首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
为了对地下水系统中天然胶体与Ni2+的共迁移特征进行研究,通过静态吸附实验和石英砂模拟含水层介质柱实验研究了土壤胶体对Ni2+在地下水中运移的影响,以及pH、离子强度(IS)、有机质等对土壤胶体吸附Ni2+的影响。结果表明:随着pH值升高,土壤胶体对Ni2+的吸附量增加;离子强度的增加会显著地降低土壤胶体吸附Ni2+的能力;腐殖酸(HA)的存在会增强胶体对Ni2+的吸附能力;在有胶体的情况下,Ni2+穿透砂柱的时间会缩短,吸附能力增强,吸附量增加,但当离子强度增加时,虽然Ni2+穿透砂柱的时间也被缩短,但是吸附量却降低。  相似文献   

2.
王倩  刘兴  赵媛  袁权 《矿物学报》2020,40(3):289-296
纳米技术的快速发展以及纳米材料的广泛应用,使得以纳米颗粒形式存在的天然矿物及人工纳米颗粒归趋于土壤环境并在土壤中大量累积。其中无机纳米颗粒进入土壤生态系统后会改变土壤孔隙度及渗透系数,并可能与有机质等结合或相互作用从而影响土壤理化性质。无机纳米颗粒还可直接或间接作用于土壤动物及微生物,其中抑制效应为主,利用其尺寸效应和高反应性与微生物细胞以及信号转导小分子作用影响其生物活性或营养成分等,对微生物产生毒性或改变群落结构。同时,纳米颗粒特性、土壤理化参数(pH值、离子强度、含水量和矿物质、有机质含量等)及微生物群落等因素同样会影响无机纳米颗粒在土壤中的环境效应。本文系统阐述了无机纳米颗粒进入土壤生态系统后产生的环境效应,归纳无机纳米颗粒在土壤中生态效应的影响因素,并对纳米颗粒的生态效应研究提出了问题与展望。  相似文献   

3.
淤泥是一种富含有机质的特殊土。受微生物作用,其有机质会分解出腐殖酸,而腐殖酸又影响有机质降解;同时,腐殖酸还会影响淤泥固化效果。为掌握有机质的降解规律与腐殖酸的释放模式,营造3种酸/碱度的缓冲溶液环境,酸性(pH=4.0)、中性(pH=7.0)和碱性(pH=9.0),将淤泥分别浸泡其中,观测其有机质含量和pH值的变化过程。结果发现,酸性和碱性缓冲溶液均能加快其有机质的降解速度;但只有碱性缓冲溶液能加快有机质释放腐殖酸,同时也能消耗掉腐殖酸,使溶液呈碱性;有机质分解腐殖酸呈现“释放-消耗-释放-消耗……”的交替过程;当有机质分解完成,腐殖酸也释放结束。淤泥固化土的长期强度表明,经碱溶液浸泡后,淤泥中有机质得到预先加速降解,其长期强度不会发生衰减。由此说明,通过碱性缓冲溶液预降解淤泥有机质,可以提升其固化土长期强度。  相似文献   

4.
淤泥是一种富含有机质的特殊土。受微生物作用,其有机质会分解出腐殖酸,而腐殖酸又影响有机质降解;同时,腐殖酸还会影响淤泥固化效果。为掌握有机质的降解规律与腐殖酸的释放模式,营造3种酸/碱度的缓冲溶液环境,酸性(pH=4.0)、中性(pH=7.0)和碱性(pH=9.0),将淤泥分别浸泡其中,观测其有机质含量和pH值的变化过程。结果发现,酸性和碱性缓冲溶液均能加快其有机质的降解速度;但只有碱性缓冲溶液能加快有机质释放腐殖酸,同时也能消耗掉腐殖酸,使溶液呈碱性;有机质分解腐殖酸呈现“释放-消耗-释放-消耗……”的交替过程;当有机质分解完成,腐殖酸也释放结束。淤泥固化土的长期强度表明,经碱溶液浸泡后,淤泥中有机质得到预先加速降解,其长期强度不会发生衰减。由此说明,通过碱性缓冲溶液预降解淤泥有机质,可以提升其固化土长期强度。  相似文献   

5.
为了研究土壤中有机质-矿质复合体结合形式对有机污染物吸附的影响, 利用批实验的方法, 对比研究有机质-矿质复合体与无机矿物和腐殖酸简单的混合物对三氯乙烯的吸附.结果表明, 与腐殖酸相比, 高岭石和石英砂吸附三氯乙烯量很小.模拟有机质-矿质复合体吸附三氯乙烯是线性吸附, Koc值随腐殖酸含量的增加而减小, 并且比纯腐殖酸样品的Koc值小.有机质与矿质的相互作用影响了有机质的吸附性能.对有机质在复合体中的形态变化进行了分析, 提出了有机质-矿质复合体模型, 并对实验结果进行了合理的解释.   相似文献   

6.
地下水中三氯乙烯(TCE)严重威胁公众健康和环境安全,纳米零价铁原位注射技术可以还原降解TCE,但是应用中,纳米零价铁存在易氧化团聚而失活、迁移性差等问题。为此,利用天然高分子壳聚糖作包覆剂增强分散性和稳定性,镍作催化剂增强反应活性,成功制备获得壳聚糖包覆纳米铁镍双金属颗粒(CS Fe Ni)。沉降光谱实验表明包覆壳聚糖后纳米铁的分散稳定性得到增强,Zeta电位测试进一步证实颗粒表面负电荷增加,提高了静电排斥力,使得CS Fe Ni分散稳定性明显改善。柱迁移实验表明改性后的CS Fe Ni迁移能力得到提高。批实验表明CS Fe Ni能够高效降解TCE并能完全脱氯,研究结果为纳米铁原位注射技术的实际应用提供了理论基础和实验参考。  相似文献   

7.
纳米颗粒与重金属元素相结合发生反应,可能产生一系列相互作用关系。这些作用过程是取决于多个环境条件共同作用的复杂过程,尤其是在土壤这种复杂的典型非均质环境介质中。这些作用关系可分为协同促进和拮抗抑制两大类关系。对于土壤中的重金属元素离子而言,纳米态粒子对其环境有效性究竟是协同促进还是拮抗抑制作用,关键取决于纳米粒子的表面修饰特性、二者间的界面反应以及反应后重金属元素的最终赋存状态这三个方面。协同促进或拮抗抑制作用与否则最终决定了这些污染重金属离子的生物可利用性和生态毒性响应。本文对近年来纳米颗粒-重金属共环境行为国内外研究现状进行综述讨论。纳米-重金属界面吸附解吸和土壤中迁移持留过程研究涉及多个热力学、动力学解析方法,科学家结合静态批实验和动态迁移实验等实验室模拟手段,对纳米颗粒、重金属离子、有机质三因子在土壤介质中的相互作用影响和共行为方式展开深入探讨。在重金属离子-纳米颗粒表面吸附机制、赋存形态以及重金属纳米吸附态土壤迁移固定机制研究中,多种定性表征方法的综合应用,如透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、X射线吸收近边结构光谱/扩展X射线吸收精细结构光谱(XANES/EXAFS)等方法相结合,被公认是揭示这一系列过程机制的重要技术手段。针对不同土壤环境中有机质存在条件,正确评价纳米态物质对重金属的迁移性及生物可利用性的影响作用,将为纳米环境效应评估和纳米修复技术等相关应用提供重要的数据支持和机理依据。  相似文献   

8.
辽河流域土壤镉有效性的地球化学研究   总被引:2,自引:0,他引:2  
彭雨敏  凌爽 《华北地质》2009,32(4):267-272
利用辽宁省辽河流域生态地球化学调查中取得的土壤镉深表层含量及形态分析等测试数据,对土壤镉的存在形态及其影响因素进行了系统对比研究,结果表明:辽河流域土壤镉主要以离子交换态、水溶态、铁锰氧化态、碳酸盐结合态、强有机结合态、腐殖酸结合态及残渣态等七种形态存在,其中离子交换态及水溶态是可被生物吸收利用的有效态,其含量主要受土壤镉全量、pH值、有机质、土壤粘度等因素制约。  相似文献   

9.
为探讨天然黏土矿物及有机质对纳米乳化油在多孔介质中迁移滞留的影响,本文选取高岭石和蒙脱石这两种黏土矿物以及有机质的典型代表腐殖酸,开展了单一矿物、有机质及有机矿质复合物对纳米乳化油的吸持批实验研究,并运用比表面积全分析、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)等技术手段探讨了吸持机理。实验结果表明,介质对纳米乳化油的吸持均符合Freundlich模型;单一矿物及腐殖酸对纳米乳化油的吸持能力表现为:蒙脱石>腐殖酸>高岭石,有机矿质复合样品的吸持能力表现为:蒙脱石-腐殖酸>高岭石-腐殖酸,且均大于其对应的单一样品,出现了“1+1>2”的现象,表明介质组成越复杂,对纳米乳化油的吸持滞留程度越大。进一步分析证实,纳米乳化油主要通过氢键和疏水作用吸持在矿物和腐殖酸表面,表面结构性质是高岭石和蒙脱石吸持过程中的主导因素,因此蒙脱石具有更强的吸持能力,而腐殖酸的吸持主要通过颗粒间聚集作用来实现;对于复合样品,吸持主要通过氢键、配体交换和疏水作用结合来实现。腐殖酸与矿物的复合会增加吸持位点并且增强矿物表面疏水性,从而促进吸持。腐殖酸与纳米乳化油的共吸...  相似文献   

10.
景明  李烨  陈盈余  陈家玮 《现代地质》2014,28(6):1194-1201
生物炭应用在土壤中具有CO2减排、改善土壤性质等作用,研究表明生物炭土壤有助于农作物产量和质量的提高,同时对污染物有较好的吸附效果,能控制其迁移,但对于近年关注的土壤中Cr(Ⅵ)和生物炭的作用研究却很少。通过土柱淋滤实验,研究土壤中添加生物炭后对Cr(Ⅵ)的迁移影响,特别是对其进行模拟酸雨淋滤实验,进一步研究了生物炭土壤对Cr(Ⅵ)的锁定效果。结果表明:仅施加1%的生物炭,就能够大幅度提高土壤系统固定Cr(Ⅵ)的能力,小粒径生物炭对Cr(Ⅵ)的吸附固定能力更加明显,在一定条件下是大粒径的固定吸附量的3倍,在酸雨淋滤作用下也不易解吸,说明生物炭的添加能有效抑制Cr(Ⅵ)在土壤中的迁移,起到原位锁定的作用,这对农田土壤开发治理提供了重要手段和依据。  相似文献   

11.
In this work, the interaction of natural organic matter (NOM) with metal(loid)s (Cu, Pb, Zn, Pt, As) and the role of NOM on the metal(loid) transport in a water-saturated quartz sand column were investigated. For detailed information, size exclusion chromatographic (SEC) measurements and “short pulse” laboratory transport experiments with online metal(loid) and NOM detection were used. The SEC measurements showed the formation of metal–NOM complexes. Cu, Pb, Zn and Pt were predominantly bound to the high molecular mass NOM molecules. The binding capacity of the NOM for metals increased with increasing pH value and in the following order: Zn < Pb < Cu < Pt. No evidence for the formation of As–NOM complexes was found. The transport experiments showed no significant influence of NOM on the mobility of Cu, Pb and Zn. The metal–NOM complexes detected in the SEC experiments were obviously sorbed completely onto the grain surfaces in case of the quartz sand system, or they were dissociated partially during passage through the column. No influence of NOM was observed on the transport of As as well. Inorganic Zn and As species were transported through the column with increasing retardation as the pH value increased. Pt showed a high mobility at a pH of 5, and it decreased at a pH of 7 especially in the presence of NOM. The results support the known fact that a decrease in the pH value results in enhanced transport of inorganic metal(loid) species in water-saturated porous media. On the other hand, the presence of NOM can immobilise the metals through metal–NOM complex formation and the deposition of the complexes onto the stationary phase.  相似文献   

12.
《Geochimica et cosmochimica acta》1999,63(19-20):2891-2901
A long-standing problem in aquatic geochemistry has been the incorporation of natural organic matter (NOM) into speciation models. The general effect of NOM on metal ion sorption by particles has been understood for some time, and significant progress has been made in elucidating some of the details of the role of NOM through the use of surrogate organic acids such as citric acid. However, a gap exists between the general observations that have been made of NOM behavior and the inclusion of NOM in surface chemical models for metal ion sorption. In this paper, we report on the results of a study on the sorption of U(VI) by hematite in the absence and presence of Suwannee river humic acid (HA) and over a range of other system conditions (e.g., pH, I). Essential HA characteristics (e.g., its acid/base, metal binding, and surface chemical properties) were “captured” by representing the HA as an assembly of monoprotic acids with assumed pK values and without explicit correction for electrostatic effects. The ternary system (hematite/HA/U(VI)) was simulated through the combination of the binary submodels (i.e., CO32−/hematite, U(VI)/HA, U(VI)/hematite, and HA/hematite) with model constants fixed at the values determined from simulations of the respective experimental systems. However, the “summed-binary” approach undersimulated experimental results, and the ternary system model required the postulation of two ternary surface (Type A) complexes composed of the uranyl ion, hematite surface sites, and the model ligands comprising the HA. Consideration of the HA in this manner permitted the simulation of HA effects on U(VI) sorption by hematite over a range of solution conditions using a general speciation model.  相似文献   

13.
Black carbon (BC), especially biochar, is a potential material for the remediation of hydrophobic organic compounds (HOCs) pollution in soils and sediments. Recent studies have reported that the adsorption capability of BC in sediment was reduced as time increased. It was hypothesised that this behaviour was caused by the presence of natural organic matter (NOM), but few systematic studies have examined the influence of NOM on the sorption ability of BC in sediment (S). The results of this study revealed that a humic acid (HA) coating changed the surface properties, blocked the micropores, and decreased the sorption capacity of rice-straw biochar (RBC) towards pentachlorophenol. With increasing aging time, the reductions in the sorption capacity of the S + RBC and S + HA + RBC systems occurred more rapidly than in the S + HA/RBC (HA-coated RBC) system, and the sorption curves became closer to that of the S + HA/RBC system, indicating that HA may play a primary role in reducing the sorption capacity of RBC in the sediment. With higher HA contents, the sorption capacity of the complex sediments was lower and decreased more rapidly.  相似文献   

14.
Although direct microbial reduction of Cr(VI) and U(VI) is known, few studies have examined the kinetics and the underlying mechanisms of the reduction of these contaminants by different natural organic matter (NOM) fractions in the presence or absence of microorganisms. In this study, NOM was found to chemically reduce Cr(VI) at pH 3, but the reduction rates were negligible at pH ∼7. The abiotic reduction of U(VI) by NOM was not observed, possibly because of the presence of small amounts of nitrate in the reactant solution. However, all NOM fractions, particularly the soil humic acid (HA), enhanced the bioreduction of Cr(VI) or U(VI) in the presence of Shewanella putrefaciens CN32. The reduction rates varied greatly among NOM fractions with different chemical and structural properties: the polyphenolic-rich NOM-PP fraction appeared to be the most reactive in abiotically reducing Cr(VI) at a low pH, but soil HA was more effective in mediating the microbial reduction of Cr(VI) and U(VI) under anaerobic, circumneutral pH conditions. These observations are attributed to an increased solubility and conformational changes of the soil HA with pH and, more importantly, its relatively high contents of polycondensed and conjugated aromatic organic moieties. An important implication of this study is that, depending on chemical and structural properties, different NOM components may play different roles in enhancing the bioreduction of Cr(VI) and U(VI) by microorganisms. Polycondensed aromatic humic materials may be particularly useful in mediating the bioreduction and rapid immobilization of these contaminant metals in soil.  相似文献   

15.
Five sulfide mine tailings coming from the Joutel mine tailing ponds (Quebec, Canada) were tested by the humidity cell test (30 to 52 cycles duration) and the column test (11 to 12 cycles duration). The objectives of this study were twofold. First, there was the determination of the tailings acid generation potential for site reclamation. Second, there was the kinetic test comparison for understanding the tailings geochemical behavior under different test conditions. The samples used had a wide diversity in terms of acid-generation potential, particle size distribution, and parameters influencing reaction rates. Leachates produced remained at a near neutral pH for the duration of the tests. Evolution of the main elements involved in the dissolution processes demonstrated neutralization by carbonates as a response to the acid generated by sulfide oxidation. Depletion rates given by sulfates are higher for the humidity cell tests when compared to those obtained for the column tests. This is consistent with most studies to date, the humidity cell test being considered as more severe. However, by taking the ratio between cumulative elements coming from neutralization and the ones coming from oxidation, similar curves (named herein oxidation –neutralization curves) for all tests were obtained. These results show that overall geochemical behavior of the tailings is similar at near neutral pH for both types of tests. With this interpretation method, the acid-generation potential of the Joutel tailings were tested and compared to the static test results to constrain their uncertainty zone with regard to the studied tailings. The tailings geochemical behavior (carbonate dissolution response to sulfide oxidation) at near neutral pH condition appears slightly dependent of test conditions under certain hypothesis.  相似文献   

16.
《Organic Geochemistry》1999,30(8):911-927
Adsorption of organic contaminants onto soils, sediments and other particulates has the potential to be a major controlling factor in their bioavailability, fate and behavior in the environment. Models for estimating the amount and stability of sorbed organic contaminants based on the fraction of organic carbon in a soil or sediment can oversimplify the process of sorption in the environment. In order to help understand sorption of organic contaminants in soils and sediments, we modeled various components of natural organic matter (NOM) that are possible substrates for sorption. These substrates include soot particles, lignin, humic and fulvic acids. The molecular scale interactions of selected aromatic hydrocarbons with different substrates were also simulated. Results of the simulations include the 3-D structures of the NOM components, changes in structure with protonation state and solvation and the sorption energy between PAH and substrate. This last parameter is an indicator of the amount of contaminant that will sorb and the energy required to free the contaminant from the substrate. Although the simulation results presented in this paper represent a first-order examination of NOM and contaminant interactions, the findings highlight a number of essential features that should be included in future molecular models of NOM and contaminant sorption.  相似文献   

17.
Metal-complex dyes are widely used in textile industry, but harmful to the environment and human health due to aromatic structure and heavy metal ions. The objective of this work was to evaluate the adsorption potential of bamboo biochar for the removal of metal-complex dye acid black 172 from solutions. Freundlich model was more suitable for the adsorption process of bamboo biochar than Langmuir isotherm, indicating multilayer adsorption of acid black 172 on a heterogeneous bamboo biochar surface. Adsorption kinetics analysis of pseudo-second-order and Weber–Morris models revealed that intraparticle transport was not the only rate-limiting step. The bamboo biochar exhibited a good adsorption performance even at high ionic strength. Analysis based on the artificial neural network indicated that the temperature with a relative importance of 29 % appeared to be the most influential parameter in the adsorption process for dye removal, followed by time, ionic strength, pH and dye concentration.  相似文献   

18.
Interaction of dissolved aqueous species with natural organic matter (NOM) is thought to be important in sequestering some species and enhancing the transport of others, but little is known about these interactions on a molecular scale. This paper describes a combined experimental 133Cs and 35Cl nuclear magnetic resonance (NMR) and computational molecular dynamics (MD) modeling study of the interaction of Cs+ and Cl with Suwannee River NOM. The results provide a detailed picture of the molecular-scale structure and dynamics of these interactions. Individual NOM molecules are typically hundreds to thousands of Daltons in weight, and on the molecular scale their interaction with small dissolved species can be investigated in ways similar to those used to study the interaction of dissolved aqueous species with mineral surfaces. As for such surface interactions, understanding both the structural environments and the dynamics over a wide range of frequencies is essential. The NMR results show that Cs+ is associated with NOM at pH values from 3.4 ± 0.5 (unbuffered Suwannee River NOM solution) to 9.0 ± 0.5. The extent of interaction increases with decreasing CsCl concentration at constant pH. It also decreases with increasing pH at constant CsCl concentration due to pH-dependent negative structural charge development on the NOM caused by progressive deprotonation of carboxylic and phenolic groups. The presence of NOM has little effect on the 133Cs chemical shifts, demonstrating that its local coordination environment does not change significantly due to interaction with the NOM. Narrow, solution-like line widths indicate rapid exchange of Cs+ between the NOM and bulk solution at frequencies of >102 Hz. The MD simulations support these results and show that Cs+ is associated with the NOM principally as outer sphere complexes and that this interaction does not reduce the Cs+ diffusion coefficient sufficiently to cause NMR line broadening. The 35Cl NMR data and the MD results are consistent in demonstrating that there is no significant complexation between Cl and NOM in the pH range investigated, consistent with negative structural charge on the NOM.  相似文献   

19.
Waste rock piles from historic mining activities remain unvegetated as a result of metal toxicity and high acidity. Biochar has been proposed as a low-cost remediation strategy to increase soil pH and reduce leaching of toxic elements, and improve plant establishment. In this laboratory column study, biochar made from beetle-killed pine wood was assessed for utility as a soil amendment by mixing soil material from two mine sites collected near Silverton, Colorado, USA with four application rates of biochar (0%, 10%, 20%, 30% vol:vol). Columns were leached seven times over 65 days and leachate pH and concentration of toxic elements and base cations were measured at each leaching. Nutrient availability and soil physical and biological parameters were determined following the incubation period. We investigated the hypotheses that biochar incorporation into acidic mine materials will (1) reduce toxic element concentrations in leaching solution, (2) improve soil parameters (i.e. increase nutrient and water holding capacity and pH, and decrease compaction), and (3) increase microbial populations and activity. Biochar directly increased soil pH (from 3.33 to 3.63 and from 4.07 to 4.77 in the two materials) and organic matter content, and decreased bulk density and extractable salt content in both mine materials, and increased nitrate availability in one material. No changes in microbial population or activity were detected in either mine material upon biochar application. In leachate solution, biochar increased base cations from both materials and reduced the concentrations of Al, Cd, Cu, Pb, and Zn in leachate solution from one material. However, in the material with greater toxic element content, biochar did not reduce concentrations of any measured dissolved toxic elements in leachate and resulted in a potentially detrimental release of Cd and Zn into solution at concentrations above that of the pure mine material. The length of time of effectiveness and specific sorption by biochar is variable by element and the toxic element concentration and acidity of the initial mine material.  相似文献   

20.
土壤重金属元素地球化学行为是目前国内外研究的热点。研究显示重金属元素地球化学行为与土壤理化性质有密切关系。本文选择河北平原农田为研究区,采集了325个根系土样品,测定了Pb、Hg有效态含量,并探讨了影响其地球化学行为的主要因素。研究表明:(1)Pb、Hg水溶态和离子交换态与土壤p H值呈显著负相关关系,土壤酸化使Pb、Hg有效性增加,直接导致农作物中Pb、Hg含量增加,保持土壤p H值在弱酸性至弱碱性范围,防止土壤酸化,可以降低重金属危害。(2)土壤中有机质含量与Pb、Hg全量呈显著的正相关性,但与水溶态和离子交换态呈负相关。所以土壤中有机质的增加可以降低Pb、Hg元素水溶态和离子交换态含量。(3)随着土壤黏粒的增加,Pb、Hg水溶态和离子交换态含量降低,说明黏粒可以吸附一定量的重金属离子,与重金属元素Pb、Hg地球化学行为存在一定关系。土壤p H值、有机质、黏粒是控制重金属元素Pb、Hg地球化学行为的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号