首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
Macrobenthic faunal composition, abundance, biomass and diversity together with a suite of sedimentary environmental parameters were investigated on a seasonal basis in order to determine factors regulating faunal distribution over the oligotrophic continental margin of the island of Crete (South Aegean Sea, North Eastern Mediterranean). Macrofaunal species composition was similar to that of the western Mediterranean and the neighboring Atlantic having several common dominant species. Mean benthic biomass, abundance and diversity decreased with depth, with a major transition zone occurring at 540 m, beyond which values declined sharply. At comparable depths biomass and abundance values were considerably lower to those found in the Atlantic, high-lighting the extreme oligotrophy of the area. The continental margin of Crete was characterised by a high diversity upper continental shelf environment (dominated by surface deposit feeding polychaetes) and a very low diversity slope and deep-basin environment (dominated by carnivorous and filter feeding polychaetes). Classification and ordination analyses revealed the existence of four principle clusters divided by a faunal boundary between 200 and 540 m, as well as beyond 940 m depth. Significant correlations between macrofauna and sediment parameters led to the conclusion that besides depth, food availability (as manifested by the concentration of chloroplastic pigments) is the principle regulating factor in the system. Such being the case, the prevailing hydrographic features that structure the pelagic food web and are directly responsible for the propagation of organic matter to the benthos also affect its community structure.  相似文献   

2.
Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above ∼750 m marking the change from shelf species to bathyal species; (2) a zone from ∼750 to 1900 m that corresponds to the upper and mid-bathyal zones taken together; (3) a lower bathyal zone from ∼1900 to 2900 m; (4) a transition zone from ∼2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyal species with very broad distributions. The ∼4100 m boundary marked the lower limit of distribution of many bathyal species. There was a pattern of increasing diversity downslope from ∼500 to 1600 m, followed by a decrease to minimum values at about 2700 m. This drop in diversity was followed by an increase up to maximum values at ∼4100 m and then again, a fall to ∼4900 m (the lower depth limit in this study).  相似文献   

3.
The megabenthic ecology of the cold water (<0 °C) area of the Faroe–Shetland Channel was investigated using an off-bottom towed camera platform WASP (wide angle seabed photography). A series of 10 photographic transects, approximately evenly spaced along the channel axis, were studied. Photographic transects allowed quantitative benthic diversity data to be obtained from this understudied yet commercially important area for oil and gas exploration. The sedimentary characteristics of the seabed changed dramatically from a region of ice-rafted boulders and gravel in the southwest to fine sediments more typical of the deep sea to the northeast. Despite the relatively low species richness of the megabenthos, variation in faunal composition with depth was apparent. Two distinct “communities” were identified, one in the south of the channel and the other in the north. Epibenthic megafaunal communities in the south were dominated by suspension and filter feeders and in the north by deposit feeders. Diversity and standing stock of megabenthos decreased to the northeast of the channel. Lebensspuren number and areal cover increased northwards in the Channel. The increase in bioturbation and deposit feeder abundance was concurrent with an increase in fine sediment quantity.  相似文献   

4.
The depth-related distribution of seastar (Echinodermata: Asteroidea) species between 150 and 4950 m in the Porcupine Seabight and Porcupine Abyssal Plain is described. 47 species of asteroid were identified from ∼14,000 individuals collected. The bathymetric range of each species is recorded. What are considered quantitative data, from an acoustically monitored epibenthic sledge and supplementary data from otter trawls, are used to display the relative abundance of individuals within their bathymetric range. Asteroid species are found to have very narrow centres of distribution in which they are abundant, despite much wider total adult depth ranges. Centres of distribution may be skewed. This might result from competition for resources or be related to the occurrence of favourable habitats at particular depths. The bathymetric distributions of the juveniles of some species extend outside the adult depth ranges. There is a distinct pattern of zonation with two major regions of faunal change and six distinct zones. An upper slope zone ranges from 150 to ∼700 m depth, an upper bathyal zone between 700 and 1100 m, a mid-bathyal zone from 1100 to1700 m and a lower bathyal zone between 1700 and 2500 m. Below 2500 m the lower continental slope and continental rise have a characteristic asteroid fauna. The abyssal zone starts at about 2800 m. Regions of major faunal change are identified at the boundaries of both upper and mid-bathyal zones and at the transition of bathyal to abyssal fauna. Diversity is greatest at ∼1800 m, decreasing with depth to ∼2600 m before increasing again to high levels at ∼4700 m.  相似文献   

5.
楚科奇海与白令海表层沉积中的钙质和硅质微体化石研究   总被引:13,自引:4,他引:13  
通过对北冰洋楚科奇海和令海41个表层沉积样品中的有孔虫、介形类等钙质微体化石和硅藻、放射虫、海绵骨针等硅质微体化石的定量分析,发现表层沉积中浮游有孔虫几乎缺失,这可能与该区表层生产力相对低、碳酸盐溶解作用较强有关,而底栖有孔虫和硅质微体化石的丰度分布则明显受表层沉积物类型、表层初级生物生产力和碳酸盐溶解作用所控制。其中,北冰洋楚科奇海陆架区有孔虫丰度和分异度低,含少量浅水介形类,放射虫在陆架浅水区缺失,但含有较多硅藻和海绵骨针等其它硅质微体化石,反映该区由于海冰、表层海水温度较冷而导致表歧初级生产力相对低。白令海陆坡区底栖有孔虫丰度比较科奇海高一个数量级,底栖有孔虫分异度也相对高,硅藻、放射虫、海绵骨针等硅质微体化石的丰度与钙质化石一样,其丰度比楚科奇海明显高,反映表层初级生产力相对高。根据白令海陆坡区底栖有孔虫和硅质微体化石丰度、底栖有孔虫胶结质壳比值的水深变化,推测该区碳酸盐溶跃层和补偿深度(CCD)相对浅,分别位于水深2000m和3800m处。  相似文献   

6.
In the northern part of the Kattegat, western Sweden, a series of marine depressions remain since the last glaciation. One of these, the well-oxygenated Alkor Deep, is about 3 km long and 800 m wide and with a depth of 138 m. Random depth-stratified sampling was made along four transects on the slopes including benthic macrofauna (0·1 m2grab samples) and sediment profile imaging. A significant positive correlation was found between depth and the faunal variables abundance and biomass. Deposit feeders such as Maldane sarsi, Heteromastus filiformis andAbra alba were among the dominants and may have been supported by down-slope advected organic material. In many images, pockets and extensive burrows were seen in the sediment that appeared to be constructed by the crustaceans Calocaris macandreae and Maera loveni. The ecological significance of their irrigation of the sediment is discussed. Due to the faunal activity deep down in the sediments of the slopes, the mean apparent redox potential discontinuity (RPD) was found as deep as between 8·0 and 11·3 cm depth, and RPD was significantly positively correlated with water depth. On the slopes there appears to be a balance between the input of organic material and the capacity of the benthic organisms to assimilate that carbon.  相似文献   

7.
Hurricane Isabel reached the Eastern seaboard of North America on 18 September 2003 causing estimated damage >3 billion US dollars and the death of ∼50 people. Isabel is considered to be one of the most significant tropical cyclones to affect Virginia, since the Chesapeake Potomac Hurricane of 1933 and Hurricane Hazel in 1954. A study of the temporal changes in the benthic fauna pre- and post-hurricane was conducted on an intertidal sandflat within the dynamic barrier island system near Wachapreague, Eastern Virginia. Replicate sediment cores were collected 3 weeks before Isabel made landfall and further samples were collected on 5 occasions over the following 20 months. An immediate effect of Isabel was a doubling in the number of species, a significant increase in invertebrate species diversity (H′) and a rise in opportunistic species and deposit feeders, but a non-significant increase in the total number of organisms. Changes in infauna occurred such that by the end of the study there were significantly increased numbers of species, faunal abundances and community diversity measures, as compared with pre-hurricane samples, suggesting a potentially positive medium-term effect of this hurricane perturbation. The most notable direct effects of the hurricane were on the relative abundances of feeding guilds with a reduction in interface feeders from 87% pre-hurricane to 64% post-hurricane, and an increase in surface deposit feeders from 7% pre-hurricane to 20% post-hurricane. The study highlights potential problems in interpreting post-perturbation data when insufficient pre-perturbation data exist.  相似文献   

8.
We investigated Oceanographer Canyon, which is on the southeastern margin of Georges Bank, during a series of fourteen dives in the “Alvin” and “Nekton Gamma” submersibles. We have integrated our observations with the results of previous geological and biological studies of Georges Bank and its submarine canyons. Fossiliferous sedimentary rocks collected from outcrops in Oceanographer Canyon indicate that the Cretaceous—Tertiary boundary is at 950 m below sea level at about 40°16′N where at least 300 m of Upper Cretaceous strata are exposed; Santonian beds are more than 100 m thick and are the oldest rocks collected from the canyon. Quaternary silty clay, deposited most probably during the late Wisconsin Glaciation, veneers the canyon walls in many places, and lithologically similar strata are present beneath the adjacent outer shelf and slope. Where exposed, the Quaternary clay is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100–1300 m) inhabited by red crabs (Geryon) and/or jonah crabs (Cancer). Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis; ripple orientation is most commonly transverse to the canyon axis and slip-faces point downcanyon. Shelf sediments are transported from Georges Bank over the eastern rim and into Oceanographer Canyon by the southwest drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis. Large erratic boulders and gravel pavements on the eastern rim are ice-rafted glacial debris of probable late Wisconsinan age; modern submarine currents prevent burial of the gravel deposits. The dominant canyon megafauna segregates naturally into three faunal depth zones (133–299 m; 300–1099 m; 1100–1860 m) that correlate with similar zones previously established for the continental slope epibenthos. Faunal diversity is highest on gravelly sea floors at shallow and middle depths. The benthic fauna and the fishes derive both food and shelter by burrowing into the sea floor. In contrast to the nearby outer shelf and upper slope, Oceanographer Canyon has not been extensively exploited by the fishing industry, and the canyon ecosystem probably is relatively unaltered.  相似文献   

9.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

10.
Macrofaunal polychaete communities (>500 µm) in the South Eastern Arabian Sea (SEAS) continental margin (200–1000 m) are described, based on three systematic surveys carried out in 9 transects (at ~200 m, 500 m and 1000 m) between 7°00′and 14°30′N latitudes. A total of 7938 polychaetes belonging to 195 species were obtained in 136 grab samples collected at 27 sites. Three distinct assemblages were identified in the northern part of the SEAS margin (10–14°30′N), occupying the three sampled depth strata (shelf edge, upper and mid-slope) and two assemblages (shelf edge and slope) in the south (7–10°N). Highest density of polychaetes and dominance of a few species were observed in the shelf edge, where the Arabian Sea oxygen minimum zone (OMZ) impinged on the seafloor, particularly in the northern transects. The resident fauna in this region (Cossura coasta, Paraonis gracilis, Prionospio spp. and Tharyx spp.) were characteristically of smaller size, and well suited to thrive in the sandy sediments in OMZ settings. Densities were lowest along the most northerly transect (T9), where dissolved oxygen (DO) concentrations were extremely low (<0.15 ml l−1, i.e.<6.7 μmol l−1). Beyond the realm of influence of the OMZ (i.e. mid-slope, ~1000 m), the faunal density decreased while species diversity increased. The relative proportion of silt increased with depth, and the dominance of the aforementioned species decreased, giving way to forms such as Paraprionospio pinnata, Notomastus sp., Eunoe sp. and lumbrinerids. Relatively high species richness and diversity were observed in the sandy sediments of the southern sector (7–9°N), where influence of the OMZ was less intense. The area was also characterized by certain species (e.g. Aionidella cirrobranchiata, Isolda pulchella) that were nearly absent in the northern region. The gradients in DO concentration across the core and lower boundary of the OMZ, along with bathymetric and latitudinal variation in sediment texture, were responsible for differences in polychaete size and community structure on the SEAS margin. Spatial and temporal variations were observed in organic matter (OM) content of the sediment, but these were not reflected in the density, diversity or distribution pattern of the polychaetes.  相似文献   

11.
We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160–250 m), upper slope (250–450 m), intermediate slope (450–800 m), and Derugin Basin (1450–1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae (Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats.Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep fauna in the area.As a consequence of the pronounced pattern in the distribution of seep communities, their ecological significance as food sources of surrounding background fauna increased with water depth. Isotopic analyses suggest that in the Derugin Basin seep colonists feed on chemoautotrophic seep organisms, either directly or by preying on metazoans with chemosynthetic symbionts. In contrast, seep organisms apparently do not contribute to the nutrition of the adjacent background fauna on the shelf and at the slope. In this area, elevated epifaunal abundances at seep sites were caused primarily by the availability of suitable settling substrates rather than by an enrichment of food supply.  相似文献   

12.
The Håkon Mosby Mud Volcano (HMMV) is a methane seep that is densely populated by the bacteria Beggiatoa spp. as well as by tubeworms of the Family Siboglinidae. Analyses of samples from seven stations located in five different habitats (bare sediments, bacterial mats, siboglinid fields, sediments with small patches of siboglinids and areas of ‘normal’ sea floor) revealed differences in the density and species‐level diversity of nematode communities. Total densities increased from stations inside the mud volcano and on its rim towards the ‘normal’ areas outside the volcano. Nematode species diversity was similar in samples from the siboglinid fields and the bare HMMV sediments. However, the sediment with patches of siboglinids collected outside the volcano was characterised by a diverse nematode community comprising 47 species, whereas the control sediments without siboglinids yielded only 27 species. The nematode assemblage at the bacterial mat site included only two identified species, Halomonhystera disjuncta and Sabatieria ornata, with H. disjuncta being strongly dominant. Terschellingia distlamphida, S. ornata and Aponema ninae dominated nematode communities at the siboglinid fields and in bare HMMV sediments. Species dominating at stations inside the caldera were found in comparable low densities in the sediment with siboglinid patches collected outside the volcano, but were missing in the background samples, where species of Endeolophos, Acantholaimus and Desmoscolex were dominant. Species diversity generally decreased with sediment depth. A subsurface‐dwelling nematode community was observed in the siboglinid fields and the bare sediments. Background sediments showed a sharp decline with 18–20 species at 0–2 cm versus three species at 3–5 cm sediment depth. The trophic composition of the nematode fauna at the HMMV showed a prevalence of deposit feeders at almost all stations, whereas background sediments exhibited a uniform distribution of non‐selective and selective deposit feeders and epistrate feeders. The high percentage of deposit feeders inside the mud volcano could be related to the grain‐size distribution and the significantly higher bacterial biomass compared to the control sediments.  相似文献   

13.
The benthic fauna was studied in the Blagopoluchiya Bay (Kara Sea, Novaya Zemlya Archipelago) during an expedition of the R/V Professor Shtokman in autumn 2013. The inner basin of the bay, with depths of around 150 m, is separated from the outer slope of Novaya Zemlya by a shoal 30 m in depth. Six macrobenthic communities were described at nine stations (25 bottom grab samples) taken along a transect from the inner part of the bay to the outer part of the slope. The depths, position on the transect axis and sediment types were the major factors influencing the distribution of the communities. The benthic abundance and biomass in the inner and outer parts of the bay did not differ significantly. The diversity of macrobenthic organisms (α-diversity as the number of species in the sample and β-diversity as the rate of increase in species number in the area) was lower in the inner part of the bay. The intertidal zone (littoral) has been described. The littoral fauna was very poor; it comprised only the amphipods Gammarus setosus inhabiting the near-surface area.  相似文献   

14.
As part of the ECOMARGE operation (J.G.O.F.S. France), macrobenthic assemblages in the Toulon Canyon were described and quantified on the basis of sampling carried out between 250 and 2000 m depth on the Mediterranean continental slope. Results show that Mediterranean bathyal assemblages are made up mainly of continental shelf eurybathic species. The qualitative and quantitative composition of populations varies with depth on the slope and also varies with station position at equivalent depth, whether on the flanks or in the canyon channel. Various analyses have provided evidence on the factors responsible for this population distribution pattern. No single factor emerges as predominant, but rather a group of factors, which are related to the nature and origin of sediments and more particularly their grain size distribution, geochemical composition and mode of transportation and sedimentation (benthic nepheloid or originating from the water column), act in conjunction to determine the pattern. Comparison with ocean continental slopes shows that in the Mediterranean Sea the absence of tidal current modifies the trophic structure of the macrobenthic assemblages, which are characterized by a dominance of surface and subsurface deposit feeders as compared to a dominance of suspension feeders and carnivores in the upper and median part of the slope in the ocean. Surface dumping of dredge spoil at the canyon head and channelling of waste induces an increase of organic matter and pollutant concentrations in sediment from the upper part of the canyon channel but does not give rise to any marked population degradation.  相似文献   

15.
Megafaunal diversity in the deep sea shows a parabolic pattern with depth. It can be affected by factors such as low oxygen concentration, which suppresses diversity, or the presence of submarine canyons, which enhances it. Barkley Canyon, located off the west coast of British Columbia, Canada, is a submarine canyon that extends from the continental margin (200 m) into the deep ocean (2,000 m). This canyon receives drift kelp from shoreline kelp forests and contains an oxygen minimum zone (OMZ) at 500 to 1,500 m depth. Our study investigated the abundance and diversity of epibenthic megafauna over a range of depths (200–2,000 m) and oxygen concentrations (0.5–5.0 ml/L) within Barkley Canyon, as well as changes in abundance near detrital kelp. Video was collected using the remotely operated vehicle ROPOS along seven 1‐km cross‐canyon (i.e., across the axis of the canyon) transects and three 40‐m perpendicular cross‐transects over kelp. Taxonomic groups were associated with depth, temperature, and the presence of pebbles. The OMZ restricted pennatulids, and edge effects along OMZ boundaries were observed for ophiuroids. The geomorphology of the sea floor affected the distribution of taxa across the canyon, with Porifera mainly found along the walls and Echinoidea within the canyon axis. Expected richness exhibited a bimodal pattern, peaking at 300 and 2,000 m, possibly due to the combined effect of the OMZ and the submarine canyon. Echinoidea aggregated near drift kelp at 200 and 300 m. We found that faunal communities in Barkley Canyon were influenced by several confounded factors including depth, oxygen and substrate. Understanding faunal patterns is paramount with increased exploitation and a changing climate.  相似文献   

16.
A seasonal analysis of deep-sea infauna (macrobenthos) based on quantitative sampling was conducted over the Catalan Sea slope, within the Besòs canyon (at ∼550-600 m) and on its adjacent slope (at 800 m). Both sites were sampled in February, April, June-July and October 2007. Environmental variables influencing faunal distribution were also recorded in the sediment and sediment/water interface. Dynamics of macrobenthos at the two stations showed differences in biomass/abundance patterns and trophic structures. Biomass was higher inside the Besòs canyon than on the adjacent slope. The community was mostly dominated by surface-deposit feeding polychaetes (Ampharetidae, Paraonidae, Flabelligeridae) and crustaceans (amphipods such as Carangoliopsis spinulosa and Harpinia spp.) inside the canyon, while subsurface deposit feeders (mainly the sipunculan Onchnesoma steenstrupii) were dominant over the adjacent slope. The taxonomic composition in the suprabenthic assemblages of polychaetes, collected on the adjacent slope by a suprabenthic sledge, was clearly different from that collected by the box-corer. The suprabenthic assemblage was dominated by carnivorous forms (mainly Harmothoe sp. and Nephthys spp.) and linked to higher near-bottom turbidity. Inside Besòs a clear temporal succession of species was related to both food availability and quality and the proliferation of opportunistic species was consistent with higher variability in food sources (TOC, C/N, ??13C) in comparison to adjacent slope. This was likely caused by a greater influence of terrigenous inputs from river discharges. Inside the canyon, Capitellidae, Spionidae and Flabelligeridae, in general considered as deposit feeders, were more abundant in June-July coinciding with a clear signal of terrigenous carbon (depleted ??13C, high C/N) in the sediments. By contrast, during October and under conditions of high water turbidity and increases of TOM, carnivorous polychaetes (Glyceridae, Onuphidae) increased. Total macrobenthos biomass found over Catalonian slopes were higher than that found in the neighboring Toulon canyon, probably because the two canyons are influenced by different river inputs, connected with distinct terrigenous sources.  相似文献   

17.
In order to assess the possible environmental impact of oily cuttings discharged during oil exploration activities, we studied the benthic foraminiferal faunas in a five-station, 4-km-long sampling transect around a cuttings disposal site at about 670 m depth offshore Angola (W Africa), where drilling activities started 1.5 years before sampling. Living (Rose Bengal stained) and dead foraminiferal faunas were sampled in March 2006. The faunal patterns mirror the spatial distribution of hydrocarbons, which are dispersed into a southeastern direction. Four different areas can be distinguished on the basis of the investigated faunal parameters (density, diversity and species composition of the living fauna, and comparison with subrecent dead faunas). The fauna at station S31, 300 m SE of the oil cuttings disposal site, appears to be clearly impacted: the faunal density and diversity are maximal, but evenness is minimal. Taxa sensitive to organic enrichment, such as Uvigerina peregrina, Cancris auriculus and Cribrostomoides subglobosus, have largely disappeared, whereas the low-oxygen-resistant taxon Chilostomella oolina and opportunistic buliminids and bolivinids attain relatively high densities. At station S32, 500 m SE of the disposal site, environmental impact is still perceptible. The faunal density is slightly increased, and U. peregrina, apparently the most sensitive species, is still almost absent. The faunas found at 1 and 1.8 km SE of the disposal site are apparently no longer impacted by the drill mud disposal. Faunal density and diversity are low, and the faunal composition is typical for a mesotrophic to eutrophic upper slope environment. Finally, Station S35, 2 km NW of the disposal site, contains an intermediate fauna, where both the low-oxygen-resistant C. oolina and the more sensitive taxa (U. peregrina, C. auriculus and C. subglobosus) are present. All taxa live close to the sediment–water interface here, indicating a reduced oxygen penetration into the sediment. Since the hydrocarbon concentration is low at this station, it appears that the faunal characteristics are the consequence of a slightly different environmental setting, and not due to a contamination with drill cuttings. Our data underline the large potential of benthic foraminifera as bio-indicators of anthropogenic enrichment in open marine settings, such as caused by the disposal of oily drill cuttings. The foraminiferal faunas react essentially by a density increase of a number of tolerant and/or opportunistic taxa, and a progressive disappearance of more sensitive taxa in the most impacted area. Rather surprisingly, large-sized taxa appear to be more sensitive than small-sized foraminiferal taxa.  相似文献   

18.
《Oceanologica Acta》1999,22(4):381-396
Macro- and micro-faunas are reported from six gravity cores collected at a mean depth of 150 m in the surficial deposits of the Kaiser sand bank in the Southern Western Channel Approaches. These are bivalves (mainly), gastropods, echinids, crustaceans and foraminifers. These fauna present a very rich association of numerous, well preserved species from various ecological settings. Such an association is commonly reported from the continental shelf of the last transgressive cycle. In addition, the sediment comprises two imported faunal associations. The first one corresponds to thanatocaenoses of Pliocene/lowermost Pleistocene and Weichselian age, reworked respectively from the underlying celtic incised valley fills and the Celtic Sand Banks. The absence of Quaternary fauna prior to the Weichselian suggests that the introduction of Pliocene sources occurred during the last climatic cycle. The second stage of importation took place after the last transgression in the Western Channel, and corresponds to the enrichment of the sediment in coastal fauna derived from western Brittany by the the predominant ebb tidal current. The variations of taxonomic diversity from core to core suggest a sediment transport around the bank that matches the one deduced from the study of tidal bedforms. At the present day, the wave action is highlighted by accumulation of species of the same shape, size and density inside storm beds. However, the survival within these beds of very small, juvenile shells indicate that each storm reworking was short in duration.  相似文献   

19.
In order to identify environmental factors driving the distribution and functioning of deep-sea fauna and the spatial scales of interactions, we carried out a multiple-scale investigation in the Mediterranean basin in which we compared two bathyal plains, located at the same depth (ca. 3000 m), but characterised by contrasting trophic conditions. We investigated meiofaunal abundance, biomass, community structure and biodiversity (expressed as richness of taxa) in relation to sediment characteristics, downward fluxes and food availability in the sediment. Samples were collected at all spatial scales (from small to macroscale) in two seasons. Our results indicated that deep-sea systems with different trophic conditions displayed different responses to the distribution of available energy and its spatio-temporal variability in the sediment. The analysis at a macroscale (>1000 km) indicated that meiofauna were controlled primarily by the trophic inputs to the deep-sea system. Spatial variability of meiofaunal parameters at a mesoscale (>50 km) was highest in the eastern Mediterranean and lowest in the western Mediterranean. Such differences are the consequence of the unpredictable inputs of organic matter in the oligotrophic eastern Mediterranean versus a more homogeneous distribution of food inputs in the mesotrophic western Mediterranean. At a smaller scale (local scale 7 km), in the western Mediterranean, the distribution of meiofaunal parameters was highly homogeneous, reflecting the homogeneous distribution of the food availability in the sediment. Our results indicated that the highly variable input and distribution of food sources in the deep eastern Mediterranean did not provide any “insurance” for the sustainability of the deep-sea faunal assemblages in the long term, thus leading to an uncoupling between resource availability and distribution of organisms. We conclude that the influence of energy availability on the deep-sea faunal distributions change at different spatial scales and that the analysis of spatial variability at mesoscales is crucial for understanding the relationships between deep-sea benthic fauna and environmental drivers.  相似文献   

20.
Community structure and faunal composition of bathyal decapod crustaceans off South-Eastern Sardinian deep-waters (Central-Western Mediterranean) were investigated. Samples were collected during 32 hauls between 793 and 1598 m in depth over the 2003–2007 period. A total of 1900 decapod specimens belonging to 23 species were collected. Multivariate analysis revealed the occurrence of three faunistic assemblages related to depth: (i) an upper slope community at depths of 793–1002 m; (ii) a middle slope community at depths of 1007–1212 m and (iii) a lower slope community at depths greater 1420 m. In the upper and middle slopes the benthic ( Polycheles typhlops ) and epibenthic–endobenthic feeders (mainly Aristeus antennatus and Geryon longipes ), which eat infaunal prey, were dominant, followed by the macroplankton–epibenthic feeders such as Acanthephyra eximia and Plesionika acanthonotus . In the deepest stratum, the most remarkable feature was the prevalence of macroplankton–epibenthic feeders ( A. eximia and P. acanthonotus ). A small percentage of the benthic deep-sea lobster Polycheles sculptus was also present. The biomass presented higher values in the middle slope and declined strongly in the lower slope. There was no general pattern of mean individual weight/size versus depth among decapods, and the changes seemed to be species-specific with different trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号