首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Dharwar Craton, southern India, gold deposits are found mostly along the six arcuate shear zones passing through late Archaean greenstone belts (2.7 Ga). One such shear zone complex extends for about 400 km within and along the Ramagiri–Hungund schist belt. The Penakacherla sector of this shear zone is excellently exposed, enabling a detailed investigation of synorogenic gold mineralisation and its relationship to associated hydrothermal alteration.Metamorphism and deformation under NE–SW compression associated with Archaean subduction processes converted mafic volcanic rocks into amphibolites and intermediate to felsic volcanic rocks into quartz mica schists. Continued compression generated a 50–100-m-wide shear zone complex consisting of mafic phyllonites. Advection of hydrothermal fluids through this shear zone and reaction between fluids and the mafic phyllonites resulted in a silicified, K-metasomatic assemblage mainly consisting of chlorite, amphibole, K-mica, plagioclase, ankerite, quartz, Fe-oxides, pyrite, chalcopyrite and arsenopyrite. Networks of quartz and carbonate veinlets, a few millimeters to a few centimeters thick, formed along the foliation planes giving rise to microscopic alteration envelope, in which individual veinlet systems are merged into one another to form a composite alteration system. Gold is found within these quartz veinlets, mafic phyllonites and at their mutual contacts.Hydrothermal fluids have modified the primary major, minor, trace and LREE compositions of host rocks such that their mutual behaviour became non-systematic. Some HFSE and HREE also show minor mobility but the overall REE pattern generally resembles that of the precursor mafic volcanic rocks. Mass and volume loss/gain by Si and Ca has made significant impact on Al, Ti and Zr abundances, which are generally immobile during hydrothermal alteration. However, element pairs such as Zr–Hf, V–Sc and Nb–Ta maintain primary inter-element ratios, although their absolute abundances are drastically diluted. Similarly, ΣREE in highly silicified and carbonatised samples are reduced, but patterns remain similar to those of relatively least altered mafic phyllonites with (LaN/Yb)N between 1 and 3. In some samples, LREE enrichment is observed elevating in (LaN/Yb)N from 3 to 11. Pathfinder elements and base metals such as As, Cd, Cu, Pb, Zn and Sb have been added along with the Au and Ag.δ13C of carbon varies from −16‰ to −21‰ suggesting a biogenic origin, whereas coexisting pyrite δ34S ranges from 1‰ to 3‰, pointing towards the involvement of magmatic or average crustal sulphur. Overall concentrations of K, Rb, Sr, Ba, Nb, Ta, Ti, Cs, Cr, Co, V, Y and Sc and many of the ratios such as K/Rb, La/Sc, La/Yb indicate that metamorphism, devolatilisation and dehydration of an oceanic subducting slab might have partially contributed the mineralising fluids and generated the alteration assemblage observed in the host rocks. Fluid sources were mantle and greenstone belt dehydration and devolatilisation generating observed compositional and alteration diversity.  相似文献   

2.
The Qaleh-Zari copper deposit, located in South Khorasan in the Central Lut region of Iran, is a polymetallic vein deposit with major amounts of Cu, Au, Ag and minor amounts of Pb, Zn and Bi. Mineralization occurs in a series of NW–SE trending fault planes and breccia zones in Paleogene andesitic to basaltic volcanic rocks. Argillization, sericitization and propylitization characterize alteration halos bordering mineral veins. The main ore minerals are chalcopyrite, pyrite, galena and sphalerite, with quartz, calcite and minor chlorite as the main gangue phases. Microthermometric measurements of fluid inclusions in cogenetic quartz indicate homogenization temperatures between 160 and 300 °C and salinities from 1 to 4 wt% NaCl equiv. Boiling occurred in the mineralising fluids at 160–1000 m below the paleo-water table at pressures of approximately 15−80 bar at various stages in the formation of the ore body. The wide range of pressures and temperatures reflects the multi-stage nature of the mineralization at Qaleh-Zari. The δ18O values in quartz (relative to SMOW) and δ34S values in chalcopyrite and galena (relative to CDT) range from 6.5 to 7.5‰ and 0.0–1.5‰ (mean: 7.0‰), respectively. At 300 °C, calculated fluid δ18O values are close to 0‰. These data suggest a magmatic origin for sulfur and a surficial origin for the mineralizing fluid. Mineralization at Qaleh-Zari is interpreted as epithermal and low-sulfidation in style and was probably related to a deep-seated magmatic system. Ore deposition was the result of boiling, cooling and pressure reduction.  相似文献   

3.
The Daduhe gold field comprises several shear-zone-controlled Tertiary lode gold deposits distributed at the eastern margin of the Tibetan Plateau. The deposits are hosted in a Precambrian granite–greenstone terrane within the Yangtze Craton. The gold mineralization occurs mainly as auriferous quartz veins with minor sulphide minerals. Fluid inclusions in pyrite have 3He/4He ratios of 0.16 to 0.86 Ra, whereas their 40Ar/36Ar ratios range from 298 to 3288, indicating a mixing of fluids of mantle and crust origins. The δ34S values of pyrite are of 0.7–4.2‰ (n = 12), suggesting a mantle source or leaching from the mafic country rocks. δ18O values calculated from hydrothermal quartz are between − 1.5‰ and + 6.0‰ and δD values of the fluids in the fluid inclusions in quartz are − 39‰ and − 108‰. These ranges demonstrate a mixing of magmatic/metamorphic and meteoric fluids. The noble gas isotopic data, along with the stable isotopic data suggest that the ore-forming fluids have a dominantly crustal source with a significant mantle component.  相似文献   

4.
The gold mineralization of the Hutti Mine is hosted by nine parallel, N–S trending, steeply dipping, 2–10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D2 shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle–ductile D3 shearing and intense quartz veining. The development of a S2–S3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D2 shearing is associated with a pervasively developed distal chlorite–sericite alteration assemblage in the outer parts of the shear zones and the proximal biotite–plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S3. The average size of the laminated vein systems is 30–50 m along strike as well as down-dip and 2–6 m in width.Mass balance calculations suggest strong metasomatic changes for the proximal biotite–plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite–sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in δ18O values of the whole rock from around 7.5‰ for the host rocks to 6–7‰ for the distal chlorite–sericite and the proximal biotite–plagioclase alteration and around 5‰ for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow.The ductile D2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold–sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of pre-existing anisotropies for fault-valve action and economic gold mineralization.  相似文献   

5.
The Qolqoleh gold deposit is located in northwestern part of the Sanandaj–Sirjan metamorphic belt, northwestern Iran. Igneous and sedimentary units exposed in the area have undergone greenschist metamorphism. The area was affected by a NE–SW trending shear zone and subsequent deformation. Two different types of mineralization are distinguished in the Qolqoleh gold deposit based on geological–structural conditions indicated by microtextural analysis: ductile and then brittle. Ore-forming processes are divided into three stages: Early (I), Middle (II) and Late (III), which include quartz–pyrite (I), sulfides and gold (II) and carbonate veinlets (III), respectively. The stage I fluids are characterized by δ18O = 15.5‰ at 440 ºC, and are thought to be deep-sourced metamorphic waters; the stage III fluids, with δ18O = 1.6‰, are shallow-sourced meteoric waters; whereas, the stage II fluids, with δ18O = 13.1‰, are a mixture of deep-sourced metamorphic and shallow-sourced meteoric fluids. Based on comparisons of the D–O–C isotopic systematics, the ore-forming fluids with characteristic high δ18O and δ13C and low δD originated from metamorphic devolatilization of Cretaceous volcano-sedimentary (felsic to mafic metavolcanic rocks–shale–carbonate–carbonaceous chert) sequences, locally rich in organic matter. During late Cretaceous continental collision of the Afro-Arabian continent and the Iranian microcontinent, a crustal slab consisting of felsic to mafic metavolcanic rocks, carbonate, shale and carbonaceous chert was underthrust northwards beneath the central Iranian microcontinent along the Zagros fault. During further contraction, deformation was localized in reverse oblique-slip structures with vergence toward south; shear zones generally follow contacts between more competent and less competent rock units. Metamorphic devolatilization of this underthrust slab is the source of the ore-forming fluids that generated the Au ore belt, which includes the Qolqoleh gold deposit.  相似文献   

6.
We have analysed the halogen concentrations and chlorine stable isotope composition of fluid inclusion leachates from three spatially associated Fe-oxide ± Cu ± Au mineralising systems in Norrbotten, Sweden. Fluid inclusions in late-stage veins in Fe-oxide–apatite deposits contain saline brines and have a wide range of Br/Cl molar ratios, from 0.2 to 1.1 × 10−3 and δ37Cl values from −3.1‰ to −1.0‰. Leachates from saline fluid inclusions from the Greenstone and Porphyry hosted Cu–Au prospects have Br/Cl ratios that range from 0.2 to 0.5 × 10−3 and δ37Cl values from −5.6‰ to −1.3‰. Finally, the Cu–Au deposits hosted by the Nautanen Deformation Zone (NDZ) have Br/Cl molar ratios from 0.4 to 1.1 × 10−3 and δ37Cl values that range from −2.4‰ to +0.5‰, although the bulk of the data fall within 0‰ ± 0.5‰.The Br/Cl ratios of leachates are consistent with the derivation of salinity from magmatic sources or from the dissolution of halite. Most of the isotopic data from the Fe-oxide–apatite and Greenstone deposits are consistent with a mantle derived source of the chlorine, with the exception of the four samples with the most negative values. The origin of the low δ37Cl values in these samples is unknown but we suggest that there may have been some modification of the Cl-isotope signature due to fractionation between the mineralising fluids and Cl-rich silicate assemblages found in the alteration haloes around the deposits. If such a process has occurred then a modified crustal source of the chlorine for all the samples cannot be ruled out although the amount of fractionation necessary to generate the low δ37Cl values would be significantly larger.The source of Cl in the NDZ deposits has a crustal signature, which suggests the Cl in this system may be derived from (meta-) evaporites or from input from crustal melts such as granitic pegmatites of the Lina Suite.  相似文献   

7.
Sulfur and O isotope analyses of dissolved SO4 were used to constrain a hydrogeological model for the area overlying the Gorleben–Rambow Salt Structure, Northern Germany. Samples were collected from 80 wells screened at different depth-intervals. The study area consists of a set of two vertically stacked aquifer systems. Generally, the isotope data show a good spatial correlation, outlining well-defined groundwater zones containing SO4 of characteristic isotopic composition. Highly saline waters from deeper parts of the lower aquifer system are characterized by rather constant SO4 isotopic compositions, which are typical of Permian Zechstein evaporites (δ34S=9.6–11.9‰; δ18O=9.5–12.1‰). Above this is a transition zone containing ground waters of intermediate salinity and slightly higher isotopic values (average δ34S=16.6‰; δ18O=15.3‰). The confined groundwater horizon on the top of the lower aquifer system below the low permeable Hamburg Clays is low in total dissolved solids and is characterized by an extreme 34S enrichment (average δ34S=39.1‰; δ18O=18.4‰), suggesting that bacterially mediated SO4 reduction is a dominant geochemical process in this zone. Two areas of distinct isotopic composition can be identified in the shallow ground water horizons of the upper hydrogeological system. Sulfate in groundwaters adjacent to the river Elbe and Löcknitz has a typical meteoric isotopic signature (δ34S=5.2‰; δ18O=8.2‰), whereas the central part of the area is characterized by more elevated isotopic ratios (δ34S=12.7‰; δ18O=15.6‰). The two major SO4 pools in the area are represented by Permian seawater SO4 and a SO4 of meteoric origin that has been mixed with SO4 resulting from the oxidation of pyrite. It is suggested that the S-isotope compositions observed reflect the nature of the SO4 source that have been modified to various extent by bacterial SO4 reduction. Groundwaters with transitional salinity have resulted from mixing between brines and low-mineralized waters affected by bacterial SO4 reduction.  相似文献   

8.
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn–Cu–Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0–19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245–450 °C, and (2) aqueous solutions with low CO2, low to moderate salinity (0–14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5–12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0–3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320–380 °C. Cassiterite, wolframite, columbite–tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0–6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100–260 °C) and characterizes the sulfide–fluorite–sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0–3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240–450 °C, and 1.0–2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (δ18Oquartz from 9.9‰ to 10.9‰, δDH2O from 4.13‰ to 6.95‰) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 °C. In the Santa Bárbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 °C, respectively), and that for the cassiterite-quartz-veins is 415 °C. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (δ18Oqtz-H2O=5.5–6.1‰) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (δ18Omica-H2O=3.3–9.8‰) suggest mixing with meteoric water. Late muscovite veins (δ18Oqtz-H2O=−6.4‰) and late quartz (δ18Omica-H2O=−3.8‰) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor columbite–tantalite precipitation. Change in the redox conditions related to mixing of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit.  相似文献   

9.
Stable (δ13C and δ18O) and radiogenic 87Sr/86Sr isotopic data have been used to investigate the origin of cleat dawsonite (NaAlCO3(OH)2) in the Late Permian Wittingham Coal Measures of the Upper Hunter region in the Sydney Basin, New South Wales. The δ13CPDB values have a narrow range (− 1.7‰ to + 2.4‰), with an average of + 0.3‰, suggesting a magmatic source for the carbon. In contrast, δ18OSMOW values have a wide range (+ 13.6‰ to + 19.8‰), and decrease systematically with decreasing distance from a major intrusion. This systematic variation reflects establishment of localised hydrothermal cells. Water–rock interaction between fluids associated with these hydrothermal cells, and Rb-poor volcaniclastic detritus in the coal measures, produced mantle-like 87Sr/86Sr (0.705032 to 0.706464) in the dawsonite.  相似文献   

10.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

11.
The Huize Pb–Zn deposit of Yunnan Province, China, is located in the center of the Sichuan–Yunnan–Guizhou Pb–Zn–Ag district. Four primary orebodies (orebody No. 1, No. 6, No. 8 and No. 10), with Pb + Zn reserves from 0.5 Mt to 1 Mt, have been found at depth in this deposit. This paper provides new data on the sulfur isotopic compositions of the four orebodies. The data show that the principal sulfide minerals (galena, sphalerite and pyrite) in the four orebodies are enriched in heavy sulfur, the δ34S values between 10.9‰ and 17.7‰ and where δ34Spyrite > δ34Ssphalerite > δ34Sgalena. The δ34S values of sulfide are close to that of the sulfates from the carbonate strata within the region. The similarity in sulfur isotope composition between sulfides and sulfates indicates the sulfur in the ore-forming fluids was likely derived by thermochemical sulfate reduction of sulfates contained within carbonate units.  相似文献   

12.
The Spanish Central System (SCS) has been subjected to repeated deformation and fluid flow events which have produced both sulphide-bearing and barren vein systems. Although several hydrothermal episodes took place between 300 and 100 Ma, fluid circulation during the Permian was especially important, giving rise to a range of different types of deposits. This study presents a multidisciplinary approach leading to the characterisation of the chemistry and age of the hydrothermal fluids that produced the As–(Ag) mineralised stockwork of Mónica mine (Bustaviejo, Madrid). Fluid inclusion data indicate the presence of two different fluids. An initial ore stage (I) formed from a low- to moderate salinity (3–8 wt.% eq. NaCl) H2O–NaCl–CO2–CH4 fluid, at minimum trapping temperature of 350±15 °C and 0.3 kbar. A second H2O–NaCl fluid is found in three types of fluid inclusions: a high temperature and low salinity type (340±20 °C; 0.8–3.1 wt.% eq. NaCl) also associated to ore stage I, a moderate temperature and very low salinity type (160–255 °C; 0–1.5 wt.% eq. NaCl) represented in ore stage III, and a very low temperature and hypersaline type (60–70 °C; 30–35 wt.% NaCl), unrelated to the mineralising stages and clearly postdating the previous types. 40Ar–39Ar dating on muscovite from the early As–Fe stage (I) has provided an age of 286±4 Ma, synchronous with the late emplacement phases of La Cabrera plutonic massif (288±5 Ma) and with other Permian hydrothermal events like Sn–W skarns and W–(Sn) sulphide veins. δ18O of water in equilibrium with stage I quartz (5.3–7.7‰), δD of water in equilibrium with coexisting muscovite (−16.0‰ to −2.0‰), and sulphide δ34S (1.5–3.6‰) values are compatible with waters that leached metamorphic rocks. The dominant mechanism of the As–(Ag) deposition was mixing and dilution processes between aqueous–carbonic and aqueous fluids for stage I (As–Fe), and nearly isobaric cooling processes for stages II (Zn–Cu–Sn) and III (Pb–Ag). The origin and hydrothermal evolution of As–(Ag) veins is comparable to other hydrothermal Permian events in the Spanish Central System.  相似文献   

13.
Carbon isotope and molecular compositions of Mississippian to Upper Cretaceous mud gases have been examined from four depth profiles across the Western Canada Sedimentary Basin (WCSB). The profiles range from the shallow oil sands in the east (R0 = 0.25) to the very mature sediments in the overthrust zone to the west (R0 = 2.5). In the undisturbed WCSB, δ13C1δ13C2 and δ13C2δ13C3 cross-plots show three maturity and alteration trends: (1) pre-Cretaceous gas sourced from type II kerogen; (2) Cretaceous Colorado Group gas; and (3) Lower Cretaceous Mannville Group biodegraded gas. A fourth set of distinctly different maturity trends is recognized for Lower Cretaceous gas sourced from type III kerogen in the disturbed belt of the WCSB. Displacement of these latter maturity trends to high δ13C2 values suggests that the sampled gas was trapped after earlier formed gas escaped, probably as a result of overthrusting. Unusually 13C-enriched gas (δ13C1 = −34‰, δ13C2 = −13‰, and δ13C3 = 0‰), from the Gething Formation in the disturbed belt, is the result of late stage gas cracking in a closed system. In general, gas maturity is consistent with the maturity of the host sediments in the WCSB, suggesting that migration and mixing of gases was not pervasive on a broad regional and stratigraphic scale. The ‘Deep Basin’ portion of the WCSB is an exception. Here extensive cross-formational homogenization of gases has occurred, in addition to updip migration along the most permeable stratigraphic units.  相似文献   

14.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

15.
Structures and carbon isotopic compositions of biomarkers and kerogen pyrolysis products of a dolomite, a bituminous shale and an oil shale of the Kimmeridge Clay Formation (KCF) in Dorset were studied in order to gain insight into (i) the type and extent of water column anoxia and (ii) changes in the concentration and isotopic composition of dissolved inorganic carbon (DIC) in the palaeowater column. The samples studied fit into the curve of increasing δ13C of the kerogen (δ13CTOC) with increasing TOC, reported by Huc et al. (1992). Their hypothesis, that the positive correlation between TOC and δ13CTOC is the result of differing degrees of organic matter (OM) mineralisation in the water column, was tested by measuring the δ13C values of primary production markers. These δ13C values were found to differ on average by only 1‰ among the samples, implying that differences in the extent of OM mineralisation cannot fully account for the 3‰ difference in δ13CTOC. The extractable OM in the oil shale differs from that in the other sediments due to both differences in maturity, and differences in the planktonic community. These differences, however, are not likely to have significantly influenced δ13CTOC either. All three sediments contain abundant derivatives of isorenieratene, indicating that periodically euxinia was extending into the photic zone. The sediments are rich in organic sulfur, as revealed by the abundant sulfur compounds in the pyrolysates. The prominence of C1-C3 alkylated thiophenes over n-alkanes and n-alkenes is most pronounced in the pyrolysate of the sediment richest in TOC. This suggests that sulfurisation of OM may have played an important role in determining the TOC-δ13CTOC relationship reported by Huc et al. (1992).  相似文献   

16.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

17.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

18.
Variations in the carbon isotopic composition (δ13C) of pristane, phytane, n-heptadecane (n-C17), C29 ααα 20R sterane, and aryl isoprenoids provide evidence for a diverse community of algal and bacterial organisms in organic matter of the Upper Ordovician Maquoketa Group of the Illinois Basin. Carbon isotopic compositions of pristane and phytane from the Maquoketa are positively covariant (r = 0.964), suggesting that these compounds were derived from a common source inferred to be primary producers (algae) from the oxygenated photic zone. A variation of 3‰ in δ13C values (−31 to −34‰) for pristane and phytane indicates that primary producers utilized variable sources of inorganic carbon. Average isotopic compositions of n-C17 (−32‰) and C29 ααα 20R sterane (−31‰) are enriched in 13C relative to pristane and phytane (−33‰) suggesting that these compounds were derived from a subordinate group of primary producers, most likely eukaryotic algae. In addition, a substantial enrichment of 13C in aryl isoprenoids (−14 to −18‰) and the identification of tetramethylbenzene in pyrolytic products of Maquoketa kerogen indicate a contribution from photosynthetic green sulfur bacteria to the organic matter. The presence of anaerobic, photosynthetic green sulfur bacteria in organic matter of the Maquoketa indicates that anoxic conditions extended into the photic zone.The δ13C of n-alkanes and the identification of an unusual suite of straight-chain n-alkylarenes in the m/z 133 fragmentograms of Ordovician rocks rich in Gloeocapsomorpha prisca (G. prisca) indicate that G. prisca did not contribute to the organic matter of the Maquoketa Group.  相似文献   

19.
Regional oxygen isotopic sytematics have been performed mainly on the felsic volcanic footwall rocks of the orebodies but also on purple schist characteristic of the hanging wall series, around two giant VMS deposits in the Spanish Iberian Pyrite Belt, Riotinto and La Zarza. As the terranes of the Iberian Pyrite Belt, these two giant deposits have been affected by the Hercynian tectono-metamorphic events, strongly modifying their geometry. About 60 and 40 samples were collected over a 10×4 km2 area at Riotinto and a 3×2 km2 area at La Zarza, respectively. Whole-rock powders were analysed for oxygen by CO2-laser fluorination. At both sites, a same type of low-δ18O anomaly down to +3.6‰, well differentiated from the regional background (up to 20‰), was identified near the orebodies. The lowest δ18O values (+4 to +11‰) correspond to the chlorite hydrothermal halo, essentially restricted to the feeder zones of the orebody. Intermediate δ18O values (+9 to +15‰) correspond to the sericite hydrothermal halo, mostly developed laterally to the orebody until 0.5–1 km. The regional background (+16 to +20‰) is represented by spilitised volcanic rocks. A same kind of low anomaly, but with less contrast, was defined in purple schist in the immediate hanging wall of the orebodies. All these results demonstrate that, despite high geometrical modifications of the orebodies related to the Hercynian tectonics, oxygen isotopic anomalies recorded by volcanic host rocks during the emplacement of the mineralising hydrothermal systems are still identified. This strongly suggests that oxygen isotopic systematics could be useful to identify target areas in the Iberian Pyrite Belt, as already demonstrated on other VMS targets in the world.  相似文献   

20.
Sulphide mineralisation associated with rocks from the Palaeoproterozoic Olary Domain (OD) and overlying Neoproterozoic Adelaidean sequences has undergone a complex history of metamorphism and remobilisation. In this study, new trace element and sulphur isotopic analyses of pyrites from a large number of deposits and paragenetic generations are combined with an existing data set to build up a sequence of mineralising events linked to the tectonometamorphic evolution of the region. The typically high Co/Ni ratios (>10) indicate that early strata-bound pyrite precipitated from a volcanic-related fluid, which had fluctuating activities of the two metals during the early stages of the evolution of the Willyama basin. This period of mineralisation was followed by a diagenetic concentration of sulphide mineralisation at the horizon known as the Bimba Formation, which occurred as a result of the differing redox conditions between the upper and lower sequences in the Willyama Supergroup. During the Mesoproterozoic (1600 to 1500 Ma) Olarian Orogeny, metamorphic remobilisation of strata-bound pyrite resulted in an epigenetic signature; the trace element concentrations of this generation were controlled primarily by the proximity of mineralisation to the mafic intrusive bodies found throughout the terrane. Further reworking of existing sulphides during the Delamerian Orogeny and associated granitoid-intrusive rocks led to the formation of a new generation of epigenetic pyrite that occurs in quartz veins in the Adelaidean sequences and veins that crosscut Olarian fabrics in the Olary Domain. δ34S results range from 16‰ to 11‰, but most data fall between 2‰ and 4‰. This association is suggestive of an initial uniform deep-seated crustal reservoir of sulphur, which has been repeatedly tapped throughout the metallogenic history of the region. The isotopic outliers can be explained by the input of biogenic sulphur or sulphur derived from oxidised, possibly evaporitic, sediments, respectively. Previous workers have invoked the Kupferschiefer and the Zambian Copperbelt as analogues to mineralisation processes in the Olary Domain. This study shows that δ34S and trace element data are suggestive of some affinities with the aforementioned analogues, but a more likely link can be made between epigenetic remobilisation in the Olary region and the iron oxide copper gold (IOCG) style of mineralisation found at the nearby Olympic Dam deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号