首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Moore R  Kelson V  Wittman J  Rash V 《Ground water》2012,50(3):355-366
We present results of a design study performed for the Saylorville Wellfield in Iowa, which is owned and operated by the Des Moines Water Works. The purpose of this study was to estimate wellfield capacity and provide a preliminary design for two radial collector wells to be constructed in the outwash aquifer along the Des Moines River near Saylorville, Iowa. After a field investigation to characterize the aquifer, regional two-dimensional and local three-dimensional, steady-state groundwater flow modeling was performed to locate and design the wells. This modeling was the foundation for design recommendations based on the relative performance of 12 collector well designs with varying lateral numbers, elevations, screen lengths, and orientations. For each site, alternate designs were evaluated based on model estimates of the capacity, the percent of surface water captured, and the production per unit length of screen. Many of our results are consistent with current design practices based on experience and intuition, but our methods allow for a quantitative approach for comparing alternate designs. Although the results are site-specific, the framework for evaluating the hydraulic design of the Saylorville radial collector wells is broadly applicable and could be used at other riverbank filtration sites. In addition, many of the conclusions from this design study may apply at other sites where construction of radial collector wells is being considered.  相似文献   

2.
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.  相似文献   

3.
We examine the effect of uncertainty due to limited information on the remediation design of a contaminated aquifer using the pump and treat method. The hydraulic conductivity and contaminant concentration distributions for a fictitious contaminated aquifer are generated assuming a limited number of sampling locations. Stochastic optimization with multiple realizations is used to account for aquifer uncertainty. The optimization process involves a genetic algorithm (GA). As the number of realizations increases, a greater extraction rate and more wells are needed. There was a total cost increase, but the optimal remediation designs became more reliable. Stochastic optimization analysis also determines the locations for extraction wells, the variation in extraction rates as a function of the change of well locations, and the reliability of the optimal designs. The number of realizations (stack number) that caused the design factors to converge could be determined. Effective stochastic optimization may be achieved by reducing computational resources. An increase in the variability of the conductivity distribution requires more extraction wells. Information about potential extraction wells can be used to prevent failure of the remediation task.  相似文献   

4.
Identification of the pumping influences at monitoring wells caused by spatially and temporally variable water supply pumping can be a challenging, yet an important hydrogeological task. The information that can be obtained can be critical for conceptualization of the hydrogeological conditions and indications of the zone of influence of the individual pumping wells. However, the pumping influences are often intermittent and small in magnitude with variable production rates from multiple pumping wells. While these difficulties may support an inclination to abandon the existing dataset and conduct a dedicated cross‐hole pumping test, that option can be challenging and expensive to coordinate and execute. This paper presents a method that utilizes a simple analytical modeling approach for analysis of a long‐term water level record utilizing an inverse modeling approach. The methodology allows the identification of pumping wells influencing the water level fluctuations. Thus, the analysis provides an efficient and cost‐effective alternative to designed and coordinated cross‐hole pumping tests. We apply this method on a dataset from the Los Alamos National Laboratory site. Our analysis also provides (1) an evaluation of the information content of the transient water level data; (2) indications of potential structures of the aquifer heterogeneity inhibiting or promoting pressure propagation; and (3) guidance for the development of more complicated models requiring detailed specification of the aquifer heterogeneity.  相似文献   

5.
Optimization of groundwater and other subsurface resources requires analysis of multiple‐well systems. The usual modeling approach is to apply a linear flow equation (e.g., Darcy's law in confined aquifers). In such conditions, the composite response of a system of wells can be determined by summating responses of the individual wells (the principle of superposition). However, if the flow velocity increases, the nonlinear losses become important in the near‐well region and the principle of superposition is no longer valid. This article presents an alternative method for applying analytical solutions of non‐Darcy flow for a single‐ to multiple‐well systems. The method focuses on the response of the central injection well located in an array of equally spaced wells, as it is the well that exhibits the highest pressure change within the system. This critical well can be represented as a single well situated in the center of a closed square domain, the width of which is equal to the well spacing. It is hypothesized that a single well situated in a circular region of the equivalent plan area adequately represents such a system. A test case is presented and compared with a finite‐difference solution for the original problem, assuming that the flow is governed by the nonlinear Forchheimer equation.  相似文献   

6.
Alexander SC  Saar MO 《Ground water》2012,50(2):256-265
Numerous refinements have been proposed to traditional pumping test analyses, yet many hydrogeologists continue to use the Jacob method due to its simplicity. Recent research favors hydraulic tomography and inverse numerical modeling of pumping test data. However, at sites with few wells, or relatively short screens, the data requirements of these methods may be impractical within physical and fiscal constraints. Alternatively, an improved understanding of the assumptions and limitations of Theis and, due to their widespread usage, Jacob analyses, leads to improved interpretations in data-poor environments. A fundamental requirement of Jacob is a "small" value of u = f(r(2)/t), with radial distance, r, and pumping time, t. However, selection of a too stringent (i.e., too low) maximum permissible u-value, u(max), results in rejection of usable data from wells beyond a maximum radius, r(max). Conversely, data from small radii, less than r(min), where turbulent- and vertical-flow components arise, can result in acceptance of inappropriate data. Usage of drawdown data from wells too close to the pumping well, and exclusion of data from wells deemed too far, can cause unrealistic aquifer transmissivity, permeability, and storativity determinations. Here, data from an extensive well field in a glacial-outwash aquifer in north-central Minnesota, USA, are used to develop a new estimate for u(max). Traditionally quoted values for u(max) range from 0.01 to 0.05. Our proposed value for Jacob distance-drawdown analyses is significantly higher with u(max) up to 0.2, resulting in larger allowable r(max)-values and a higher likelihood of inclusion of additional wells in such pumping test analyses.  相似文献   

7.
Typical pump-and-treat (PAT) optimization problems involve design of pumping schemes, while minimizing cost and meeting a set of constraints. Due to scarcity of information about the hydrogeological system, stochastic modeling approaches can be used to assess tradeoffs between optimality and reliability. Using a stochastic approach, the constrained, single-objective problem may be turned into a multiobjective problem by substituting constraint inequalities with an additional objective function (OF) that accounts for the reliability of the PAT process. In this work, two approaches are analyzed: in one case, the additional OF consists of the probability of failure of a given remediation policy; in another, the OF additional is represented by the recourse, namely the penalty cost induced by the violation of constraints. In order to overcome the overwhelming computational cost required by stochastic simulation, surrogate forms of the OFs are introduced. In the test case under investigation, such functions are estimated by a kriging interpolation of the OF over a series of data points obtained from stochastic simulations of flow and transport, and calibrated against stochastic optimization solutions. The analysis of the two approaches for addressing the tradeoff of cost vs. reliability indicates that recourse accounts not only for the frequency of constraint violations, as the probability of failure does, but also for the intensity with which these occur. Ultimately, the recourse method allows considering less restrictive policies, although these may be highly sensitive to the choice of penalty functions.  相似文献   

8.
An analytical and experimental study has been conducted to evaluate the seismic performance of a three‐story suspended zipper steel frame. The frame was concentrically braced and had zipper struts to transfer the unbalanced forces induced on the beams due to the buckling of the lower‐story braces. The experimental study was conducted with the hybrid test technique, in which only the bottom‐story braces of the three‐story frame were physically tested, while the behavior of the rest of the frame was modeled using a general structural analysis software. The paper discusses issues pertinent to the calibration of the computer model for the analytical substructure as well as for the entire frame, including the selection of an appropriate damping matrix, and the modeling of the buckling behavior of the braces and bracing connections. The analytical model of the entire frame was validated with the hybrid tests and was able to accurately capture the material and geometric nonlinearities that developed when the braces yielded and buckled. This study has demonstrated the usefulness of hybrid testing in improving analytical models and modeling assumptions and providing information that cannot be obtained from an analytical study alone. The results have shown that the suspended zipper frame can distribute the brace nonlinearity over the first two stories as intended in the design and will not have catastrophic failure under the design‐level earthquakes considered in this study, despite the significant inelastic deformations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Interaction between hydraulically generated fractures and existing wells (frac hits) could represent a potential risk to groundwater. In particular, frac hits on abandoned oil and gas wells could lead to upward leakage into overlying aquifers, provided migration pathways are present along the abandoned well. However, potential risk to groundwater is relatively unknown because few studies have investigated the probability of frac hits on abandoned wells. In this study, actual numbers of frac hits were not determined. Rather, the probability for abandoned wells to intersect hypothetical stimulated reservoir sizes of horizontal wells was investigated. Well data were compiled and analyzed for location and reservoir information, and sensitivity analyses were conducted by varying assumed sizes of stimulated reservoirs. This study used public and industry data for the Eagle Ford Shale play in south Texas, with specific attention paid to abandoned oil and gas wells converted into water wells (converted wells). In counties with Eagle Ford Shale activity, well‐data analysis identified 55,720 abandoned wells with a median age of 1983, and 2400 converted wells with a median age of 1954. The most aggressive scenario resulted in 823 abandoned wells and 184 converted wells intersecting the largest assumed stimulated reservoir size. Analysis showed abandoned wells have the potential to be intersected by multiple stimulated reservoirs, and risks for intersection would increase if currently permitted horizontal wells in the Eagle Ford Shale are actually completed. Results underscore the need to evaluate historical oil and gas activities in areas with modern unconventional oil and gas activities.  相似文献   

10.
During seismic monitoring of hydraulic fracturing treatment, it is very common to ignore the deviations of the monitoring or treatment wells from their assumed positions. For example, a well is assumed to be perfectly vertical, but in fact, it deviates from verticality. This can lead to significant errors in the observed azimuth and other parameters of the monitored fracture‐system geometry derived from microseismic event locations. For common hydraulic fracturing geometries, a 2° deviation uncertainty on the positions of the monitoring or treatment well survey can cause a more than 20° uncertainty of the inverted fracture azimuths. Furthermore, if the positions of both the injection point and the receiver array are not known accurately and the velocity model is adjusted to locate perforations on the assumed positions, several‐millisecond discrepancies between measured and modeled SH‐P traveltime differences may appear along the receiver array. These traveltime discrepancies may then be misinterpreted as an effect of anisotropy, and the use of such anisotropic model may lead to the mislocation of the detected fracture system. The uncertainty of the relative positions between the monitoring and treatment wells can have a cumulative, nonlinear effect on inverted fracture parameters. We show that incorporation of borehole deviation surveys allows reasonably accurate positioning of the microseismic events. In this study, we concentrate on the effects of horizontal uncertainties of receiver and perforation positions. Understanding them is sufficient for treatment of vertical wells, and also necessary for horizontal wells.  相似文献   

11.
Bedding on a scale small in comparison to the wavelength results in transverse isotropy. On the other hand, anisotropy has been observed in the field, particularly with horizontally polarized shear waves. In this article velocity data from 23 wells are used to estimate the resulting transverse isotropy and to compare these data with anisotropy observations reported in the literature. Since the well data were compressional velocity (or rather transit time) only, the corresponding shear velocity data were estimated on the basis of a reasonable—though arbitrary—assumption of Poisson's ratio. Actual densities were used wherever they were available; for the remainder of the data, density was assumed to be constant throughout the averaging interval. The anisotropy data estimated on this basis were generally considerably smaller than the observational data that have been reported in the literature. Although both the above assumptions—functional dependence of Poisson's ratio on transit time and constant density—tend to underestimate anisotropy, and although 23 wells is but a small subset of all available data, it appears unlikely that bedding alone could cause anisotropy of the magnitude reported.  相似文献   

12.
Modeling effects of multinode wells on solute transport   总被引:1,自引:0,他引:1  
Long-screen wells or long open boreholes with intraborehole flow potentially provide pathways for contaminants to move from one location to another in a ground water flow system. Such wells also can perturb a flow field so that the well will not provide water samples that are representative of ground water quality a short distance away from the well. A methodology is presented to accurately and efficiently simulate solute transport in ground water systems that include wells longer than the grid spacing used in a simulation model of the system and hence are connected to multiple nodes of the grid. The methods are implemented in a MODFLOW-compatible solute-transport model and use MODFLOW's Multi-Node Well Package but are generic and can be readily implemented in other solute-transport models. For nonpumping multinode wells (used to simulate open boreholes or observation wells, for example) and for low-rate pumping wells (in which the flow between the well and the ground water system is not unidirectional), a simple routing and local mixing model was developed to calculate nodal concentrations within the borehole. For high-rate pumping multinode wells (either withdrawal or injection, in which flow between the well and the ground water system is in the same direction at all well nodes), complete and instantaneous mixing in the wellbore of all inflows is assumed.  相似文献   

13.
Analytical solutions are developed for modeling the transient and steady-state gas pressure and the steady-state streamfunction fields resulting from gas injection and extraction from a pair of parallel horizontal wells. These solutions apply to cases in which the ground surface is open to the atmosphere, and in which the porous media is anisotropic but homogeneous. By neglecting end effects due to the finite length of the wells, the three-dimensional gas flow field is approximated as a two-dimensional cross section perpendicular to the wells. These solutions may be used to develop estimates of the horizontal well system behavior and to analyze horizontal well gas pump tests, and are useful for numerical model verification.  相似文献   

14.
Vertical circulation wells can efficiently provide microorganisms with substrates needed for enhanced bioremediation. We present a travel-time based approach for modeling bioreactive transport in a flow field caused by a series of circulation wells. Mixing within the aquifer is due to the differences in sorption behavior of the reactants. Neglecting local dispersion, transport simplifies to a single one-dimensional problem with constant coefficients for each well. Recirculation is characterized by the discharge densities over travel time. We apply the model to the stimulation of cometabolic dechlorination of trichloroethene (TCE) by alternate injection of oxygen and toluene into the circulation wells. Mixing within the wells can be minimized by interposing sufficiently long breaks between the oxygen and toluene pulses. In our simulation, the proposed injection scheme stimulates biomass growth without risking biofouling of the aquifer.  相似文献   

15.
井地电阻率成像法利用井套管作电流源向井下供入大功率直流电流,在地表测量由地下介质的电性变化形成的电位分布,通过反演可得到地下介质的电阻率分布.针对大斜度井和水平井开展井地三维电阻率数值模拟和反演研究,对油田注水及压裂效果监测具有重要意义.基于井地电阻率成像法原理,采用有限差分法和不完全切勒斯基共轭梯度法进行了三维正演模拟,研究了大斜度井和水平井的井地电位响应特征.提出了采用层状约束阻尼最小二乘法由浅到深地进行大斜度井和水平井的多层联合反演,并对实际水平井井地电位各个层段数据进行了三维反演.模拟结果表明,倾斜线源和水平线源会对地面电位响应产生明显影响,在反演中需要考虑线源形态.实际水平井井地电位反演成像表明,考虑倾斜线源或者水平线源的联合反演得到了准确的水平井三维注水层成像图,得出注水层的真电阻率分布,能够判断注水运移方向.  相似文献   

16.
A new approach to locate transmissive fractures and decipher vertical borehole flow conditions in fractured crystalline bedrock wells is presented, which uses dissolved oxygen (DO) as a benign tracer. The method was tested in two fractured crystalline bedrock wells previously characterized by televiewer and flow meter logging under both ambient and stressed (slug test) conditions. The method entailed elevating wellbore DO concentrations by circulating water through showerheads or injection of compressed air. The DO dilution was used to locate inflowing fractures. Changes in the DO concentration with time were used to ascertain flow within the borehole and to locate outflowing fractures and stagnant zones. Flow rates were also estimated. Fractures detected by the method corresponded to those observed by televiewer logging and for the most part were comparable to flow meter results. Given the effectiveness, time‐efficiency and low cost, the method is a promising alternative to other methods currently in use to characterize transmissive fractures in wells.  相似文献   

17.
In 1984, the Illinois Department of Energy and Natural Resources was required to assess the regulations and practices of the Illinois Underground Injection Control (UIC) program as it relates to Class I hazardous waste disposal wells. Nine injection wells, including two standbys (one inactive), are currently in operation at seven sites in the state. These wells range in depth from 1540 to 5524 feet (470 to 1683m; most inject wastes into porous carbonate formations (two wells inject into a thick sandstone). In 1984, approximately 300 million gallons (1.1 billion liters) of industrial wastes were disposed of in these wells. Acids were the most common waste disposed of, although water made up 70 to 95 percent of the wastes by volume. Illinois has been granted primacy in operating this program.
The geologic environment, consisting of the unit accepting the waste and confining units lying above and below, has the capacity to accept the waste, to retain it, and to protect all underground sources of drinking water (USDW) from contamination by its injection. The geology of Illinois is relatively simple and includes disposal zones and associated confining units suitable for deep-well injection across the central two-thirds of the state.
The regulatory structure for Class I injection wells is generally adequate in concept and scope to ensure containment of injected wastes and to safeguard underground sources of drinking water in Illinois. There is a need to update and strengthen selected portions of the regulatory practices in the areas of waste sampling protocol, chemical analysis of collected waste samples, and evaluation of injection well testing and monitoring data.
A number of technologies exist that can treat and dispose of most hazardous and non-hazardous waste streams. Each of these technologies has associated with it economic, environmental and societal impacts.  相似文献   

18.
Spatial variability of in situ microbial activity: biotracer tests   总被引:3,自引:0,他引:3  
Biotracer tests have been proposed as a means by which to characterize the in situ biodegradation potential for field-scale systems. In this study, field experiments were conducted at two sites to evaluate the utility of the biotracer method for characterizing the spatial variability of microbial activity. The first site is a mixed waste-contaminated surficial aquifer in Utah, and the second site is a chlorinated solvent-contaminated regional aquifer in Tucson, Arizona. Mass recovery of the biotracer decreased approximately linearly with increasing residence time for the Tucson site. Similar behavior was observed at the Utah site, except in the region adjacent to the injection zone, where percent recoveries were much lower than those predicted using a correlation determined using data collected downgradient of the injection zone. First-order biodegradation rate coefficients obtained from model calibration of the tracer data varied between 0.2 and 0.5/day for the Tucson site. For the Utah site, the values varied between 0.1 and 0.6/day downgradient of the injection wells, and between 0.7 and 2.6/day near the injection wells. Considering the large range over which biodegradation rate coefficients can vary, the rate coefficient exhibited relatively minimal spatial variability (factor of 2.5) for the Tucson site. Conversely, the spatial variability of the rate coefficient was an order of magnitude greater for the Utah site. These differences in variability are consistent with conditions associated with the respective sites. For example, the greater microbial activity observed in the vicinity of the injection wells for the Utah site is consistent with the biomass distribution determined from analysis of core samples, which shows larger bacterial cell densities for the region near the injection wells. These results illustrate the utility of biotracer tests for in situ characterization of microbial activity (e.g., biodegradation potential), including evaluation of potential spatial variability.  相似文献   

19.
A combination of stable isotopes (18O and 2H) and hydrochemistry has been applied to investigate storage processes in relation to aquifer storage and recovery (ASR) of the shallow alluvial Quaternary aquifer in Damascus basin. The stored water, entirely taken from the Figeh springs during flood periods, was injected in a single well having a brackish groundwater. Water samples were collected from four observation wells drilled in the Damascus University Campus (DUC) site during a 3‐year period (2006–2008). The injectant water, which deviates in its chemical and isotopic signatures from that of the ambient groundwater, shows that the stored water plume remains within close proximity to the injection well (IW) (<≈ 100 m). Thus, only two wells (W13 and W14) located at a distance less than 80 m from the injection point were affected by this injection. The observation wells located at longer distances from the IW (≈145 m and ≈ 600 m for wells W15 and WHz, respectively) were completely unaffected by the injection. Although most of the chemical and isotopic parameters usefully reflected the mixing process that occurs between the injectant water and ambient groundwater, the stable isotope (18O) and chloride (Cl) were the most sensitive parameters that quickly reflect this signature. Using a simple mass balance, the calculated proportion of injectant water reaching the well W13 was in the range of 50–90%. This proportion was even lower (30–55%) in the case of well W14. Although the drought event prevailing during this study did not much help to inject further amounts of water, higher than the injected volume (0·2416 M m3) and also not favourable to better evaluate the fate and subsurface hydrological processes, these findings offer encouragement to continue the ASR activities, as an alternative way for better management of water resources in this basin facing intensive problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Flow and Containment of Injected Wastes   总被引:2,自引:0,他引:2  
Proper design, construction, testing and maintenance of Class 1 (hazardous waste) injection wells can guarantee that all waste is delivered to the injection zone. To assess the effects of waste injection, analytical models were developed which predict waste movement and pressure increases within the injection zone, and describe upward permeation through confining layers.
A basic plume model was used to track waste from several injection wells with varied injection history at DuPont's Victoria Texas site. To determine the maxi-mum distance that any portion of the waste might travel, special purpose models were employed to account for (1) density differences between the waste and the native formation brine, and (2) layered permeability variation within the injection zone. The results were generalized to a "multiplying factor concept," which facilitates development of a worst-case scenario.
A pressure distribution model based on the Theis (1935) equation for radial flow was applied to the Victoria site, with modifications to account for multiple wells, injection history and geological complexities.
Permeation into an intact confining layer was investigated by a new technique based on the Hantush and Jacob (1955) "leaky aquifer" theory. The model defines the maximum permeation distance, taking into account post-injection pressure decay.
Defects within confining layers, such as faults, fractures and abandoned wells, have been considered. Studies to evaluate their detailed characteristics are continuing. Initial results indicate that faults and fractures are not likely to provide conductive pathways in Gulf Coast settings, and site-specific evaluations are required to assess the impact of abandoned wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号