首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中国大陆降水日变化研究进展   总被引:32,自引:4,他引:28  
文章概述了中国大陆降水日变化的最新研究成果,给出了中国大陆降水日变化的整体图像,指出目前数值模式模拟降水日变化的局限性,为及时了解和掌握降水日变化研究进展、开展相关科学研究和进行降水预报服务提供了有价值的科学依据和参考。现有研究表明:(1)中国大陆夏季降水日变化的区域特征明显。在夏季,东南和东北地区的降水日峰值主要集中在下午;西南地区多在午夜达到降水峰值;长江中上游地区的降水多出现在清晨;中东部地区清晨、午后双峰并存;青藏高原大部分地区是下午和午夜峰值并存。(2)降水日变化存在季节差异和季节内演变。冷季降水日峰值时刻的区域差异较暖季明显减小,在冷季南方大部分地区都表现为清晨峰值;中东部地区暖季降水日变化随季风雨带的南北进退表现出清晰的季节内演变,季风活跃(间断)期的日降水峰值多发生在清晨(下午)。(3)持续性降水和局地短时降水的云结构特性以及降水日峰值出现时间存在显著差异。持续性降水以层状云特性为主,地表降水和降水廓线的峰值大多位于午夜后至清晨;短时降水以对流降水为主,峰值时间则多出现在下午至午夜前。(4)降水日变化涉及不同尺度的山-谷风、海-陆风和大气环流的综合影响,涉及复杂的云雨形成和演变过程,对流层低层环流日变化对降水日变化的区域差异亦有重要影响。(5)目前数值模式对中国降水日变化的模拟能力有限,且模拟结果具有很强的模式依赖性,仅仅提高模式水平分辨率并不能总是达到改善模拟结果的目的,关键是要减少存在于降水相关的物理过程参数化方案中的不确定性问题。  相似文献   

2.
近30 a江苏夏季降水日变化的气候学特征   总被引:2,自引:1,他引:1  
基于1980—2013年江苏省61站小时降水资料,分析了江苏省夏季降水日变化的特点及小时极端降水、不同级别雨日的日变化特征。结果表明,江苏省夏季降水日变化具有显著的双峰分布特征,然而江苏省北部和南部降水的主峰时段并不一致。从降水频次、累积降水量来看,江苏省北部降水以清晨至早上时段为主峰、午后至傍晚时段为次峰,南部降水与之相反。长持续性降水占夏季降水的2/3左右,且江苏北部占比多于南部,均为清晨至早上的单峰分布;短持续性降水占夏季降水的1/3,在江苏北部呈现出以午后至傍晚为主峰,清晨至早上为次峰的双峰分布,而在江苏南部呈现出以午后至傍晚的单峰分布特点。小时极端降水,阈值分布南低北高,虽然频次较少,但占夏季降水的40%左右。小时极端降水日变化的双峰分布和夏季总体降水分布类似,但主峰大都出现在午后至傍晚。不同级别雨日的日变化分布各有不同,但全省各区无显著差异。累积降水量贡献主要来自于暴雨和大雨。暴雨无论是从降水频次、累积降水量还是降水强度都呈现清晨至早上的单峰分布。  相似文献   

3.
Diurnal variations of precipitation over the South China Sea   总被引:1,自引:0,他引:1  
In this study, the diurnal variations of precipitation and related mechanisms over the South China Sea (SCS) are studied using the TRMM and other auxiliary atmospheric data. We have found that: (1) the amplitude and peak time of the diurnal precipitation over SCS exhibit remarkable regional features and seasonal variations. Diurnal variations are robust all the year around over the southern SCS especially over the Kalimantan Island and its offshore area. Over the middle to northern SCS, however, diurnal variations are noticeable only in the summer and autumn; (2) over the northern SCS precipitation peaks in early morning, while over the southern SCS it has two diurnal peaks: one in the early morning and another in the late afternoon; (3) the diurnal variations of precipitation over the SCS are related to the activity of the SCS summer monsoon and the ENSO events. The late afternoon precipitation increases remarkably after the onset of the SCS summer monsoon over the northern SCS. The early-morning rainfall peak is much more significant during La Nina years than during El Nino years; (4) the land–sea breeze is responsible for the diurnal cycle over the Kalimantan Island and its offshore area while the “static radiation–convection” mechanisms may result in the early-morning rainfall peak over the SCS.  相似文献   

4.
Diurnal Variation of Southwest Monsoon Rainfall at Indian Stations   总被引:3,自引:0,他引:3  
DiurnalVariationofSouthwestMonsoonRainfallatIndianStationsJ.M.Pathan(IndianInstituteofTropicalMeteorology,Pashan,Pune-411008,...  相似文献   

5.
华北地区夏季降水日变化的时空分布特征   总被引:5,自引:2,他引:3  
韩函  吴昊旻  黄安宁 《大气科学》2017,41(2):263-274
利用2008~2014年间全国自动站观测降水和CMORPH[CPC(Climate Prediction Center)morphing technique]卫星反演降水资料融合而成的0.1°×0.1°小时降水产品揭示了华北夏季降水的日变化特征,发现华北多数地区夏季降水量和降水频率日变化呈现出明显的双峰特征且存在明显的区域性差异。在太行山以西地区,降水量和降水频率的日峰值出现在傍晚18:00左右(北京时),规律性最强;而在太行山以东的平原和沿海地区,日峰值一般出现在上午。研究不同持续时间降水对总降水的贡献发现短时降水对傍晚的降水日峰值贡献较大,而长时降水则对凌晨的峰值影响更大。分析不同强度降水对总降水量的贡献结果表明,0.1~10 mm h-1强度降水较其它强度降水对夏季华北地区总降水量贡献更大,随着降水强度的增加降水量日变化的峰值个数增加。  相似文献   

6.
The mountain-plains solenoid(MPS) and boundary-layer inertial oscillation(BLO) are two typical regional forcings at the diurnal time scale. Their relative role in regulating the diurnal variations of summer rainfall over North China and their change under different monsoon conditions are studied using a 19-yr archive of satellite rainfall and reanalysis data. It is shown that both a strong MPS and BLO can increase nocturnal rainfall in the North China plains but exhibit evident regional differences. The MPS-induced nocturnal rainfall is relatively confined to the plains adjacent to mountains from late night to morning, due to the upward branch of the nighttime MPS. In contrast, the BLO-induced nocturnal rainfall strengthens from early evening and is more extensive in early morning over the open plains further east. The contrasting effect in the evening is related to the convergent(divergent) easterly anomaly in the plains under the BLO(MPS). The BLO also induces the relatively strong enhancement of moisture convergence and high humidity by the southerly anomaly at late night. On strong monsoon days, the nocturnal rainfall amount associated with the MPS and BLO increases considerably in the plains.Both regional forcings become effective in regulating the rainfall diurnal cycle with enhanced moisture convergence under monsoon conditions. Their induced diurnal amplitudes of moisture convergence can be comparable to the daily mean by monsoon flow. The regional forcings thus couple with monsoon flow to strengthen rainfall in the plains, particularly from late night to morning. The results highlight that a combination of regional and large-scale forcings can strongly regulate the warm-season climate.  相似文献   

7.
This study investigates the roles of the boreal summer intraseasonal oscillation (BSISO) in the diurnal rainfall cycle over Hainan Island during the warm season (April-September) using 20-year satellite-based precipitation, ERA5 and the outgoing longwave radiation data with the phase composite analysis method. Results show that the spatial distributions of the hourly rainfall anomaly significantly change under the BSISO phases 1-8 while no clear variations are found on the daily and anomaly daily area-averaged rainfall over the island. During the BSISO phase 1, the rainfall anomaly distinctly increases in the morning over the southwest and late afternoon over the northeast of the island, while suppressed convection occurs in the early afternoon over the southwest area. Under this circumstance, strong low-level westerly winds bring abundant moisture into the island, which helps initiate the nocturnal-morning convection over the south coastal area, and drives the convergence region of sea breeze fronts to concentrate into the northwest. Opposite to Phase 1, an almost completely reversed diurnal cycle of rainfall anomaly is found in Phase 5, whereas a positive anomalous rainfall peak is observed in the early afternoon over the center while negative peaks are found in the morning and late afternoon over the southwest and northeast, owing to a strong low-level northeasterly anomaly flow, which causes relatively low moisture and enlarges a sea-breeze convergence area over the island. During Phase 8, strongest moisture is found over the island all through the day, which tends to produce highest rainfall in the afternoon with enhanced anomalous northerly. These results further indicate that multiscale interactions between the large-scale circulations and local land-sea breeze circulations play important roles in modulating diurnal precipitation cycles over the tropical island.  相似文献   

8.
Using the tropical rainfall measuring mission (TRMM) Precipitation Radar (PR) observations combined with the surface rain gauge data during 1998–2006, the robust diurnal features of summer stratiform and convective precipitation over the southern contiguous China are revealed by exploring the diurnal variations of rain rate and precipitation profile. The precipitation over the southern contiguous China exhibits two distinguishing diurnal phases: late-night (2200–0600 LST) and late-afternoon (1400–2200 LST), dependent on the location, precipitation type and duration time. Generally, the maximum rain rate and the highest profile of stratiform precipitation occur in the late-afternoon (late-night) over the southeastern (southwestern) China, while most of the stratiform short-duration rain rate tends to present late-afternoon peaks over the southern China. For convective precipitation, the maximum rain rate and the highest profile occur in the late-afternoon over most of the southern contiguous China, while the convective long-duration rain rate exhibits late-night peaks over the southwestern China. Without regional dependence, the convective precipitation exhibits much larger amplitude of diurnal variations in both near surface rain rate and vertical extension compared with stratiform precipitation and the convective rain top rises most rapidly between noon and afternoon. However, there are two distinctive sub-regions. The diurnal phases of precipitation there are very weakly dependent on precipitation type and duration time. Over the eastern periphery of the Tibetan Plateau, the maximum rain rate and the highest profile of either convective or stratiform precipitation occur in the late-night. Over the southeastern coastal regions, both the near surface rain rate and rain top of convective and stratiform precipitation peak in the late-afternoon.  相似文献   

9.
This study analyzed the interdecadal changes in the diurnal variability of summer(June-August) precipitation over eastern China during the period 1966-2005 using hourly station rain gauge data.The results revealed that rainfall diurnal variations experienced significant interdecadal changes.Over the area to the south of the Yangtze River,as well as the area between the Yangtze and Yellow Rivers,the percentages of morning rainfall(0000-1200 LST) to total rainfall in terms of amount,frequency and intensity,all exhibited increasing interdecadal trends.On the contrary,over North China,decreasing trends were found.As a result,diurnal rainfall peaks also presented pronounced interdecadal variations.Over the area between the Yangtze and Yellow Rivers,there were 16 out of 46 stations with afternoon(1200-0000 LST) frequency peaks in the first 20 years of the 40-year period of study,while only eight remained in the latter 20 years.In North China,seven stations experienced the opposite changes,which accounted for about 21% of the total number of stations.The possible causes for the interdecadal changes in diurnal features were discussed.As the rainfall in the active monsoon period presents morning diurnal peaks,with afternoon peaks in the break period,the decrease(increase) of rainfall in the active monsoon period over North China(the area south of the Yangtze River and the area between the Yangtze and Yellow Rivers) may contribute to interdecadal changes in diurnal rainfall variability.  相似文献   

10.
原韦华 《大气科学进展》2013,30(6):1679-1694
Atmospheric Intercomparison Project simulations of the summertime diurnal cycle of precipitation and low-level winds over subtropical China by Intergovernmental Panel on Climate Change Fifth Assessment Report models were evaluated. By analyzing the diurnal variation of convective and stratiform components, results confirmed that major biases in rainfall diurnal cycles over subtropical China are due to convection parameterization and further pointed to the diurnal variation of convective rainfall being closely related to the closure of the convective scheme. All models captured the early-morning peak of total rainfall over the East China Sea, but most models had problems in simulating diurnal rainfall variations over land areas of subtropical China. When total rainfall was divided into stratiform and convective rainfall, all models successfully simulated the diurnal variation of stratiform rainfall with a maximum in the early morning. The models, overestimating noon-time (nocturnal) total rainfall over land, generally simulated too much convective rainfall, which peaked close to noon (midnight), sharing some similarities in the closures of their deep convection schemes. The better performance of the Meteorological Research Institute atmospherer. ocean coupled global climate model version 3 (MRI-CGCM3) is attributed to the well captured ratio of the two kinds of rainfall, but not diurnal variations of the two components. Therefore, a proper ratio of convective and stratiform rainfall to total rainfall is also important to improve simulated diurnal rainfall variation.  相似文献   

11.
A regional climate model (RCM) has been applied to simulate the diurnal variations of the Asian summer monsoon during the early summer period. The ERA40 reanalysis data and the TRMM precipitation data are used to evaluate the performance of the model. The 5-year simulations show that the RCM could simulate well the diurnal cycle of the monsoon circulation over the region. A strong diurnal variation of circulation over the Tibetan Plateau (TP) can be observed at the 500-hPa level, with strong convergence and upward motion in the late afternoon. The diurnal variation of the 500-hPa relative vorticity over the TP associated with the corresponding diurnal variation of convergence may lead to the formation of a prominent plateau-scale cyclonic circulation over the TP during the evening to midnight period. The simulated diurnal variation of precipitation over land is generally better than that over the ocean, particularly over the regions close to the TP such as the Bangladesh region in the southern flank of the TP, where the well-known nocturnal maximum in precipitation is well captured by the RCM. However, the late-afternoon maximum in precipitation over the Southeast Asia region is not well simulated by the RCM. The model results suggest that the diurnal variation of precipitation over the southern flank of the TP is associated with the strong diurnal variation in the circulation over the TP.  相似文献   

12.
利用华南地区248个国家级地面气象站逐小时降水数据和14个探空站数据,分析了2003—2016年4—6月华南前汛期降水日变化特征。据南海夏季风爆发时间,将降水分为爆发前后两个时段。华南地区主要存在两条大雨带,一个位于云贵高原至南岭山脉以南,另一个位于广东沿海地区。偏北雨带集中发生在后半夜至清晨时段,偏南雨带集中发生在中午至下午时段。南海夏季风爆发前后,降水量不存在明显相关性,相关系数较大时次位于中午至下午时段。前后期年降水标准差在0.5附近,变化幅度明显时段主要集中于凌晨至清晨。午后出现3 h多年降水量变化幅度最大值,最小时段为中午12时。降水量、降水频率和降水强度的经向分布特征明显且相似:降水量和降水频率在112 °E附近出现日变化转折,以西多出现不稳定夜雨,以东白天降水波动较大。在南海夏季风爆发前,降水特征主要表现为西部高频、南部高强,在清晨更多作用于对暴雨系统的增长;季风爆发后则表现为西北-东南南的高频率高强度降水形态,在傍晚更多作用于增加降水发生频率。   相似文献   

13.
新一代全球降水观测计划GPM作为TRMM卫星的继承者,在物理探测和降水反演算法上具有明显进步。以广东省雨量自动站为基准,对2014—2018年间GPM的格点降水估测产品IMERG(V5B)的日变化特征和估测误差进行分析。结果表明,IMERG能清晰反映广东前、后汛期的降水双峰型特征,但对下午降水峰值明显高估,峰值出现时间滞后;而对于沿海早晨峰值降水则明显低估,对于降水极值,低估更加显著。IMERG对两个峰值的估测误差受不同因素影响,下午峰值降水的相对偏差与地形密切相关,珠江三角洲平原为稳定高估区,地形高度越高,低估幅度越大;而早晨峰值降水极值负偏差与地形高度、降水量的相关性均较小。对出现显著负偏差的早晨沿海降水样本日进行925 hPa风场合成,可知IMERG明显低估时,对应区域上游较强的超低空西南气流与风速夜间增长。IMERG对这一季风活动背景降水的低估构成了其估测早晨降水误差的主要来源。   相似文献   

14.
Short-duration heavy rainfall(SDHR) is a type of severe convective weather that often leads to substantial losses of property and life. We derive the spatiotemporal distribution and diurnal variation of SDHR over China during the warm season(April–September) from quality-controlled hourly raingauge data taken at 876 stations for 19 yr(1991–2009), in comparison with the diurnal features of the mesoscale convective systems(MCSs) derived from satellite data. The results are as follows. 1) Spatial distributions of the frequency of SDHR events with hourly rainfall greater than 10–40 mm are very similar to the distribution of heavy rainfall(daily rainfall 50 mm) over mainland China. 2) SDHR occurs most frequently in South China such as southern Yunnan, Guizhou, and Jiangxi provinces, the Sichuan basin, and the lower reaches of the Yangtze River, among others. Some SDHR events with hourly rainfall 50 mm also occur in northern China, e.g., the western Xinjiang and central-eastern Inner Mongolia. The heaviest hourly rainfall is observed over the Hainan Island with the amount reaching over 180 mm. 3) The frequency of the SDHR events is the highest in July, followed by August. Analysis of pentad variations in SDHR reveals that SDHR events are intermittent, with the fourth pentad of July the most active. The frequency of SDHR over mainland China increases slowly with the advent of the East Asian summer monsoon, but decreases rapidly with its withdrawal. 4) The diurnal peak of the SDHR activity occurs in the later afternoon(1600–1700 Beijing Time(BT)), and the secondary peak occurs after midnight(0100–0200 BT) and in the early morning(0700–0800 BT); whereas the diurnal minimum occurs around late morning till noon(1000–1300 BT). 5) The diurnal variation of SDHR exhibits generally consistent features with that of the MCSs in China, but the active periods and propagation of SDHR and MCSs difer in diferent regions. The number and duration of local maxima in the diurnal cycles of SDHR and MCSs also vary by region, with single, double, and even multiple peaks in some cases. These variations may be associated with the diferences in large-scale atmospheric circulation, surface conditions, and land-sea distribution.  相似文献   

15.
江苏南部汛期降水日变化特征分析   总被引:2,自引:1,他引:1  
利用江苏南部20个气象观测站2008—2012年汛期(5—10月)逐小时降水资料,应用降水频率来分析了江苏南部地区降水日变化基本特征和区域差异。研究表明:降水日变化特征地域性差异较强,西部站、东部站和东北沿海站都存在一定的特征差异。东部站降水量的最大值主要出现在下午和傍晚;西部站降水量主峰值出现在下午,并且在清晨和夜间还有两个次峰值;东北沿海站呈现出午前、午后的双峰值形式。2008—2011年降水量下午高值区有先减弱后增强并提前的趋势,而上午的高值区有总体减弱并推迟的特征。2011年后有明显减弱的趋势。江苏南部总体来说,短时强降水(大于20和25 mm/h)在16—19时出现主峰值,07—09时也有相对较小的次峰值。  相似文献   

16.
Based on the high-density hourly rain-gauge data from 265 stations over the Qilian Mountains in Northwest China,climatic mean diurnal variations of summer rainfall over different topographies of this area are investigated. Influences of the gauge elevations on the diurnal variation of rainfall are also revealed. Distinct regional features of diurnal variations in rainfall are observed over the Qilian Mountains. Rainfall over the Qinghai Lake areas shows a single nocturnal peak. A dominant, late-afternoon peak of rainfall occurs over the mountain tops. Over the northeastern and southeastern slopes, a dominant diurnal peak appears in the late afternoon, and an evident second peak is found in the early morning, respectively. The strengths of the early-morning peaks in the rainfall frequency are closely related to the rainfall events with different durations over the two slopes. The early-morning peak is dominant across plains with low elevations. From the mountain tops to the plains, the diurnal peaks of rainfall gradually vary from the dominant late-afternoon peak to the dominant early-morning peak with the enhanced early-morning peak in concurrent with the decreasing gauge elevation over the northeastern and southeastern slopes. Further examination indicates that the rainfall at higher elevations over the northeastern and southeastern slopes occurs more readily in the afternoon,compared to the lower elevations. This phenomenon corresponds to the result that the proportion of the rainfall frequency occurring during the early-morning period decreases with increasing elevations over the two slopes.  相似文献   

17.
This study investigates diurnal variations of precipitation during May–August, 1998–2012, over the steep slopes of the Himalayas and adjacent regions(flat Gangetic Plains–FGP, foothills of the Himalayas–FHH, the steep slope of the southern Himalayas–SSSH, and the Himalayas-Tibetan Plateau tableland–HTPT). Diurnal variations are analyzed at the pixel level utilizing collocated TRMM precipitation radar and visible infrared data. The results indicate that rain parameters(including rain frequency, rain rate, and storm top altitude) are predominantly characterized by afternoon maxima and morning minima at HTPT and FGP, whereas, maximum rain parameters at FHH typically occur in the early morning. Rain parameters at SSSH are characterized by double peaks;one in the afternoon and one at midnight. Over HTPT and FGP,convective activity is strongest in the afternoon with the thickest crystallization layer. Over FHH, the vertical structure of precipitation develops most vigorously in the early morning when the most intense collision and growth of precipitation particles occurs. Over SSSH, moist convection is stronger in the afternoon and at midnight with strong mixing of ice and water particles. The results of harmonic analysis show that rain bands move southward from lower elevation of SSSH to FHH with apparent southward propagation of the harmonic phase from midnight to early morning. Moreover, the strongest diurnal harmonic is located at HTPT, having a diurnal harmonic percentage variance of up to 90%. Large-scale atmospheric circulation patterns exhibit obvious diurnal variability and correspond well to the distribution of precipitation.  相似文献   

18.
Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.  相似文献   

19.
利用横断山脉纵向岭谷典型区域2005~2019年28个地面气象观测站逐时降水数据,分析纵谷区短时强降水时空分布特征,结果表明:(1)纵谷区年降水量自西向东减少,而短时强降水量对年降水量的贡献则从西北向东南增加,短时强降水发生频率空间分布极不均匀,在0.1~6.7次/年之间,纵谷区上段发生频率很低,怒江下游和金沙江下游周边流域出现2个大值中心。(2)纵谷区短时强降水年发生频率具有0.022次/年的增加趋势。发生频率逐月变化峰值在7~8月出现,纵谷区下段2个大值中心在6~9月均明显存在;逐候变化多峰值特征突出(36、39~44、47和51候4个峰值),且51候后的下降趋势强于36候前的增加趋势,候频率高峰到达时间的空间分布表现出东北早、西南晚的特点。(3)发生频率日变化主峰值多出现在凌晨,次峰值在傍晚。子夜前后、凌晨、清晨三个时段频率空间分布均自北向南、东南增加,怒江和金沙江下游的2个大值中心明显,而午后、傍晚二个时段频率的空间分布差异较小。纵谷区中上段发生频率日变化幅度大,其西部多为夜发性短时强降水,而东部则以午后至傍晚的短时强降水为主,纵谷区下段发生频率日变化幅度小,午后、傍晚、夜间都会出现。短时强降水的这些时空分布特征与横断山脉纵向岭谷地形及南亚季风活动特性密切相关。   相似文献   

20.
This paper investigates the diurnal variations of summer precipitation in Shanghai by using the city''s hourly precipitation data over a span of 35 years. The result shows that the precipitation peaks twice, in the morning and in the afternoon. Precipitation in the morning is characterized by light to moderate rain, and that in the afternoon by heavy to super heavy rain. The peak of short-duration precipitation is mostly found in the afternoon and at dusk, and that of long-duration precipitation in the morning. Most of the precipitation events in Shanghai are of a short duration of 2-3 hours. Basically, the precipitation is spatially distributed in three areas: the eastern coastal and central urban area, where the precipitation peaks mostly in the afternoon, the southern coastal area, where the precipitation peaks both in the afternoon and during the night, and the western area, where long-duration precipitation accounts for a much larger proportion than the other two areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号