首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
The mafic dykes in Wadi Mandar-Wadi Um Adawi area are as follows: (1) calc-alkaline lamprophyre (i.e., kersantite and spessartite), (2) diabase, and (3) alkaline lamprophyre (i.e., camptonite). The field relations reveal that the emplacement of calc-alkaline lamprophyres preceded the diabase dykes, while alkaline lamprophyres emplaced later than the diabase dykes. Calc-alkaline are basaltic andesite, basaltic trachyandesite to basalt, while the diabase dykes and alkaline lamprophyres are basaltic in composition. These dykes are characterized by metaluminous character. Calc-alkaline lamprophyres and diabase dykes show transitional affinity from calc-alkaline to alkaline, while the alkaline lamprophyres exhibit more strong alkaline character. The mafic dykes were crystallized under temperature 1100–1150 °C and pressure 3–5 kbars in a high oxygen fugacity conditions. Fe-Ti oxides in the dykes are represented by ilmenite and Ti-magnetite. The chemistry of the sulfides hosted in those mafic dykes suggests a magmatic-hydrothermal origin for these minerals. The geochemical behavior of high field strength elements and large ion lithophile elements in these dykes excludes the derivation of diabase or alkaline lamprophyre either by partial melting or fractional crystallization from calc-alkaline lamprophyre. The parental magmatic sources of the studied dykes were generated from crustal material with addition of mantle-derived melt during the post-collisional stage. The mafic dykes in Wadi Mandar-Wadi Um Adawi area were generated from different magmatic sources by partial melting and subsequent fractional crystallization. In addition, the crustal contamination/assimilation process has a prominent role in the magmatic evolution of diabase and alkaline lamprophyre dykes.  相似文献   

2.
The Egyptian older and younger granitic rocks emplaced during pre- and post-collision stages of Neoproterozoic Pan-African orogeny, respectively, are widely distributed in the southern Sinai Peninsula, constituting 70% of the basement outcrops. The Wadi El-Akhder, southwestern Sinai, is a mountainous terrain exposing two granitoid suites, namely the Wadi El-Akhder Older Granites (AOG) and the Homra Younger Granites (HYG). The AOG (granodiorites with subordinate tonalite compositions) have geochemical characteristics of medium-K calc-alkaline, metaluminous to mildly peraluminous granitoids formed in an island-arc environment, which are conformable with well-known Egyptian older granitoids rocks, whereas the HYG display calc-alkaline to slightly alkaline nature, peraluminous syeno-, monzogranites and alkali feldspar granites matching well those of the Egyptian younger granites. With respect to the AOG granitoids, the HYG granites contain lower Al2O3, FeO*, MgO, MnO, CaO, TiO2, Sr, Ba, and V, but higher Na2O, K2O, Nb, Zr, Th, and Rb. The AOG are generally characterized by enrichment in LILE and LREE and depletion in HFSE relative to N-MORB values (e.g., negative Nb and Ta anomalies). The geochemical features of the AOG follow assimilation-fractional crystallization (AFC) trends indicative of extensive crustal contamination of magma derived from a mantle source. The chemical characteristics of the AOG are remarkably similar to those of subduction-related granitoids from the Arabian-Nubian Shield (ANS). The compositional variations from monzogranites through syenogranites to alkali feldspar granite within HYG could not be explained by fractional crystallization solely. Correlating the whole-rock composition of the HYG to melts generated by experimental dehydration melting of meta-sedimentary and magmatic rocks reveals that they appear to be derived by extended melting of psammitic and pelitic metasediments, which is similar to the most of younger granitic suites in the ANS.  相似文献   

3.
Large volumes of Devonian-Carboniferous granites were emplaced across Tasmania in southeast Australia, which was along the easternmost boundary of mid-Palaeozoic Gondwana. Some of these granites are associated with world class Sn–W deposits. Previous studies have focused mainly on relationships between granite petrogenesis and source rocks, and rarely on geochemical controls on Sn mineralisation. New zircon U-Pb ages of 405 to 396 Ma reveal that the George River Granodiorite, Grant Point Granite and Mt. Pearson Granite from eastern Tasmania intruded prior to the Tabberabberan Orogeny. The Coles Bay Granite has a U-Pb age of 388 ± 7 Ma, implying that it was emplaced simultaneously with the Tabberabberan Orogeny in Tasmania. The western Tasmanian granites mostly intruded from 374 to 360 Ma, after the Tabberabberan Orogeny. Granites associated with Sn–W deposits are moderately to strongly fractionated, including the Housetop, Meredith, Pine Hill and Heemskirk granites. Lead isotopic compositions of K-feldspars from the analysed granites, combined with isotopic evidence from other studies, suggest that differentiated granites in Tasmania had been highly contaminated by a crustal (sedimentary) component, and that western Tasmanian granites had a crustal source with substantially different isotopic characteristics to that of eastern Tasmania, which has a character similar to the Lachlan Orogen in southeast Australia. Tin-mineralised granites in Tasmania formed in a post-collisional extensional margin, a favourable environment for the production of Sn-rich melts from the lower crust. Prolonged fractional crystallisation, low oxygen fugacity and enrichments of volatiles are crucial factors to promote Sn enrichment in magmatic-hydrothermal fluids exsolved from crystallised felsic magmas.  相似文献   

4.
The Askot crystallines form a doubly plunging synformal belt and occurs as a detached crystalline belt or klippen in the vast sedimentary terrain lying between Central crystallines towards north and the Almora crystallines to the south. It is dominated by granite gneiss and augen gneiss, and also comprise of metapelites, migmatites and basic intrusives. In this paper, the geochemical studies of the granite gneiss and augen gneiss from the Askot crystallines, Kumaun Himalaya were carried out in order to understand their origin and evolution. The granite gneiss is generally foliated, with less foliated and porphyritic variety seen in the core part. The K-feldspar shows Carlsbad twinning, while plagioclases show complex twinning. They show euhedral zircon and apatite along with titanite as accessory minerals. The granite gneiss is moderately evolved (Mg# ∼50) and has granodiorite composition with metaluminous, calc-alkaline trends. They show higher concentration of Ti, Ca, Mg and low abundance of ∑REE (∼165 ppm) in comparison to augen gneiss. They show volcanic arc signatures and compare well with Lateorogenic granites of Proterozoic times distributed world wide. These calc-alkaline granites appear derived from a Paleoproterozoic mafic/intermediate lower-crust reservoir probably involving arc magma underplating. Granite gneiss is also peraluminous with molar A/CNK>1.1, and the heterogeneity of granite gneiss can be explained with the precursor melts, experiencing assimilation during up-rise through crust or contamination of source itself involving sediments from the subduction zone.  相似文献   

5.
祁连山在构造上是一条经历了多期构造旋回叠加的早古生代复合型造山带,花岗质岩浆作用研究对揭示其构造演化具有重要意义。锆石U-Pb年代学统计结果表明,祁连地区花岗质岩浆活动可以分为7个大的阶段,包括古元古代早期(2 470~2 348 Ma)、古元古代晚期(1 778~1 763 Ma)、中元古代晚期-新元古代早期(1 192~888 Ma)、新元古代中期(853~736 Ma)、中寒武世-志留纪(516~419 Ma),泥盆纪-早石炭世(418~350 Ma)以及中二叠世-晚三叠世(271~211 Ma)。其中古元古代早期发育强过铝质高钾钙碱性S型和准铝质低钾拉斑-高钾钙碱性I型花岗岩,记录了早期的陆壳增生及改造事件。古元古代晚期为准铝质-弱过铝质高钾钙碱性-钾玄质A型花岗岩,是Columbia超大陆裂解事件的产物。中元古代晚期-新元古代早期以过铝质-强过铝质钙碱性-钾玄质S型花岗岩为主,新元古代中期以准铝质-强过铝质钙碱性-高钾钙碱性A型花岗岩为主,分别对应Rodinia超大陆的汇聚和裂解事件。中寒武世-志留纪花岗岩是洋陆转换过程中的产物,约440 Ma加厚基性下地壳部分熔融形成的低Mg埃达克岩的广泛出现指示祁连地区全面进入碰撞造山阶段。泥盆纪-早石炭世花岗岩代表后碰撞伸展阶段岩浆岩组合,发育准铝质-强过铝质低钾拉斑-钾玄质等一系列花岗岩。中二叠世-晚三叠世花岗岩以准铝质-弱过铝质钙碱性-高钾钙碱性I型花岗岩为主,有少量弱过铝质高钾钙碱性A型花岗岩,是宗务隆洋俯冲消减以及碰撞后伸展过程的产物。  相似文献   

6.
《International Geology Review》2012,54(13):1735-1754
Widespread granitic intrusions in the northeast part of the Wulonggou area were previously thought to be emplaced into the Palaeoproterozoic Jinshuikou Group during the Neoproterozoic. This contribution presents detailed LA-ICP-MS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf isotope systematic on the Wulonggou Granodiorite and Xiaoyakou Granite from the Wulonggou area. Three granodiorite samples yielded U–Pb zircon ages of 247 ± 2, 248 ± 1, and 249 ± 1 Ma, and one granite sample yielded U–Pb zircon age of 246 ± 3 Ma. The granodiorite samples are metaluminous with an alumina saturation index of 0.90–0.96, as well as intermediate- to high-alkali contents of 5.49–6.14 wt.%, and low Zr+Nb+Ce+Y contents, and low Fe2O3T/MgO ratios, which suggest an I-type classical island arc magmatic source. The granite samples are peraluminous with an alumina saturation index of 1.02–1.03, Sr content of 305.00–374.00 ppm, Sr/Y ratios of between 17.68 and 28.77, (La/Yb)N values of 16.98–25.07, low HREEs (Yb = 1.10–2.00 ppm), and low Y (13.00–21.10 ppm), which suggest adakite-like rocks. All granodiorite samples have zircons εHf(t) values ranging from ?2.9 to +3.9, and granite samples have zircon εHf(t) values ranging from ?7.8 to +3.2. These Hf isotopic data suggest that the Early Triassic granites were derived from the partial melting of a mafic Mesoproterozoic lower crust, although the degree of ancient crustal assimilation may be higher for the Xiaoyakou Granite. It is suggested here that the ca. 246–248 Ma magma was generated during the northward subduction of the Palaeo-Tethys oceanic plate.  相似文献   

7.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

8.
The Sichevita and Poniasca plutons belong to an alignment of granites cutting across the metamorphic basement of the Getic Nappe in the South Carpathians. The present work provides SHRIMP age data for the zircon population from a Poniasca biotite diorite and geochemical analyses (major and trace elements, Sr–Nd isotopes) of representative rock types from the two intrusions grading from biotite diorite to biotite K-feldspar porphyritic monzogranite. U–Pb zircon data yielded 311 ± 2 Ma for the intrusion of the biotite diorite. Granites are mostly high-K leucogranites, and biotite diorites are magnesian, and calcic to calc-alkaline. Sr, and Nd isotope and trace element data (REE, Th, Ta, Cr, Ba and Rb) permit distinguishing five different groups of rocks corresponding to several magma batches: the Poniasca biotite diorite (P1) shows a clear crustal character while the Poniasca granite (P2) is more juvenile. Conversely, Sichevita biotite diorite (S1), and a granite (S2*) are more juvenile than the other Sichevita granites (S2). Geochemical modelling of major elements and REE suggests that fractional crystallization can account for variations within P1 and S1 groups. Dehydration melting of a number of protoliths may be the source of these magma batches. The Variscan basement, a subduction accretion wedge, could correspond to such a heterogeneous source. The intrusion of the Sichevita–Poniasca plutons took place in the final stages of the Variscan orogeny, as is the case for a series of European granites around 310 Ma ago, especially in Bulgaria and in Iberia, no Alleghenian granitoids (late Carboniferous—early Permian times) being known in the Getic nappe. The geodynamical environment of Sichevita–Poniasca was typically post-collisional of the Variscan orogenic phase.  相似文献   

9.
Monazite in melt-producing, poly-metamorphic terranes can grow, dissolve or reprecipitate at different stages during orogenic evolution particularly in hot, slowly cooling orogens such as the Svecofennian. Owing to the high heat flow in such orogens, small variations in pressure, temperature or deformation intensity may promote a mineral reaction. Monazite in diatexites and leucogranites from two Svecofennian domains yields older, coeval and younger U–Pb SIMS and EMP ages than zircon from the same rock. As zircon precipitated during the melt-bearing stage, its U–Pb ages reflect the timing of peak metamorphism, which is associated with partial melting and leucogranite formation. In one of the domains, the Granite and Diatexite Belt, zircon ages range between 1.87 and 1.86 Ga, whereas monazite yields two distinct double peaks at 1.87–1.86 and 1.82–1.80 Ga. The younger double peak is related to monazite growth or reprecipitation during subsolidus conditions associated with deformation along late-orogenic shear zones. Magmatic monazite in leucogranite records systematic variations in composition and age during growth that can be directly linked to Th/U ratios and preferential growth sites of zircon, reflecting the transition from melt to melt crystallisation of the magma. In the adjacent Ljusdal Domain, peak metamorphism in amphibolite facies occurred at 1.83–1.82 Ga as given by both zircon and monazite chronology. Pre-partial melting, 1.85 Ga contact metamorphic monazite is preserved, in spite of the high-grade overprint. By combining structural analysis, petrography and monazite and zircon geochronology, a metamorphic terrane boundary has been identified. It is concluded that the boundary formed by crustal shortening accommodated by major thrusting.  相似文献   

10.
The Precambrian basement of Egypt is part of the Red Sea Mountains and represents the north-western part of the Arabian–Nubian Shield (ANS). Five volcanic sections are exposed in the Egyptian basement complex, namely El Kharaza, Monqul, Abu Had, Mellaha and Abu Marwa. They are located in the north Eastern Desert (ED) of Egypt and were selected for petrological and geochemical studies as they represent the Dokhan volcanics. The volcanics divide into two main pulses, and each pulse was frequently accompanied by deposition of immature molasse type sediments, which represent a thick sequence of the Hammamat group in the north ED. Compositionally, the rocks form a continuum from basaltic andesite, andesite, dacite (lower succession) to rhyodacite and rhyolite (upper succession), with no apparent compositional gaps. These high-K calc-alkaline rocks have strong affinities to subduction-related rocks with enriched LILEs (Rb, Ba, K, Th, Ce) relative to high field strength elements (Nb, Zr, P, Ti) and negative Nb anomalies relative to NMORB. The lower succession displays geochemical characteristics of adakitic rocks with SiO2 >53 wt%, Al2O3 >15 wt%, MgO >2.5 wt%, Mg# >49, Sr >650 ppm, Y <17 ppm, Yb <2 ppm, Ni >25 ppm, Cr >50 ppm and Sr/Y >42.4. They also have low Nb, Rb and Zr compared to the coexisting calc-alkaline rhyodacites and rhyolites. The highly fractionated rhyolitic rocks have strong negative Eu anomalies and possess the geochemical characteristics of A-type suites. Trace element geochemical signatures indicate a magma source consistent with post-collisional suites that retain destructive plate signatures associated with subduction zones. The adakitic rocks in the northern ANS are generated through partial melting of delaminated mafic lower crust interacting with overlying mantle-derived magma. The Dokhan volcanics were likely generated by a combination of processes, including partial melting, crystal fractionation and assimilation.  相似文献   

11.
Magnesian andesites (MA) occur with 'normal' tholeiitic to calc-alkaline basalt-andesite suites in four greenstone belts of the 2.7 Ga Wawa subprovince, Canada. Collectively, the magnesian andesites span ranges of SiO2=56-64 wt%, Mg-number=0.64-0.50, with Cr and Ni contents of 531-106 and 230-21 ppm, respectively. Relative to 'normal' andesites, the magnesian andesites form distinct trends on variation diagrams, with relatively high Th and LREE contents, uniform Yb over a range of MgO, more fractionated HREE, and lower Nb/Thpm and Nb/Lapm ratios. Niobium-enriched basalts and andesites (NEBA; Nb=7-16 ppm), and an Al-enriched rhyolite (adakite) suite are associated in space and time with the magnesian andesites. Nb-enriched basalts and andesites are characterized by high TiO2, P2O5, Th, and Zr contents, variably high Zr/Hf (36-44) ratios, and more fractionated HREE (Gd/Ybcn=1.3-4.1) compared to the 'normal' tholeiitic to calc-alkaline basalt-andesite suites. The adakite suite has the high Al (Al2O3=16-18 wt%), high La/Ybcn (21-43), and low Yb (0.4-1.2 ppm) of Archean tonalite-trondhjemite-granodiorite (TTG) suites and Cenozoic adakites, indicative of liquids derived mainly from slab melting. The basalt-andesite suites are not characterized by normal tholeiitic or calc-alkaline fractionation trends of major or trace elements. Rather, compositional trends can be accounted for by some combination of fractional crystallization and variable degrees of metasomatism of the source of basalt and/or andesites by adakitic liquids. The occurrence of magnesian andesites, Nb-enriched basalts/andesites, and adakites has been described from certain Phanerozoic arcs featuring shallow subduction of young and/or hot oceanic lithosphere. Adakites likely represent slab melts, magnesian andesites the product of hybridization of adakite liquids with mantle peridotite, and Nb-enriched basalts/andesites melts of the residue from hybridization. Geological similarities between the late-Archean Wawa greenstone belts and certain Cenozoic transpressional orogens with the MA-NEBA-adakite association suggest that subduction of young, hot oceanic lithosphere may have played an important role in the production of this arc-related association in the late Archean.  相似文献   

12.
《International Geology Review》2012,54(10):1121-1149
Peraluminous intrusives of the Akum-Bamenda Massif, Pan-African Belt, Central Cameroon, were synkinematically emplaced in a Pan-African sinistral strike-slip shear zone. The rock sequences consist of medium-grained leucogranites, fine-grained leucogranites, and orthogneisses of biotite granite composition; in aggregate, they cover a range from about 65 to 74 wt.% SiO2, defining a continuous chemical evolutionary trend and displaying characteristics of the high-K and medium calc-alkaline series. Leucogranites are strongly peraluminous (A/CNK > 1.1) and plot in the field of S-type granites, whereas orthogneisses are metaluminous and plot in the field of I-type granitoids. Major and trace element compositions and the Rb/Sr isotopes of the leucogranites indicate crustal derivation by remelting of a composite metapelite?+?metagreywacke protolith similar to the metasedimentary rocks of the central domain of the Cameroon Pan-African North-Equatorial fold belt.  相似文献   

13.
The Charleston Granite from the Gawler Craton, South Australia, has been dated by the ion‐microprobe U‐Pb zircon method at 1585 ± 5 Ma (2σ). This confirms previous interpretations of population‐style U‐Pb zircon analyses which record a slightly older age due to the presence of inherited zircon. Inherited cores are present in many zircon crystals, and while the age of some cores can not be accurately determined due to extreme loss of radiogenic Pb, others have ages of ~ 1780, ~ 1970, and > 3150 Ma. These cores record a diverse crustal heritage for the Charleston Granite and indicate that ancient crustal material (> 3150 Ma) is present at depth in the Gawler Craton. This is also suggested by available Nd isotopic data for both the Charleston Granite and other Gawler Craton Archaean rocks. The Rb‐Sr and K‐Ar biotite ages from the Charleston Granite of 1560 to 1570 Ma are close to the U‐Pb zircon crystallization age and suggest that the granite has not experienced sustained thermal disturbance (> 250° C) since emplacement and cooling. However, a much younger Rb‐Sr total‐rock age of 1443 ± 26 Ma probably reflects low‐temperature disturbance to the Sr isotope system in feldspar.  相似文献   

14.
《Precambrian Research》2004,128(1-2):3-38
Emplacement of compositionally distinctive granitic plutons accompanied two pulses (765–680 and 620–550 Ma) of crustal extension that affected the Rodinian craton at the present location of the central Appalachians during the Neoproterozoic. The dominantly metaluminous plutons display mineralogical and geochemical characteristics of A-type granites including high FeOt/MgO ratios, high abundances of Nb, Zr, Y, Ta, and REE (except Eu), and low concentrations of Sc, Ba, Sr, and Eu. These dike-like, sheet complexes occur throughout the Blue Ridge province of Virginia and North Carolina, and were emplaced at shallow levels in continental crust during active extension, forming locally multiple-intrusive plutons elongated perpendicular to the axis of extension. New U–Pb zircon ages obtained from the Polly Wright Cove (706±4 Ma) and Suck Mountain (680±4 Ma) plutons indicate that metaluminous magmas continued to be replenished near the end of the first pulse of rifting. The Suck Mountain body is presently the youngest known igneous body associated with earlier rifting. U–Pb zircon ages for the Pound Ridge Granite Gneiss (562±5 Ma) and Yonkers Gneiss (563±2 Ma) in the Manhattan prong of southeastern New York constitute the first evidence of plutonic felsic activity associated with the later period of rifting in the U.S. Appalachians, and suggest that similar melt-generation processes were operative during both intervals of crustal extension. Fractionation processes involving primary minerals were responsible for much of the compositional variation within individual plutons. Compositions of mapped lithologic units in a subset of plutons studied in detail define overlapping data arrays, indicating that, throughout the province, similar petrologic processes operated locally on magmas that became successively more chemically evolved. Limited variation in source-sensitive Y/Nb and Yb/Ta ratios is consistent with results of melting experiments and indicates that metaluminous granitoids of the supersuite likely were derived through melting of lower crustal sources. Mildly peralkaline rocks of the Robertson River batholith and Irish Creek pluton may be derived from more chemically primitive sources similar in composition to ocean–island basalts. Blue Ridge granitoids define a plutonic episode that occurred during an unsuccessful pulse of crustal extension which predated opening of Iapetus by more than 100 million years. Granitoid gneisses in New York were emplaced during an extension-related, dominantly mafic magmatic episode that ultimately led to development of Iapetus.  相似文献   

15.
There are two main granitic rocks cropping out in the study area:1) the syn-orogenic granites are moderately weathered,jointed,exfoliated and characterized by low relief.These rocks are subdivided into tonalite and granodiorite.They are essentially composed of plagioclase,quartz,biotite,hornblende and potash feldspar;and 2) the post-orogenic granites,characterized by high relief terrain and represented by monzogranite,syenogranite and alkali granite.The monzogranites suffered hydrothermal alteration in particular along joints,faults,shear zones and fractures,which recorded the highest values of radioactivity,reflecting the role of post-magmatic alteration processes in the enhancement of radioactivity.The hydrothermal alteration(desilicification and hematitization) resulted in the formation of mineralized(altered) granites.The altered granites are enriched in TiO 2,Al 2 O 3,FeO T,MnO,MgO,Na 2 O,Rb,Sr,Y,Zr,Zn,Ga and Co and depleted in SiO 2,CaO,P 2 O 5,Nb,Pb,Cu,Ni and Cr relative to the fresh monzogranite.The investigated granites contain basic xenoliths as well as pockets of pegmatites.Perthites,quartz,plagioclase and sometimes biotite,represent the essential constituents.Some accessory minerals like zircon are metamicted reflecting their radiogenic nature.The alkali granites are characterized by the presence of aegirine,rebeckite and arfvedsonite.Both syn-and post-orogenic granites show some variations in their bulk chemical compositions.The older granitoids are metaluminous and exhibit characteristics of I-type granites and possess an arc tectonic environment.On the other hand,the younger granites are peraluminous and exhibit the characteristics of post-collisional granites.It is interpreted that radioactivity of the studied rocks is mainly controlled by both magmatic and post-magmatic activities.Frequently,the post-orogenic granites host zoned and unzoned pegmatite pockets.Some of these pockets anomalously attain high radioactivity.The syenogranites and the pegmatites are characterized by high contents of SiO 2 and K 2 O and low CaO and MgO.They have transitional characters from highly fractionated calc-alkaline to alkaline.The alkali granites related to A2-subtype of A-type granites.The post-orogenic granites were originated from magma of dominant crustal source materials and related to post-collisional setting under extensional environment.  相似文献   

16.
李勇  张士贞  李奋其  秦雅东 《地球科学》2020,45(8):2846-2856
目前关于拉萨地块西段狮泉河地区中生代岩浆岩的报道相对较少,限制了对该地区中生代岩浆作用的认识.对狮泉河地区石英闪长岩和闪长质包体的锆石U-Pb年龄、岩石学特征与元素地球化学进行了研究.结果显示,寄主石英闪长岩的年龄为161.1±1.7 Ma,闪长质包体的年龄为159.8±1.6 Ma和157.0±1.3 Ma,两者为同期形成.寄主石英闪长岩为I型准铝质中钾-高钾钙碱性系列岩石,具有富集大离子亲石元素、亏损高场强元素的特征.闪长质包体为准铝质中钾-高钾钙碱性系列岩石.岩石学、地球化学特征研究表明,该套岩石可能与中侏罗世班公湖-怒江特提斯洋南向俯冲有关,班公湖-怒江特提斯洋南向俯冲引起幔源物质发生熔融,上涌的幔源岩浆与拉萨地块古老基底重熔形成的酸性岩浆混合,形成了含闪长质包体的晚侏罗世岩体.   相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987112000588   总被引:4,自引:2,他引:2  
Large charnockite massifs occur in the high-grade Southern Granulite Terrain(SGT) and Eastern Ghats Belt(EGB) crustal provinces of Peninsular India.Available geochronological data indicate that the magmatism is episodic,associated with distinct orogenic cycles in the different crustal domains. The geochemical data also indicate a change in composition from trondhjemitic at~3.0—2.9 Ga to dominantly tonalitic at~2.6—2.5 Ga to tonalitic-granodiorite-granitic at—2.0—1.9 Ga to dominantly tonalitic at 1.7—1.6 Ga to quartz monzonitic or tonalitic at~1.0—0.9 Ga to granodiorite-granitic at~0.8—0.7 Ga. The trondhjemitic and tonalitic end members are metaluminous.magnesian and calcic to calc-alkalic, characteristic of magnesian group charnockites.The granodioritic to granitic end members are metaluminous to slightly peraluminous.ferroan and calc-alkalic to alkali-calcic,characteristic of ferroan group charnockites.The quartz monzonitic end members are metaluminous to peraluminous,magnesian to ferroan and calcic to calc-alkalic.neither characteristic of the magnesian group nor of the ferroan group of charnockites. Based on the occurrence and difference in composition of the charnockite massifs,it is suggested that the charnockite magmatism registers the crustal growth of the Indian plate on its southern(SGT) and eastern(EGB) sides,along active continental margins by accretion of arcs.  相似文献   

18.
ABSTRACT

The dismembered ophiolites in Wadi Arais area of the south Eastern Desert of Egypt are one of a series of Neoproterozoic ophiolites found within the Arabian–Nubian Shield (ANS). We present new major, trace, and rare earth element analyses and mineral composition data from samples of the Wadi Arais ophiolitic rocks with the goal of constraining their geotectonic setting. The suite includes serpentinized ultramafics (mantle section) and greenschist facies metagabbros (crustal section). The major and trace element characteristics of the metagabbro unit show a tholeiitic to calc-alkaline affinity. The serpentinized ultramafics display a bastite, or less commonly mesh, texture of serpentine minerals reflecting harzburgite and dunite protoliths, and unaltered relics of olivine, orthopyroxene, clinopyroxene, and chrome spinel can be found. Bulk-rock chemistry confirms harzburgite as the main protolith. The high Mg# (91.93–93.15) and low Al2O3/SiO2 ratios (0.01–0.02) of the serpentinized peridotite, together with the high Cr# (>0.6) of their Cr-spinels and the high NiO contents (0.39–0.49 wt.%) of their olivines, are consistent with residual mantle rocks that experienced high degrees of partial melt extraction. The high Cr# and low TiO2 contents (0.02–0.34 wt.%) of the Cr-spinels are most consistent with modern highly refractory fore-arc peridtotites and suggest that these rocks probably developed in a supra-subduction zone environment.  相似文献   

19.
Ras Abda plutonic suite, North Eastern Desert of Egypt, consists predominantly of Neoproterozoic calc-alkaline older granites. Minor exposures of pink microgranite are occurring along Wadi Ras Abda within the older granites. Previous studies on this area demonstrated that the microgranite is altered in some parts and contains anomalous concentrations of rare metal elements (Zr, Th, and U). These altered and mineralized zones are re-assessed using field observations, chemical analysis, and by the application of various transmitted light and electron microscopic techniques. The rare metals exist as mineral segregation grew freely into open cavities of the microgranite and concordant with the NNE strike-slip fault movement. The mineralized zones contain an assemblage of secondary magnetite, zircon, uranothorite, columbite-(Mn), fergusonite-(Y), and allanite-(Ce). The extreme abundance of zircon in the mineralized zone, along with other evidence, indicates a hydrothermal origin of this zircon together with associated rare metals. The geochemical investigation and mass balance calculations revealed extreme enrichment of Zr, Th, U, Y, Nb, Ta, and REE. Post-magmatic hydrothermal alterations resulted in such pronounced chemical and mineralogical heterogeneity. The hydrothermal fluids are thought to be oxidizing, alkaline and of medium temperature (>?250 °C). The average contents of the elements Zr (1606 ppm), Th (1639 ppm), U (306 ppm), Nb (955 ppm), and REE (1710 ppm) in the mineralized microgranite reach sub-economic levels and could be a potential source of these elements.  相似文献   

20.
Volcanoplutonic complexes in NE Vietnam have recently been interpreted as intraplate products of the Emeishan plume. Alternatively, mafic–ultramafic rocks have been considered as dismembered Palaeotethyan ophiolites juxtaposed along a tectonic mélange zone. New U–Pb zircon geochronological and geochemical datasets presented here suggest a complex geological history that records collision between the Indochina–South China blocks. Mafic–ultramafic rocks exposed within a tectonic mélange (Song Hien Tectonic Zone) include sub-alkaline pillow basalts that define two geochemically distinct ophiolitic suites (SH-1: N-MORB-like, SH-2: transitional E-MORB-like). Both suites have geochemical signatures suggestive of crustal contamination, compatible with a volcanic passive margin/rift setting. We suggest that SH-1 basalts may correlate with the Devonian–Carboniferous Jinshajiang–Ailaoshan–Song Ma branch of the Palaeotethys and form part of the associated Dian–Qiong belt, whereas SH-2 basalts are co-magmatic with Middle–Late Permian mafic–ultramafic intrusive rocks (dolerites, gabbros, peridotites) that developed in a rift basin, most likely on the margin of the down-going South China plate during west-vergent subduction beneath Indochina. During continental orogenesis and thrust stacking, these ophiolitic rocks were juxtaposed with other lithotectonic blocks within the Song Hien Tectonic Zone. Post-collisional relaxation led to the development of a rift basin (Song Hien rift) comprising Late Permian–Triassic volcano-sedimentary strata including < 270–265 Ma terrigenous sandstones, < 252 Ma mudstones, and c. 254–248 Ma felsic effusives. Granites and granodiorites were emplaced across NE Vietnam between c. 252 and 245 Ma in a syn- to post-collisional setting. The Late Permian–Early Triassic felsic magmatic rocks best correlate with coeval rocks in SW Guangxi and the Central and Western Ailaoshan fold belts (China) and the Truong Son fold belt (Vietnam); together they signal the final to post-collisional stages of Indochina–South China collision. We demonstrate that the analysed magmatic rocks in the Lo-Gam–Song Hien domains of NE Vietnam are not genetically linked to the Emeishan Large Igneous Province in the Yangtze block of South China, as has been previously widely proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号