首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Analyses of DSRV “Alvin” core samples on the Cape Hatteras margin indicate major textural and compositional changes at depths of about 1000 and well below 2500 m. The distribution patterns of petrologic parameters correlate well with water mass flow and suspended-sediment plumes measured on this margin by other workers. Our study also shows: (a) vigorous erosion and sediment transport at depths of less than 400 m resulting from the NE-trending Gulf Stream flow; (b) deposition, largely planktonic-rich sediment released from the Gulf Stream, on the upper- to mid-slope, to depths of about 800–1200 m; (c) winnowing, resuspension and deposition induced by periodically intensified slope currents on the mid-slope to uppermost rise, between about 1000 and 2500 m; and (d) prevailing deposition on the upper rise proper (below 2500 m), from transport by the SW-trending Western Boundary Undercurrent. Sediments moved by bottom currents have altered the composition and distribution patterns of material transported downslope by offshelf spillover; this mixing of gravity-emplaced and bottom-current-transported sediment obscures depositional boundaries. Moreover, reworking of the seafloor by benthic organisms alters physical properties and changes erodability of surficial sediments by bottom currents. Measurement of current flow above the seafloor and direct observation of the bottom are insufficient to delineate surficial sediment boundaries. Detailed petrologic analyses are needed to recognize the long-term signature of processes and define depositional provinces.  相似文献   

2.
In contrast to high-frequency sequences driven by high-magnitude relative sea-level changes, those controlled by short-term, minor relative sea-level and/or sediment supply changes may be difficult to discriminate from sedimentological cycles (i.e., bedsets) unrelated to shoreline shifts, especially in case of limited outcrop exposures. In fact, meter-scale, fully shallow-marine high-frequency sequences and typical meter-scale bedsets may share a similar, simple facies succession documenting either an upward increase or decrease of event beds. It is therefore necessary to define a set of criteria that allows to discriminate between thin high-frequency sequences and bedsets, based on sedimentological, stratigraphic, micropaleontological, mineralogical and diagenetic data. In particular, the sedimentological and stratigraphic criteria that aid discriminating between high-frequency sequences and bedsets include: 1) occurrence of environmental changes across bounding surfaces; 2) occurrence of water-depth changes across bounding surfaces; 3) physical appearance of bounding surfaces and associated substrate-controlled ichnofacies; 4) lateral extent of bounding surfaces; 5) presence of condensed deposits; 6) cycle thickness; 7) recognition of a set of clinoforms in a regressive shoreface-shelf succession. Moreover, the formation of wave-ravinement surfaces in the shoreface is usually associated with an increase in the percentage of benthic micro-foraminifera specimens documenting energetic conditions, and in the abundance of heavy minerals. Extensive cementation may also be found just below and/or above transgressive surfaces. However, the integration of more than one of the above criteria is necessary to reliably discriminate between sequence stratigraphic surfaces (and therefore high-frequency sequences) and bedset boundaries, the latter being only related to changes of energy level and/or local sediment supply without shoreline shifts. This work is essential to correctly reconstruct the sequence stratigraphic framework of a given succession and to interpret the factors that controlled the cyclicity.  相似文献   

3.
Laboratory measurements of electrical resistivity on two DSDP pelagic carbonate sequences permitted the study of the effect of diagenesis on the electrical and other physical properties such as velocity and porosity. Electrical resistivity and formation factor increase with sediment depth. Changes in porosity with progressive diagenesis (that is, ooze-chalk-limestone) are observed, and changes in pore geometry are inferred. These changes are interpreted in terms of systematic variations in electrical and physical properties. Influence of silica on carbonate diagenesis may result in significant change in pore geometry. This effect inhibits electrical conduction leading to complicated but generally high resistivity values for siliceous and cherty limestones. Compressional velocity correlates well with resistivity for both sequences.  相似文献   

4.
The problem of wave propagation and wave damping in a channel with side porous mattresses of arbitrary shape protruding from the walls is studied. The solution was achieved by applying 3-D boundary element method and was employed to study wave field in the channel and to analyze the effect of the geometry of the mattresses and physical and hydraulic properties of porous material on wave damping. The results show that wave damping in the channel strongly depends on wave parameters, especially, on the wave number. Wave reflection and transmission decrease with increasing the wave number. The results also show that the wave field in the channel strongly depends on the geometry of the mattresses as well as on physical and hydraulic properties of porous material used to build these wave dampers. The geometry of the mattresses and physical and hydraulic properties of porous material have a moderate effect on wave reflection and a significant effect on wave transmission. The results show that wave transmission down the channel decreases with increasing the length and thickness of the mattresses. Moreover, wave transmission decreases with increasing the porosity and damping properties of porous media used to build the mattresses. The analysis shows that porous mattresses protruding from the channel walls are very efficient in damping water waves propagating down the channel and may be built in channels to reduce high waves and achieve desired wave conditions. Theoretical results are in reasonable agreement with experimental data.  相似文献   

5.
渤海海域旅大21-A构造在3600m以下的沙四段中发现了很好的油气显示,并且测试成功。沙四段在该构造是个新的油气勘探层系,具有很好的勘探前景。为了更好地研究该构造储集层情况,通过对该构造沙四段岩心、壁心资料,运用常规、铸体薄片鉴定和扫描电镜等化验分析资料,对该构造沙四段储集层基本特征进行了系统分析,认为该构造岩性主要以长石岩屑砂岩为主,岩屑长石砂岩次之,孔隙质量为中等一好,渗透率为特低渗~中渗,储集层物性中等。确定了影响储集层物性的主要因素为沉积作用、成岩作用和构造作用,三者综合影响着储集层的物性变化。  相似文献   

6.
A dramatic reduction in porosity, generally as much as 15–35%, is frequently associated with fine-grained sediment within which the transition of biogenic silica (opal-A) to cryptocrystalline opal-CT (cristobalite and tridymite) occurs. Many of these silica diagenetic boundaries imaged on seismic reflection data, in several basins worldwide, show a variety of undulating morphologies, often with a regular wavelength, where the diagenetic boundaries have variable relief, deformation of the overburden has been identified. Unusual stratal patterns are the result and these have recently been accounted for as a result of differential advancement of the boundary, differential compaction and subsidence of the overburden. The hypothesis developed is that differential advancement of the diagenetic fronts simply causes differential compaction and folding of the strata above the opal-A to opal-CT boundary.We test this hypothesis and then use knowledge of the relief of the diagenetic boundary and the folding above it, to make estimations of the magnitude of the porosity drop. We apply this forward modelling technique to examples of boundaries from the North Sakhalin Basin, Russian Far East and from the Faeroe-Shetland, Vøring and Møre Basins from the Northeast Atlantic margin. This is the first documented case of using seismic data to predict porosity reduction on the basis of seismic geometry alone and should have applicability in some siliceous successions.  相似文献   

7.
By integrating diagenesis and sequence stratigraphy, the distribution of diagenetic alterations and their impact on reservoir quality was investigated within a sequence stratigraphic framework using the fluvial and shallow marine sandstones in the Cambrian-Ordovician succession of southwest Sinai. The perographic and geochemical analysis of the studied sandstone revealed that the eogenetic alterations display fairly systematic spatial and temporal distribution patterns within the lowstand system tract and transgressive system tract, as well as along the sequence stratigraphic surfaces (i.e., sequence boundaries, transgressive surfaces and parasequence boundaries). During relative sea-level fall, percolation of meteoric waters through sandstones of the LST and below sequence and parasequence boundaries resulted in extensive dissolution of detrital grains and formation of kaolinite, authigenic K-feldspar and feldspar overgrowths as well as formation of mechanical infiltrated clays around the detrital grains. During relative sea-level rise, invasion of marine water into the sandstones as a consequence of landward migration of the shoreline, as well as low sedimentation rates encountered in the TST, resulted in the formation of glauconite, apatite and pyrite. Development of pseudomatrix, which was formed by mechanical compaction of mud intraclasts, is mostly abundant along transgressive surfaces and parasequence boundaries of the TST, and is related to the abundance of mud intraclasts in the transgressive lag deposits.The types and extent of eogenetic alterations have an important impact on the distribution of the mesogenetic alterations, including the formation of quartz overgrowths and dickite.Distribution of mesogenetic quartz overgrowths in the sandstones was controlled by the distribution of mechanically infiltrated clays and the presence of eogenetic cement. Sandstones that remained poorly cemented during eodiagenesis and that have thin or discontinuous infiltrated clay rims around the detrital grains were cemented during mesodiagenesis by quartz. The absence of extensive eogenetic cements in the sandstones suggested that the partial deterioration of porosity was mainly due to mechanical compaction. Partial transformation of kaolinite to dickite, which indicates neomorphic change to a better-ordered and more stable crystal structure at the elevated temperatures during mesodiagenesis, is partially a function of distribution of kaolinite during eodiagenesis.The conceptual model developed in this study shows the diagenetic evolutionary pathways in the reservoir sandstones within a sequence stratigraphic context, which in turn provides some insights into the controls on reservoir heterogeneity.  相似文献   

8.
A distinct porcellanite layer from the Southwest Indian Ridge intercalated in Pleistocene diatom ooze was studied using nondestructive physical property measurements and sedimentological data. This bed was sampled by two piston cores at a water depth of 2615 m. The 3–5 cm thick porcellanite layer appears in the cores at a depth of 6.03 m (Core PS2089-2) and 7.73 m (Core PS2089-1) below the seafloor. Due to its characteristic physical properties the porcellanite bed can be detected with core measurements, and its distribution and lateral extent mapped with echosounding. The physical index properties, wet bulk density and electrical resistivity, increase significantly across this bed. Magnetic susceptibility is used to compare the lithological units of both cores and to distinguish whether resistivity anomalies are caused by a higher amount of terrigenous components or by the presence of porcellanite. The porcellanite has the special characteristic to affect a positive anomaly in resistivity but not in susceptibility. Most marine sediments, in contrast, show a positive correlation of magnetic susceptibility versus electrical resistivity; therefore a combination of electrical resistivity and magnetic susceptibility logs yields a definite detection of the porcellanite bed. Images from the X-ray CT survey indicate that the porcellanite is lithified and brittle and fragmented when the piston corer penetrated the bed.  相似文献   

9.
Abstract

The problem of radioactive waste containment, the modeling of hydrocarbon formation processes, and the proposed laying of fiber‐optic communication cables on the seafloor have recently focused attention on the thermal and fluid flow properties of porous media. Both properties are difficult to determine accurately for large volumes of material, particularly where disturbance is inevitable either on sampling or penetration of the measuring device. Both properties, however, have been tentatively identified as bearing some form of analogy with electrical flow, and evaluation of these relationships with electrical measurements may provide practical means of obtaining rapid coverage of the sediment from a semi‐remote position. Using a variety of laboratory cells, an attempt has been made to evaluate useful relationships between electrical formation factor and thermal conductivity and/or permeability for both sands and clays. Formation factor exhibits a close relationship with permeability, and the capability of predicting permeability to within an order of magnitude is shown providing the grade of sediment is identified (e.g., sand or clay). Formation factor is related to porosity and while any one sample is best represented by Archie's (sands) or Winsauer's (clays) empirical law, the overall trend is a third‐degree polynomial; particle shape appears to dominate both porosity and permeability relationships with electrical formation factor. Thermal conductivity shows a clear dependence on the porosity of a saturated sediment. The successful prediction of thermal conductivity using a geometrical model requiring volume and thermal conductivity values for the components has been demonstrated for a variety of particle shapes and sizes. Thermal conductivity may be related to formation factor through the porosity of the sample for both sands and clays.  相似文献   

10.
From July to November 1988, a major electromagnetic (EM) experiment, known as EMRIDGE, took place over the southern end of the Juan de Fuca Ridge in the northeast Pacific. It was designed to complement the previous EMSLAB experiment which covered the entire Juan de Fuca Plate, from the spreading ridge to subduction zone. The principal objective of EMRIDGE was to use natural sources of EM induction to investigate the processes of ridge accretion. Magnetotelluric (MT) sounding and Geomagnetic Depth Sounding (GDS) are well suited to the study of the migration and accumulation of melt, hydrothermal circulation, and the thermal evolution of dry lithosphere. Eleven magnetometers and two electrometers were deployed on the seafloor for a period of three months. Simultaneous land-based data were made available from the Victoria Magnetic Observatory, B.C., Canada and from a magnetometer sited in Oregon, U.S.A.Changes in seafloor bathymetry have a major influence on seafloor EM observations as shown by the orientation of the real GDS induction arrows away from the ridge axis and towards the deep ocean. Three-dimensional (3D) modelling, using a thin-sheet algorithm, shows that the observed EM signature of the Juan de Fuca Ridge and Blanco Fracture Zone is primarily due to nonuniform EM induction within the ocean, associated with changes in ocean depth. Furthermore, if the influence of the bathymetry is removed from the observations, then no significant conductivity anomaly is required at the ridge axis. The lack of a major anomaly is significant in the light of evidence for almost continuous hydrothermal venting along the neo-volcanic zone of the southern Juan de Fuca Ridge: such magmatic activity may be expected to have a distinct electrical conductivity signature, from high temperatures, hydrothermal fluids and possible melt accumulation in the crust.Estimates of seafloor electrical conductivity are made by the MT method, using electric field records at a site 35 km east of the ridge axis, on lithosphere of age 1.2 Ma, and magnetic field records at other seafloor sites. On rotating the MT impedance tensor to the principal axis orientation, significant anisotropy between the major (TE) and minor (TM) apparent resistivities is evident. Phase angles also differ between the principal axis polarisations, and TM phase are greater than 90° at short periods. Thin-sheet modelling suggests that bathymetric changes accounts for some of the observed 3D induction, but two-dimensional (2D) electrical conductivity structure in the crust and upper mantle, aligned with the ridge axis, may also be present. A one-dimensional (1D) inversion of the MT data suggests that the top 50 km of Earth is electrically resistive, and that there is a rise in conductivity at approximately 300 km. A high conductivity layer at 100 km depth is also a feature of the 1D inversion, but its presence is less well constrained.  相似文献   

11.
Submarine groundwater discharge in coastal settings can massively modify the hydraulic and geochemical conditions of the seafloor. Resulting local anomalies in the morphology and physical properties of surface sediments are usually explored with seismo-acoustic imaging techniques. Controlled source electromagnetic imaging offers an innovative dual approach to seep characterization by its ability to detect pore-water electrical conductivity, hence salinity, as well as sediment magnetic susceptibility, hence preservation or diagenetic alteration of iron oxides. The newly developed electromagnetic (EM) profiler Neridis II successfully realized this concept for a first time with a high-resolution survey of freshwater seeps in Eckernf?rde Bay (SW Baltic Sea). We demonstrate that EM profiling, complemented and validated by acoustic as well as sample-based rock magnetic and geochemical methods, can create a crisp and revealing fingerprint image of freshwater seepage and related reductive alteration of near-surface sediments. Our findings imply that (1) freshwater penetrates the pore space of Holocene mud sediments by both diffuse and focused advection, (2) pockmarks are marked by focused freshwater seepage, underlying sand highs, reduced mud thickness, higher porosity, fining of grain size, and anoxic conditions, (3) depletion of Fe oxides, especially magnetite, is more pervasive within pockmarks due to higher concentrations of organic and sulfidic reaction partners, and (4) freshwater advection reduces sediment magnetic susceptibility by a combination of pore-water injection (dilution) and magnetite reduction (depletion). The conductivity vs. susceptibility biplot resolves subtle lateral litho- and hydrofacies variations.  相似文献   

12.
Modelling hydrocarbon migration in complex depositional environments is a difficult task. This paper illustrates a workflow that has been developed in order to make use of information at seismic resolution for migration modelling purposes. After a regional identification of the main seismic sequence boundaries and systems tracts, the first step of the workflow consists in a semi-automatic classification of the sand and shale prone seismic facies that are interpretable in the seismic volume. A software based on supervised neural network techniques and textural seismic attributes supports volumetric classification. Each class represents a different facies with specific petrophysical properties (threshold pressure, porosity, irreducible water saturation, etc.), assigned according to concurrent sedimentological studies; the result is a 3D lithofacies model. Petroleum system modelling is performed on a 3D regional model up to the calculation of hydrocarbon quantities expelled from the source rock. Then migration modelling is performed on the smaller area covered by the 3D lithofacies model. Invasion percolation approach has been chosen because it allows to perform migration modelling at a scale that is small enough to maintain a sufficient detail of the channels' shape and of their connections. A probabilistic approach allows to estimate charge risk in new prospects and to check modelling consistency. This workflow has been applied in a deep water setting in West Africa, characterized by an interconnected channel system, where a number of prospects had to be evaluated. A well was drilled in the area prior to this study, resulting dry in spite of being located in a position where the source rock is present and is deemed to have expelled interesting amounts of hydrocarbons. This study has shown that hydrocarbons expelled from the source appear to be deviated laterally by the presence of a local seal and therefore do not reach the channel system in the well location.  相似文献   

13.
Building empirical equations is an effective way to link the acoustic and physical properties of sediments. These equations play an important role in the prediction of sediments sound speeds required in underwater acoustics.Although many empirical equations coupling acoustic and physical properties have been developed over the past few decades, further confirmation of their applicability by obtaining large amounts of data, especially for equations based on in situ acoustic measurement techniques, is required. A sediment acoustic survey in the South Yellow Sea from 2009 to 2010 revealed statistical relationships between the in situ sound speed and sediment physical properties. To improve the comparability of these relationships with existing empirical equations, the present study calculated the ratio of the in situ sediment sound speed to the bottom seawater sound speed, and established the relationships between the sound speed ratio and the mean grain size, density and porosity of the sediment. The sound speed of seawater at in situ measurement stations was calculated using a perennially averaged seawater sound speed map by an interpolation method. Moreover, empirical relations between the index of impedance and the sound speed and the physical properties were established. The results confirmed that the existing empirical equations between the in situ sound speed ratio and the density and porosity have general suitability for application. This study also considered that a multiple-parameter equation coupling the sound speed ratio to both the porosity and the mean grain size may be more useful for predicting the sound speed than an equation coupling the sound speed ratio to the mean grain size.  相似文献   

14.
A numerical solution was derived to determine wave field in a converging channel bounded by rubble-mound jetties. The solution was achieved by applying boundary element method. The model was applied to analyze the effect of channel convergence, the cross-section of the jetties and their physical and damping properties on wave field in the channel. The study reveals numerous non-intuitive results specific for jetted and convergent channels. The analysis shows that wave reflection is usually low and is of secondary practical importance. Wave transmission strongly depends on the channel geometry and transmitted waves may be higher than incident waves, despite reflection and damping processes. Moreover, wave transmission depends on physical and damping properties of rubble jetties and the results show that wave transmission may increase with the increasing damping properties of jetties, which is a non-intuitive feature of wave fields in jetted channels. The analysis reveals several novel results of practical importance. It is shown that the rubble-mound jetties should be constructed from the material of high porosity, which ensures low transmission. More attention should be devoted to hydraulic properties of porous materials. It is recommended to use the material of moderate damping properties. The material of high damping properties often increases the wave transmission. It is possible, by a selection of rubble-mound material, to obtain lower transmission level for steep waves than for waves of moderate steepness. A series of laboratory experiments were conducted in the wave flume to verify the theoretical results. The comparisons show that theoretical results are in fairly good agreement with experimental data.  相似文献   

15.
近年来在琼东南盆地超深水区莺歌海组发现了多个深水气藏,展现了广阔的勘探前景。但随着油气勘探进一步推进,关于莺二段的储层物性问题日益凸显,严重制约了下一步的勘探进程。本文研究基于前人总结的区域地质资料,结合岩芯、测井和三维地震等资料,建立了莺二段三级层序格架,综合分析了层序格架内物源体系及其控制下的重力流沉积特征。研究表明,重力流沉积体系主要发育在莺二段下、中层序,具有南、北、轴向三大物源体系。不同物源体系控制了重力流储集体的空间展布和沉积特征:(1)南物源控制的海底峡谷充填深海泥岩,而北物源控制的海底峡谷充填的厚层浊积水道砂岩,孔渗物性好,是良好的储集层;(2)轴向物源影响的溢岸漫滩沉积,由于物性条件好,可以作为良好的油气储层;(3)南物源控制海底扇砂岩的厚度薄、粒度细、泥质含量较高,而北物源和轴向物源供应的海底峡谷和海底扇朵体的砂体面积广、厚度大、粒度粗、物性好,是深水区莺二段最重要的优质产气储层。  相似文献   

16.
This paper provides an example of an integrated multi-scale study of a carbonate reservoir. The Danian Lower R2 carbonate reservoir is located in the South of the Aquitaine Basin (France) and represents a potential underground gas storage site for Gaz de France. The Danian Lower R2 reservoir was deposited as a prograding carbonate platform bordered by a reef barrier. The effects of sedimentary and diagenetic events on the reservoir properties, particularly dolomitization, were evaluated. In this study, the reservoir quality has been assessed by seismic analyses at the basin scale, by log-analysis at the reservoir scale, by petrographic methods and by petrophysical tools at the pore-core scale.Two dolomitization stages, separated by a compaction event with associated fracturing and stylolites, have been identified. These diagenetic events have significantly improved the Lower R2 carbonate reservoir properties. It is demonstrated that the reservoir quality is mainly controlled by the pore-geometry, which is determined by various diagenetic processes. The permeability values of the reservoir range over 4 orders of magnitude, from 0.1 to 5600 mD and the porosity values range between 2 and 42%. Reservoir unit 4 (a karstic dolomite) shows the best reservoir properties with average porosity values ranging between 11.1% and 19.3% and an average permeability ranging between 379 and 766 mD. Reservoir unit 2 (a fine-grained limestone) shows the worst reservoir properties. The cementation factors range from 1.68 to 2.48. The dolomitic crystal carbonate texture (mainly units 3 and 4) shows the highest value of the cementation factor (1.98–2.48) and formation factor (9.54–36.97), which is due to its high degree of cementation. The saturation exponents vary between 1.2 and 3.4. Using these experimental electrical parameters and the resistivity laterolog tool we predicted the water saturation in the various reservoir units. The permeability was predicted by combining the formation factor with the micro-geometric characteristic length. The best fit is obtained with the Katz and Thompson's model and for a constant of 1/171.  相似文献   

17.
Reservoir characterization based on geostatistics method requires well constraints (e.g. seismic data with high quality) to predict inter-well reservoir quality that is conformed to geological laws. Nevertheless, the resolution of seismic data in multiple basins or reservoirs is not high enough to recognize the distribution of different types of sand bodies. In this paper, we propose a new method to improve the precision of reservoir characterization: reservoir modeling with the constrains of sedimentary process model and sedimentary microfacies. We employed stratigraphic forward modeling, a process-based method, to constrain the reservoir modeling in one oil-bearing interval of the third member of Eocene Shahejie Formation in J-Oilfield of Liaoxi Sag, Bohai Bay Basin.We divide reservoir modeling into two orders using different types of constrains. In the first order, we use the simulated shale model from stratigraphic forward model that is corrected by wells data as a 3D trend volume to constrain the reservoir sand-shale modeling. In the second order, different types of sedimentary microfacies in the sandy part of the model are further recognized and simulated within the constrains of sedimentary microfacies maps. Consequently, the porosity, permeability and oil saturation are modeled under the control of precise sedimentary microfacies model. The high-resolution reservoir model shows that the porosity, permeability and oil saturation of distributary channel is generally above 20%, 10md and 50%, respectively, which are much higher than that of other types of sedimentary microfacies. It can be concluded that comparing to other types of sedimentary facies, distributary channel has better physical properties and more oil accumulation in the fan-delta front and therefore is the most favorable zones for petroleum development in the research area.  相似文献   

18.
东海内陆架沉积气候信息的端元分析模型反演   总被引:10,自引:0,他引:10  
应用沉积物粒度端元分析模型对在东海内陆架泥质区取得的30号柱样的高分辨率粒度数据序列进行了反演,分离出3个端元,根据端元的频率分布特征和已有研究结果,认为3个端元可能为现代陆源细颗粒物质(EM1)、现代陆源粗颗粒物质(EM2)和风暴带来的残留沉积区再悬浮物质(EM3),并对本区域的水动力环境进行了分析,认为分离出的端元EM1和EM2的比值EM2/(EM1 EM2)序列可以反映东海沿岸流强度的历史变化,进而反映东亚冬季风强度和中国温度波动的历史。该序列与观测到的近百年来东亚冬季风强度记录、竺可桢的中国温度波动曲线以及葛全胜的中国东部冬半年温度变化序列有很好的对应关系。得出的气候指标序列在竺可桢给出的公元600—1100年高温期间的780—920年出现了一个极小值区,为许多作者推测的公元780—920年出现一个短暂的冷期提供了佐证;另外该序列近百年来变化幅度明显,反映了人类活动的影响。  相似文献   

19.
海底浅表层(小于1 m)沉积物的物理性质,如粒度、孔隙度、密度等是海洋沉积学研究和海洋工程地质分析的重要内容,目前主要基于有限的海底取样或原位测试获取这些沉积物的物理性质。浅地层剖面是基于声学信号(频率几千赫兹)在沉积物中的传播得到可反映沉积地层结构的数据,其中的一些声学参数,如海底反射系数、波阻抗等与沉积物物理性质密切相关。如何充分而有效地利用浅地层剖面资料,反演得到剖面覆盖区海底浅表层沉积物的物理性质参数,极具科学意义和应用价值,且基于声学属性反演沉积物物理性质是当前研究的热点。为此,本文基于渤海LD16-3CEPA至LD10-1PAPD路由段的浅地层剖面数据和海底表层沉积物的实测物理参数,利用Biot-Stoll模型建立研究区海底反射系数和沉积物物理性质之间的关系,并基于浅地层剖面数据计算得到的海底反射系数,反演了研究区海底浅表层沉积物的孔隙度、密度、平均粒径等物理性质参数。其中反演的孔隙度、密度、平均粒径与实测孔隙度、密度、平均粒径基本相符,偏差度基本都在20%的偏差范围内,表明该反演方法在该区的应用是可行的。  相似文献   

20.
利用高分辨率三维地震资料、测井和钻井数据,对东非鲁伍马盆地深水沉积特征进行了系统刻画。根据深水沉积体的地震相特征,识别出峡谷、水道、漫溢沉积、朵体、块体搬运沉积(MTDs)和凝缩段等深水沉积单元,建立了地震识别图版。分析总结了水道和朵体的岩性特征、电性特征和储层物性特征,砂岩具有低伽马(GR)和高电阻(RT)特征,厚层砂岩GR曲线呈“箱型”,有泥岩夹层的砂岩段呈叠加的“钟型”特点;储层压实程度弱,发育原生粒间孔隙,具有中—高孔、中—高渗的特征。结合成藏条件研究,认为由水道和朵体浊积砂岩储层、凝缩段和漫溢沉积泥岩盖层、天然堤和MTDs为侧向遮挡等要素构成的油气储、盖配置关系,是研究区油气成藏的一个关键因素,对深水油气勘探具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号