首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
边界元方法被广泛应用于波浪对海上婕筑物作用领域,但由于传统边界元方法的存储量和计算量均为未知量的平方量级,很难满足大范围多未知量问题的计算需要.本文基于高阶边界元方法,应用预修正快速傅里叶变换方法,使计算量与存储量分别降低至O(NlogN)和O(N)量级,并得到一个连续的压强分布以适应结构设计的要求,同时可以通过使用满...  相似文献   

2.
《Applied Ocean Research》2005,27(4-5):224-234
The modified scaled boundary finite-element method (SBFEM), keeping the advantages of the original SBFEM, eliminates the restriction of the scaling center location so that this approach can solve two-dimensional problems with parallel side-faces. In this paper, the modified SBFEM is applied to solutions of two types of problems—wave diffraction by a single and twin surface rectangular obstacles and wave radiation induced by an oscillating mono-hull and twin-hull structures in a finite depth of water. For wave diffraction problems, numerical results agree extremely well with the analytic solution for the single obstacle case and other numerical results of a different approach for the twin obstacle case. For wave radiation problems, the particular solutions to the scaled boundary finite-element equation are presented for cases of heave, sway and roll motions. The added mass and damping coefficients for heave, sway and roll motions of a two-dimensional rectangular container are computed and the numerical results are compared with those from independent analytical solution and numerical solution using the boundary element method (BEM). It is found that the SBFEM method achieves equivalent accuracy to the conventional BEM with only a few degrees of freedom. In the last example, wave radiation by a two-dimensional twin-hull structure is analyzed. Comparisons of the results with those obtained using conventional Green's function method (GFM) demonstrate that the method presented in this paper is free from the irregular frequency problems.  相似文献   

3.
Following the successful experiences of solving water wave scattering problems for multiple impermeable cylinders by the authors' group, we extend the null-field integral formulation in conjunction with the addition theorem and the Fourier series to deal with the problems of surface-piercing porous cylinders in this paper. In the implementation, the null-field point can be exactly located on the real boundary free of calculating the Cauchy and Hadamard principal values, thanks to the introduction of degenerate kernels (or separable kernels) for fundamental solutions. This method is a semi-analytical approach, since errors attribute from the truncation of the Fourier series. Not only a systematic approach is proposed but also the effect on the near-trapped modes due to porous cylinders and disorder of layout is examined. Several advantages such as mesh-free generation, well-posed model, principal value free, elimination of boundary-layer effect and exponential convergence, over the conventional boundary element method (BEM) are achieved. It is found that the disorder has more influence to suppress the occurrence of near-trapped modes than the porosity. The free-surface elevation is consistent with the results of William and Li and those using the conventional BEM. Besides, the numerical results of the force on the surface of cylinders agree well with those of William and Li. Besides, the present method is a semi-analytical approach for problems containing circular and elliptical shapes at the same time.  相似文献   

4.
Coupled SPHS–BEM method is proposed for transient fluid–structure interaction problems: SPH shell (SPHS) is selected to discretize shell structures, the second-order doubly asymptotic approximations (DAA2) of boundary element method (BEM) is chosen to analyze flow-field. BEM can remedy the expensive costs for three-dimensional SPH (smoothed particle hydrodynamics), yet SPHS provides a structural solver for BEM. The coupled method is attractive, since only a layer of SPHS particles and a piece of flow-field boundary elements are needed to be modeled; the compatibility conditions of the coupled surface are performed with moving least square (MLS) function. The final two benchmarks on underwater impacts prove the feasibility, stability and accuracy of the proposed method.  相似文献   

5.
一种新的波浪变形三维数值模式──0-1混合型边界元   总被引:4,自引:0,他引:4  
为提高边界元法模拟三维波场波浪变形的数值计算精度,借鉴常数元和线性元剖分方式、波势函数及波势函数法向导数对单元节点设定的各自适应性,提出了一种新的单元剖分模式──0-1混合型边界元,以控制和减缓由于计算误差累计而造成的波浪数值计算上的“横向振动”,借此结合边界元法的分区模式可实现较大范围的波场线性波浪变形计算,并为时域内的波浪非线性变形计算提供时间步长的数值保证.  相似文献   

6.
A numerical method, which combines the boundary element method (BEM) and the volume of the fluid method (VOF method), has been presented to solve wave–structure interactions; the intense wave motion at the proximity of the structure is modeled by the VOF method and the rest of the fluid region is modeled by the BEM. The combined method can considerably reduce the time-consuming VOF domain, and thus practically makes it possible to apply the VOF method for random wave calculations, in which long time computations are usually required to obtain statistically meaningful results, and therefore the use of the single-VOF model often becomes prohibitive in terms of computational time and storage memories. A VOF model CADMAS-SURF, which is based on SMAC scheme and had been constructed by a number of VOF researchers in coastal engineering in Japan, is used in the combined BEM–VOF model. The two-way coupling treatment, which enables us to deal with bidirectional wave propagations, which was originally given for the SOLA-VOF model by Yan et al. (2003a) and later improved by Kim et al. (2007), was modified for the SMAC scheme. The coupling treatments are described in detail in the paper. The validity of the combined BEM–VOF model was investigated by comparing the numerical results with the theoretical results for the propagations of Stokes 5th order waves and random waves.  相似文献   

7.
A novel Boundary Element Method (BEM) named the second-order Taylor Expansion Boundary Element Method (the 2nd order TEBEM) is developed for the solution of the second-order wave radiation velocity potential and sum-frequency wave loads for floating bodies. The radiation condition is enforced by a hybrid method of the multi-transmitting formula and damping zone. For the interior domain problem of a cube and a sphere, numerical results demonstrate that the 2nd order TEBEM can accurately solve the first and second-order gradients of velocity potential on the no-smoothed and smoothed boundary compared to the low-order BEM. The double frequency forces acting on the truncated cylinder are calculated under finite water depth. The agreement between the 2nd order TEBEM and others' numerical results is good. Moreover, all of the singular integrals in the 2nd order TEBEM can be solved analytically, so its implementation is much easier compared to the high-order BEM.  相似文献   

8.
Multipole expansions for wave diffraction and radiation in deep water   总被引:1,自引:0,他引:1  
A multipole expansion of the velocity potential is described for two- and three-dimensional wave diffraction and radiation problems. The velocity potential is expressed in terms of a series of multipole potentials. The wave terms and the local disturbance terms are represented by separated multipole potentials. Floating bodies and submerged bodies are treated in the same way. This approach differs from that of some other authors, who considered floating bodies and submerged bodies separately and derived entirely different multipoles. Semi-analytical solutions for a circular cylinder in two-dimensional motions are given. It is found that the local disturbance decays rapidly and steadily. The general application of the multipole expansion to arbitrary geometries is also presented, based on a method coupling multipoles to a boundary integral expression. Numerical results for several floating and submerged cylinders are presented.  相似文献   

9.
叶素动量理论和CFD方法是水平轴潮流能水轮机性能分析中运用较为广泛的数值模拟方法,文中结合小尺寸水轮机模型试验,对比分析了叶素动量理论和CFD方法在水轮机性能分析中的准确性和适用性.验证结果表明:叶素动量理论和CFD方法均能对水轮机的性能进行预报,且CFD精度高于动量叶素理论;大尖速比时,动量叶素理论偏离较高,不再适合性能预报;在小尖速比下,建议采用RNGk-ε模型的CFD方法进行分析计算;动量叶素理论适合设计初期设计方案的对比分析,而CFD方法适合对设计结果的验证校核和详细分析.  相似文献   

10.
An effective boundary element method (BEM) is presented for the interaction between oblique waves and long prismatic structures in water of finite depth. The Green's function used here is the basic Green's function that does not satisfy any boundary condition. Therefore, the discretized elements for the computation must be placed on all the boundaries. To improve the computational efficiency and accuracy, a modified method for treatment of the open boundary conditions and a direct analytical approach for the singularity integrals in the boundary integral equation are adopted. The present BEM method is applied to the calculation of hydrodynamic coefficients and wave exciting forces for long horizontal rectangular and circular structures. The performance of the present method is demonstrated by comparisons of results with those generated by other analytical and numerical methods.  相似文献   

11.
In this study, the flow around the pod unit is analysed and the performance characteristics of the propeller on the pod are investigated. The main objective of the present work is to further improve the original numerical method developed before for the prediction of performance of podded propellers and to further validate the earlier developed numerical model with a specific emphasis on the hydrodynamic interaction amongst the propulsor components. While in the earlier numerical method, the axial induced velocities by pod and strut parts were included into the calculations on the propeller disc plane, in the present method the tangential induced velocities on the propeller disc plane are included in the calculations as well. The flow domain around the podded propeller is mainly divided into three parts; the axisymmetric pod part, the strut part and the propeller part. While the pod and strut parts are modelled by a low-order boundary element method (BEM), the propeller is represented by a vortex lattice method (VLM). Coupling of the BEM and the VLM is carried out in an iterative manner to incorporate the effect of the pod on the propeller, and vice versa. The present numerical method is applied to two different podded propellers with zero yaw angles in order to compare the results with those of experimental measurements. The present numerical method is also validated in the case of 15° of yaw angle for a podded propulsor. The effect of pod and strut on the propeller and vice versa are discussed.  相似文献   

12.
In the present research, supercavitating potential flow is studied numerically by the boundary element method (BEM). Using the advantages of BEM, an iterative algorithm has been introduced to capture cavity boundary in two-dimensional symmetric flows. In this algorithm, the cavity length is known and used to find the related cavitation number and cavity profile. In order to obtain finite length cavities, a cusped cavity closure model has been employed. Applying this cavity closure model, it is possible to change the cavity closure profile and its specified length. By comparing the results of the present analysis with previous analytical and numerical solutions as well as the experimental data, it can be concluded that the present iterative numerical algorithm is reliable and can be applied with BEM or other numerical methods to predict the characteristics of a supercavitating flow. Moreover, the feasibility of the cavity capturing in a flow field with low cavitation number is especially attractive.  相似文献   

13.
李玉成  肖辉 《海洋工程》2007,25(1):27-34
通过在二维数值水槽内用边界元法直接求解Laplace方程,对规则波在缓坡上的变形及破碎进行了数值计算。分析了不同底坡及采用不同底摩阻系数时规则波的破碎特征,并对规则波破碎的极限坡度进行了研究。重点分析了规则波破碎时海底坡度、底摩阻系数及波形不对称性对破碎指标的影响。  相似文献   

14.
Based on a two-dimensional linear water wave theory, this study develops the boundary element method (BEM) to examine normally incident wave scattering by a fixed, submerged, horizontal, impermeable plate and a submerged permeable breakwater in water of finite depth. Numerical results for the transmission coefficients are also presented. In addition, the numerical technique's accuracy is demonstrated by comparing the numerical results with previously published numerical and experimental ones. According to that comparison, the transmission coefficient relies not only on the submergence of the horizontal impermeable plate and the height of the permeable breakwater, but also on the distance between horizontal plate and permeable breakwater. Results presented herein confirm that the transmission coefficient is minimum for the distance approximately equal to four times the water depth.  相似文献   

15.
《Ocean Engineering》1999,26(4):325-341
Based on a two-dimensional linear water wave theory, this study develops the boundary element method (BEM) to examine normally incident wave scattering by a fixed, submerged, horizontal, impermeable plate and a submerged permeable breakwater in water of finite depth. Numerical results for the transmission coefficients are also presented. In addition, the numerical technique's accuracy is demonstrated by comparing the numerical results with previously published numerical and experimental ones. According to that comparison, the transmission coefficient relies not only on the submergence of the horizontal impermeable plate and the height of the permeable breakwater, but also on the distance between horizontal plate and permeable breakwater. Results presented herein confirm that the transmission coefficient is minimum for the distance approximately equal to four times the water depth.  相似文献   

16.
浮式生产储油船振动噪声混合数值预报   总被引:4,自引:0,他引:4  
建立了可覆盖全频域的浮式生产储油船(FPSO,floating production storage and offloading)工作环境下振动噪声混合数值预报技术流程。将声学计算基本理论方法(有限元/边界元方法与统计能量法)应用于宽频带多噪声源的海洋工程船舶设计中,为设计能保证人员正常进行生产、生活噪声环境下的FPSO提供指导,满足国内船舶设计部门对该技术的迫切需要。文中采用声学边界元求解了FPSO上层建筑低中频域振动噪声,采用统计能量分析方法求解了高频域振动噪声,通过两种方法接力运用和不同模型间的顺利转换,实现了FPSO声学问题全频域分析。并讨论了各类方法的适用范围。  相似文献   

17.
Based on the linear diffraction theory, an investigation is made on the interaction of water waves with a completely submerged sphere in water of finite depth in this paper. The method of multipole expansions is used to obtain the fluid velocity potential in the form of double series of the associated Legendre functions with the unknown coefficients of the infinite set of infinite matrix equations. The truncation property of the matrices and the convergence of the multipole series coefficients are investigated for various wavelengths and depths. The systematic numerical simulation, based on our analytical solution, is carried out and the fields of the hydrodynamic diffraction pressure and fluid velocity around the sphere, the three-dimensional free surface elevation, and total exciting forces acting on the sphere are graphically presented for a wide range of the body submergences, ocean depths and wavelengths.  相似文献   

18.
In this paper, we report on the use of a numerical wave tank (NWT), based on fully nonlinear potential flow (FNPF) equations, in driving simulations of flow and sediment transport around partially buried obstacles. The suspended sediment transport is modeled in the near-field in a Navier-Stokes (NS) model using an immersed-boundary method and an attached sediment transport simulation module. Turbulence is represented by large eddy simulation (LES). The NWT is based on a higher order boundary element method (BEM), with an explicit second-order time stepping. Hence, only the NWT boundary is discretized. The solution for the velocity potential and its derivatives along the boundary is obtained in the BEM, which subsequently provides a solution at any required internal point within the domain. At initial time, the NS-LES model domain is initialized with the 3-D velocity field provided by the NWT and driven for later time by the pressure gradient field obtained in the NWT. Incident wave fields, as specified in the NWT to drive sediment transport, can be arbitrary. Applications are presented here for single frequency waves, such as produced by a harmonic piston wavemaker in the laboratory, and modulated frequency wave groups. The feasibility of coupling the irrotational flow and NS solutions is demonstrated.  相似文献   

19.
非线性波浪波面追踪的一种新模式   总被引:1,自引:0,他引:1  
基于Laplace方程的Green积分表达式和波面BemouUi方程所建立的非线性波动数学模型,是一个时域上具有初始值的边值问题,而精确地追踪自由表面的波动位置,给出波面运动瞬时的波面高度和波面势函数,是建立时域内非线性波浪数值模式的基础。本文采用0-1混合型边界元剖分计算域边界并离散Laplace方程的Green积分表达式,采用有限元剖分自由水面并推导满足自由表面非线性边界条件的波面有限元方程,联立计算域内以节点波势函数和波面位置高度的时间增量为未知量的线性方程组,通过时步内的循环迭代,给出每个时步上的波面位置和波面势函数,从而建立了一种新的非线性波浪波面追踪模式。数值造波水槽内的波浪试验表明,其数值模拟结果具有良好的计算精度。  相似文献   

20.
A numerical algorithm based on the boundary element method (BEM) is presented for predicting the hydrodynamic characteristics of the various planing hull forms. The boundary integral equation is derived using Green's theorem on the wetted body surface and the free surface. The ventilation function at the transom is estimated with Doctor's empirical formula. This function is defined as the transom zone free surface boundary condition. The combined boundary integral equation and modified free surface boundary condition are simultaneously solved to determine the dipole on the wetted hull surface and the source on the free surface. The method is applied to investigate three examples of planing hulls, which include flat-plates, as well as wedge-shaped and variable deadrise planing hulls. Their hydrodynamic characteristics are calculated for different speeds. Computational results are presented and compared with existing theories and experiments. On the whole, the agreement between the present method and the selected experimental and numerical data is satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号