic event. The Porongos basin formed on thinned continental crust in an extensional or transtensional regime between c. 800?C700?Ma. The absence of input from Neoproterozoic juvenile sources into the Porongos basin strongly indicates that the Encantadas and S?o Gabriel blocks were separated terranes that became juxtaposed next to each other during the Brasiliano accretional events. The tectonic evolution comprises two episodes of magmatic arc accretion to the eastern margin of the Rio de la Plata craton, (i) accretion of an intra-oceanic arc at c. 880?Ma (Passinho event) and (ii) accretion of the 760?C700?Ma Cambaí/Vila Nova magmatic arc (S?o Gabriel event). The latter event also includes the collision of the Encantadas block with the Rio de la Plata craton to the west. Collision and crustal thickening was followed by sinistral shear along SW?CNE-trending orogen-parallel crustal-scale shear zones that can be traced from southern Brazil to Uruguay and have been active between 660 and 590?Ma. Voluminous granitic magmatism in the Pelotas batholith spatially related to shear zones is interpreted as late- to post-orogenic magmatism, possibly assisted by lithospheric delamination. It marks the transition to the post-orogenic molasse stage. Localized deformation by reactivation of preexisting shear zones continued until c. 530?Ma and can be assigned to final stages of the amalgamation of West Gondwana.  相似文献   

5.
New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8?±?0.1 Ma and 13.4?±?0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2?±?0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65?±?0.03 Ma and 5.35?±?0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5–2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70?±?0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36?±?0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.  相似文献   

6.
The Peninsular Gneiss around Gorur in the Dharwar craton, reported to be one of the oldest gneisses, shows nealy E-W striking gneissosity parallel to the axial planes of a set of isoclinal folds (DhF1). These have been over printed by near-coaxial open folding (DhF12) and non-coaxial upright folding on almost N-S trend (DhF2). This structural sequence is remarkably similar to that in the Holenarasipur schist belt bordering the gneisses as well as in the surpracrustal enclaves within the gneisses, suggesting that the Peninsular Gneiss has evolved by migmatization synkinematically with DhF1 deformation. The Gorur gneisses are high silica, low alumina trondhjemites enriched in REE (up to 100 times chondrite), with less fractionated REE patterns (CeN/YbN < 7) and consistently negative Eu anomalies (Eu/Eu* = 0.5 to 0.7). A whole rock Rb-Sr isochron of eight trondhjemitic gneisses sampled from two adjacent quarries yields an age of 3204 ± 30 Ma with Sr i of 0.7011 ± 6 (2σ). These are marginally different from the results of Beckinsale and coworkers (3315 ± 54 Ma, Sr i = 0.7006 ± 3) based on a much wider sampling. Our results indicate that the precursors of Gorur gneisses had a short crustal residence history of less than a 100 Ma.  相似文献   

7.
The RbSr and UPb methods were used to study gneisses in the 712-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite.A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ± 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ± 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ± 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source.A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ± 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ± 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source.  相似文献   

8.
The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic–Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311?Ma magmatism (U–Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800–840°C and 400–650?MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320?Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (<13% for the equigranular granites), which is generally more pronounced in shallower batholitic leucogranites than in the small and homogeneous sill-like bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.  相似文献   

9.
本文采用LA-ICP-MS技术,对胶北地体TTG片麻岩和花岗质片麻岩中锆石进行系统原位U-Pb定年和稀土、微量元素的分析,发现研究区早前寒武变质结晶基底存在多期岩浆-变质热事件。4件TTG片麻岩和2件花岗质片麻岩锆石样品记录了2909±13Ma、2738±23Ma、2544±15~2564±12Ma和2095±12Ma 4组岩浆事件年龄,以及2504±16~2513±32Ma和1863±41Ma 2组变质事件年龄。结合以往TTG片麻岩和花岗质片麻岩的地球化学及Nd同位素研究发现,约2738Ma的TTG岩浆事件可能代表胶北地体地壳最主要的生长事件,而2544~2564Ma的岩浆事件则可能代表古老地壳重熔的最强烈岩浆事件,约2095Ma岩浆事件则反映了胶-辽-吉构造带内部在该时期与地壳拉张作用有关的岩浆活动。2504~2513Ma是研究区以及华北克拉通早前寒武基底最主要的一期变质热事件,可能与地幔柱(热点)岩浆的底侵作用有关,而TTG片麻岩记录的约1863Ma的变质年龄与研究区基性和泥质高压麻粒岩相岩石记录的麻粒岩相变质时代一致,暗示TTG片麻岩可能也经历了古元古代高压麻粒岩相变质作用,上述研究进一步表明胶北地体在古元古代的确存在一期陆-陆碰撞的重要造山事件。该项研究成果对于进一步深入探讨胶北乃至华北克拉通早前寒武纪变质基底的形成演化、岩浆-变质热事件序列及其构造背景具有重要的科学意义。  相似文献   

10.
鞍山地区太古代岩石同位素地质年代学研究   总被引:23,自引:4,他引:23       下载免费PDF全文
乔广生 《地质科学》1990,(2):158-165
鞍山本溪地区太古代变质岩可分为三套,即含铁的表壳岩建造、侵入于铁建造中的花岗质片麻岩和铁架山奥长花岗质-花岗质片麻岩,后者为表壳岩的基底。原划为上鞍山群樱桃园组(齐大山矿带)和山城子组(歪头山-北台矿带)的斜长角闪岩分别获得2729Ma和2724Ma的Sm-Nd等时线年龄。这就为有争议的鞍本地区铁建造属于同一时代提供了依据,并讨论了表壳岩中的变质沉积岩以及铁架山基底片麻岩的同位素年代。  相似文献   

11.
The Punta del Cobre belt is located 15?km south of Copiapó, northern Chile. It comprises several Cu(-Fe)-Au deposits in the Punta del Cobre and Ladrillos districts, east of the Copiapó river, and the Ojancos Nuevo district, with the new Candelaria mine, and Las Pintadas district, west of the river. The mineralization in the Punta del Cobre belt is characterized by a simple hypogene mineral assemblage of chalcopyrite, pyrite, magnetite, and hematite. Average ore grades are 1.1 to 2% Cu, 0.2 to 0.6?g/t Au, and 2 to 8?g/t Ag. Massive magnetite occurs as veins and irregularly shaped bodies. The ore is spatially associated with alkali metasomatism and in particular with potassic alteration. The Cu(-Fe)-Au deposits are hosted mainly in volcanic rocks of the Punta del Cobre Formation (pre-upper Valanginian) that underlie Neocomian limestones of the Chañarcillo Group. This region experienced backarc basin formation in the Neocomian, uplift and granitoid intrusions in the middle Cretaceous, and eastward migration of the magmatic front of about 30?km between middle Cretaceous and Paleocene. To determine the timing of ore deposition and to reconstruct parts of the thermal history of the Punta del Cobre district, in the eastern part of the belt, we have obtained 40Ar/39Ar incremental-heating and Rb-Sr analyses of mineral and whole-rock samples. An 40Ar/39Ar incremental-heating experiment on hydrothermal biotite, formed synchronous with the Cu(-Fe)-Au mineralization, yielded an inverse isochron age of 114.9?±?1.0 Ma (all errors reported at ±2σ), consistent with a Rb-Sr isochron of 116.8?±?2.7 Ma calculated from 7 whole-rock samples. These data are interpreted to represent the age of potassic alteration that accompanies mineralization. Ore formation temperatures of 400?°C to 500?°C were previously estimated based on paragenetic relationships. Shearing at the Candelaria deposit occurred after ore deposition and before the main stage of batholith emplacement. Published K-Ar ages for the middle Cretaceous batholith near the Punta del Cobre belt range from 119 to 97?Ma. Our data suggest that the mineralization is related to the earlier stages of batholith emplacement. The biotite age spectrum indicates that the Punta del Cobre district was not affected by temperatures above ~300?°C–350?°C, the closure temperature for argon in biotite, during the contact metamorphic overprint produced by later emplaced batholithic intrusions. Whole-rock 40Ar/39Ar ages are considerably younger; incremental-heating experiments yielded an inverse isochron age of 90.7?±?1.2?Ma and weighted mean plateau ages of 89.8?±?0.6?Ma and 89.5?±?0.6?Ma. These samples are dominantly K-feldspar, for which we assume an argon closure temperature of ~150?°C, thus they give the age of cooling below ~150?°C–200?°C.  相似文献   

12.
New isotope-geochronological data (K-Ar, Rb-Sr) provide tight geochronological constraints on the history of Late Cenozoic magmatism on the southern slope of the Greater Caucasus. Several previously unknown, rhyodacite intrusive bodies with an emplacement age of 6.9 ± 0.3 Ma (Late Miocene) are reported from the Kakheti-Lechkhumi regional fault zone in the Kvemo Svaneti-Racha area. Therefore, a pulse of acid intrusive magmatism took place in a period previously considered amagmatic in the Greater Caucasus. The petrological, geochemical, and isotopic data suggest that these rhyodacites are produced by crystallization differentiation of mantle-derived magmas, which are similar in composition to Miocene mafic lavas that erupted a few hundred thousand years later in the adjacent Central Georgian neovolcanic area. The presented results allow the conclusion that the volcanic activity within the Central Georgian neovolcanic area occurred at 7.2–6.0 Ma in two discrete pulses: (1) the emplacement of acid intrusions and (2) the eruption of trachybasaltic lavas. The emplacement of rhyodacite intrusions in the Kvemo Svaneti-Racha area marked the first pulse of young magmatism on the southern slope of the Main Caucasus range and simultaneously represented the second magmatic pulse (after granitoid magmatism of the Caucasian Mineral Waters region) within the entire Greater Caucasus.  相似文献   

13.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

14.
Numerous granitic intrusions crop out in the eastern segment of the North Qaidam block (NQ), NW China. To evaluate their ages, petrogenesis and genetic relationships to other granitoids in the NQ, we present geochemical and geochronologic data for six intrusive bodies and review regional data. Zircon U-Pb (SHRIMP) dating yielded ages of 413 ± 3 Ma for the Hadesengou granite; 254 ± 3 Ma for the Xugeigou granite; 251 ± 1 Ma for the Qiluoshan granite; 249 ± 1 and 248 ± 2 Ma for the Chahannuo hornblende diorite and granite, respectively; 240 ± 2 Ma for the Chahanhe granite; and 250 ± 1 and 244 ± 3 Ma for the Shailekegoulei granodiorite and granite, respectively. Consequently, the Wulan plutons can be divided into two petrologic groups: Early Devonian (D1) quartz monzonite and syenogranite, and Late Permian to Early Triassic (P3-T1) hornblende diorite, granodiorite, and granite. The D1 granitic intrusions have geochemical affinities with A-type granites (A2-type) characterized by low Ca, Sr, Ba and Nb, and high Fe, Ga, Y and Rb, consistent with derivation by partial melting of metapelitic source rocks containing a small amount of metagraywacke. The P3-T1 I-type granitic intrusions are geochemically typical of active continental margin rocks, consistent with derivation by partial melting of metabasalt and clay-poor metagraywacke. Combined with previous studies, we recognize five periods of granitic magmatism in the NQ: (1) 465–473 Ma; (2) 423–446 Ma; (3) 391–413 Ma; (4) 372–383 Ma; and (5) 240–271 Ma. Based on the temporal-spatial distribution of granitic intrusions in the NQ and the regional tectonic evolution, we interpret the first and second periods of granitic magmatism as related to normal plate subduction, and the third period to slab break-off and exhumation of the subducted plate. The fourth stage of granitic magmatism is attributed to large-scale lithospheric mantle delamination, involving the differential movement of orogenic blocks. The fifth period of granitic plutonism probably reflects northward subduction of the East Kunlun Paleotethys oceanic crust and southward subduction of Zongwulong oceanic crust beneath the Oulongbuluke continental block.  相似文献   

15.
A mass of granitoid and dioritic intrusions are distributed in the southern Yidun Arc, among which the representative Indosinian intrusions include the Dongco and Maxionggou granitoid intrusions in Daocheng County and hypabyssal intrusions intruding into arc volcanic rocks near the Xiangcheng town. The Dongco and Maxionggou granitoid intrusions consist mainly of porphyraceous monzogranites, megacryst monzogranites and aplite granites. The Xiangcheng hypabyssal intrusions are composed dominantly of dioritic porphyries. SHRIMP zircon ages of 224±3 Ma and 222±3 Ma have been obtained for the Dongco granitoid intrusion and the Xiangcheng dioritic porphyries, respectively. The Xiongcheng dioritic porphyries show a cak-alkaline geochemical feature, and are characterized by higher Sr/Y ratios, depletive Nb, Ta, P and Ti, enriched LILEs, and lower εNd (t) (= -3.27), suggesting that they might be derived from mantle source magmas that were obviously contaminated by continent crustal materials. However, the Dongco and Maxionggou granitoids belong to high-potassium calc alkaline series with a per-metaluminous feature, and are characterized by higher CaO/(∑FeO+MgO) and Al2O3/(∑FeO+ MgO) ratios, lower (La/Yb)n and Sr/Y ratios, depletive Nb, Ta, Sr, P and Ti, enriched LILEs, and very low εNd (t) (= -8.10), indicating that the granitoids might be derived from partial melting of continental crust materials mainly of graywacke. Petrogenesis of Dongco and Maxionggou granitoids implies that there was an oceanic crust between the Zongza continental block (ZCB) and western margin of the Yangtze Craton (WMYZC). And the oceanic crust slab subducted westward during the Indosinian Epoch, producing an Andes-type continent marginal arc and a back arc basin at the WMSCC. Then the oceanic basin closed and a sinistrally lateral collision occurred at ca. 224 Ma-222 Ma between the ZCB and the WMYZC, causing partial melting of sediments in the back-arc basin to generate granitoid magmas of the Dongco and Maxionggou intrusions.  相似文献   

16.
The Pb-Pb whole-rock geochronology of Archaean granitic and gneissic rocks from the Diemals area in the Central Yilgarn granite-greenstone terrain provides important constraints on crustal evolution. The regionally extensive banded gneisses, previously considered as candidates for basement to the greenstones give a Pb-Pb whole-rock age of 2700 ± 97 Ma (2σ errors). This is within error of previously published Rb-Sr and Sm-Nd gneiss ages and also within error of the Sm-Nd ages on the greenstones in the Eastern Goldfields Province. Two synkinematic plutons give Pb-Pb whole-rock ages (2737 ± 62 Ma and 2700 ± 100 Ma) and Pb isotopic compositions consistent with the hypothesis, based on field and geochemical relations, that these plutons were derived by partial melting of the precursors to the banded gneisses. Assuming this, the combined data date the melting event at 2723 ± 25 Ma with a model source μ value of 8.18 ± 0.02. This source μ value is close to the range postulated for mantle values and restricts the crustal history of the precursors to less than ~200 Ma. A post-kinematic pluton with a whole-rock Pb-Pb age of 2685 ± 26 Ma and μ value of 8.26 ± 0.02 puts a younger limit on this relatively short lived crustal accretion-differentiation event.Comparison of Pb-Pb and Rb-Sr whole-rock dates for the plutons suggests that the latter became closed systems up to 200 Ma after the Pb-Pb ages, and that the plutons gained or lost Rb or Sr at this time.  相似文献   

17.
高精度同位素年代学和岩石学、元素地球化学研究结果表明,吉林省中部地区存在晚三叠世和早侏罗世两期铝质A型花岗岩。其中三道河正长花岗岩的锆石LA ICPMS年龄为(216±3) Ma,形成于晚三叠世,受控于华北板块和其北侧板块在晚二叠世—早三叠世沿西拉木伦河—长春—延吉缝合带碰撞拼合后的岩石圈伸展作用,标志古亚洲洋构造域的演化结束。天桥岗碱长花岗岩的锆石SHRIMP和TIMS年龄分别为(182±3) Ma和(188±4) Ma,全岩Rb Sr等时线年龄为(185±4) Ma,形成于早侏罗世,可能是与佳木斯板块和松嫩—张广才岭板块在早侏罗世早期沿嘉荫—牡丹江缝合带碰撞拼合有关的伸展作用的产物。这次板块碰撞作用很有可能标志着东北地区东部此时已经开始进入滨太平洋构造域的演化阶段。更详细的研究显示,两期A型花岗岩岩浆都来源于年轻的基性玄武质下地壳的部分熔融,岩浆经历了分离结晶作用。  相似文献   

18.
The Río Negro-Juruena Province (RNJP) occupies a large portion of the western part of the Amazonian Craton and is a zone of complex granitization and migmatization. Regional metamorphism, in general, occurred in the upper amphibolite facies. The granites and gneisses of the RNJP yield Rb-Sr and Pb-Pb whole-rock isochron dates ranging from 1.8 Ga to 1.55 Ga, with initial 87Sr/86Sr ratios of ~ 0.703 and a single-stage model μ1 value of ~ 8.1. In order to improve the geochronological control, SHRIMP U-Pb zircon ages, conventional U-Pb zircon ages, and additional Pb-Pb whole-rock isochron ages were determined for samples of granitoids and gneisses from the Papuri-Uaupés and Guaviare-Orinoco rivers areas (northern part of the province) and Jamari-Machado rivers and Pontes de Lacerda areas (southern part). The granitoids from the northern part of the province yield conventional U-Pb zircon ages of 1709 ± 17 Ma and 1521 ± 31 Ma, and SHRIMP U-Pb concordant zircon results of 1800 ± 18 Ma. Samples of gneissic rocks from the southern part of the RNJP yielded SHRIMP U-Pb concordant ages of 1750 ± 24 Ma and 1570 ± 17 Ma and a Pb-Pb whole-rock isochron age of 1717 ± 120 Ma. These new U-Pb and Pb-Pb results confirm the previous Rb-Sr and Pb-Pb geochronological evidence that the main magmatic episodes within the RNJP occurred between 1.8 and 1.55 Ga, and suggest that this crustal province constitutes a segment of continental crust newly added to the Amazonian Craton at the end of the Early Proterozoic. In the area of the RNJP, there are several anorogenic rapakivi-type granite plutons. Because of the absence of recognized Archean material within the basement rocks, it is reasonable to consider the Early to Middle Proterozoic continental crust as the magmatic source for the rapakivi granite intrusions.  相似文献   

19.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

20.
On the eastern extremity of the Jiaodong peninsula, China, shoshonitic magmas have been injected into the supracrustal rocks of the Sulu ultra-high pressure (UHP) terrane during the crustal exhumation phase. These granitoids (collectively termed the Shidao igneous complex or Jiazishan alkaline complex) show geochemical and isotopic signatures of an enriched subcontinental lithospheric mantle and intruded soon after the subducted Yangtze crust had reached peak metamorphic pressure conditions (240–220 Ma). We have applied various geochronometers to an alkali-gabbro sample from the Jiazishan pluton and the results allow reconstruction of the Triassic-to-present thermal history. Initial rapid cooling of the gabbro at crustal depths is indicated by the close agreement between the Sm-Nd mineral isochron age (228?±?36 Ma) and the Rb-Sr biotite age (207?±?1) Ma. This interpretation is confirmed by previously published U-Pb zircon ages (225–209 Ma), and 40Ar/39Ar amphibole and K-feldspar ages (~214 Ma) from the Jiazishan syenites. A titanite fission-track age of 166?±?8 Ma (closure temperature range 285–240°C) records widespread Jurassic magmatism in the Jiaodong peninsula, indicating that the gabbro reached upper crustal levels before it was reheated by nearby Jurassic plutons. A subsequent cooling and reheating event is indicated by an apatite fission-track age of 106?±?6 Ma which coincides with the emplacement of the adjacent Weideshan pluton (108?±?2 Ma) and postdates a period of regional lithospheric thinning beneath eastern China. A period of slow cooling (or thermal stability) from late Cretaceous to early Tertiary, documented by an apatite (U-Th)/He age of 39?±?5 Ma, was followed by a final stage of more enhanced cooling since the late Eocene. Results of this work imply that the eastern Sulu terrane has experienced a complex cooling and reheating history. Our data are consistent with a model of initial rapid cooling (sudden exhumation) of the UHP terrane, driven by the release of buoyancy forces, followed by two progressively slower cooling intervals (both after renewed crustal reheating) during the Jurassic and Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号