首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cenomanian–Turonian ammonite biostratigraphical framework for the southern Tethys margin (North Africa, Middle East and the Arabian Peninsula) is becoming better understood. A first attempt at a synthetic range chart is presented, with 85 taxa and precise correlations for ammonites along a west–east transect from Morocco to Oman, inclusive of the Trans-Saharan Seaway as far south as northern Nigeria. On the basis of a critical review of ammonite taxonomy, 13 bioevents can be identified in the interval from the Late Cenomanian to the Early Turonian (c. 3.5 myr) with each bioevent corresponding to a time interval of approximately 270,000 years, on average. They are consistent throughout several regions along the southern Tethys margin, though some gaps remain, at least at the stage boundary. These bioevents are correlated with the zonation defined for the stratotype (GSSP) of the base of the Turonian in the Western Interior (USA). The paleobiogeographic distribution of ammonites reveals some endemism but the predominant picture is that of a homogeneous fauna throughout the area, even though distinct Boreal and Western Tethys (Atlantic domain) marine influences are evident. An interpretation of the evolution of conch morphology and ornamentation through the zones of the Late Cenomanian–Early Turonian is proposed.  相似文献   

2.
Inoceramid bivalves of the upper Albian and lower Cenomanian of the United States Western Interior are revised, Eleven species-level taxa and three genera are described. Two new species, Gnesioceramus mowriensis, characterizing the Mowry Shale of the early, but not the earliest, Cenomanian, and Posidonioceramus merewetheri, of the lower Cenomanian, and on new genus, Posidonioceramus, are recognised. The Western Interior inoceramid species from this interval are strongly endemic and are not good tools for long-distance correlations, although they are very effective in regional dating.In terms of the inoceramid biostratigraphy, middle and upper parts of the upper Albian can be referred to the Gnesioceramus Biozone, represented by G. comancheanus (Cragin) and G. bellvuensis (Reeside). These taxa are endemic to the Western Interior and some adjacent areas (Gulf Coast; Greenland?), but are closely allied to the cosmopolitan species, Gnesioceramus anglicus (Woods). At approximately the Albian-Cenomanian boundary, the endemic clade of ‘Inoceramus’ nahwisi appears, now referred to the newly erected Posidonioceramus, resulting in a distinct P. nahwisi biozone. This zone corresponds to the lower part of the ammonite Neogastroplites’ stratigraphic range. Gnesioceramids re-appear in the early Cenomanian. Close to base of the Cenomanian, for the first in the Western Interior, the genus Inoceramus, represented by Inoceramus irenensis Warren and Stelck, 1958, apparently immigrated into the Western Interior Basin.The Western Interior inoceramids do not allow for direct correlation to chronostratigraphic standard subdivision. The Albian-Cenomanian boundary, as earlier recognized on geochronologic correlations and confirmed, to some extent, based on ammonites, may approximately be located close to the appearance level of the genus Posidonioceramus.  相似文献   

3.
The phylostratigraphy, taphonomy and palaeoecology of the Late Cretaceous neoselachian Ptychodus of northern Germany appears to be facies related. Ptychodus is not present in lower Cenomanian shark-tooth-rich rocks. First P. oweni records seem to relate to middle Cenomanian strata. P. decurrens appears in the middle to upper Cenomanian mainly in non-coastal environments of the shallow marine carbonate ramp and swell facies which isolated teeth were found partly in giant ammonite scour troughs on the Northwestphalian-Lippe High submarine swell in the southern Pre-North Sea Basin. They are recorded rare in deeper basin black shales facies (upwelling influenced, OAE Event II). P. polygyrus seems to be restricted to upwelling influenced basin and deeper ramp facies mainly of the uppermost Cenomanian and basal lower Turonian (OAE II Event). P. mammillaris is mostly represented during the lower to middle Turonian in the inoceramid-rich ramp and the near shore greensand facies along the Münsterland Cretaceous Basin coast north of the Rhenish Massif mainland. Finally, P. latissimus is recorded by two new tooth sets and appears in the upper Turonian basin swell facies and the coastal greensands. Autochthonous post-Turonian Ptychodus remains are unrecorded in the Santonian–Campanian of Germany yet. Reworked material from Cenomanian/Turonian strata was found in early Santonian and middle Eocene shark-tooth-rich condensation beds. With the regression starting in the Coniacian, Ptychodus disappeared in at least the Münster Cretaceous Basin (NW-Germany), but remained present at least in North America in the Western Interior Seaway. The Cenomanian/Turonian Ptychodus species indicate a rapid neoselachian evolution within the marine transgression and global high stand. A correlation between inoceramid shell sizes, thicknesses and their increasing size during the Cenomanian and Turonian might explain the more robust and coarser ridged enamel surfaces in Ptychodus teeth, if Ptychodus is believed to have preyed on epifaunistic inoceramid bivalves.  相似文献   

4.
On the basis of nine lithostratigraphical profiles, 23 cephalopods taxa (nautilus and ammonites) are described from the Preafrican Trough and the Kem Kem region. Among them, a new species is proposed: Spathites (Jeanrogericeras) asflaensis nov. sp. This fauna is placed in its biostratigraphical framework and correlated with the standard zonation of the late Cenomanian–early Turonian. Moreover, stratigraphic correlations are proposed for the whole Maghreb from the Tarfaya Basin in the west to central Tunisia in the east. Selected taxa reveal the paleogeographical context of the western Tethys; a complex distribution of emerged areas and epicontinental seas impacted by an important marine trangression that constantly modified the costaline.  相似文献   

5.
《Cretaceous Research》2012,33(6):705-722
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

6.
A scheme of radiolarian zonal subdivision is proposed for the upper Albian–Santonian of the Tethyan regions of Eurasia. The upper Albian contains one zone: Crolanium triangulare; the Cenomanian contains three zones: Patellula spica (lower Cenomanian), Pseudoaulophacus lenticulatus (middle Cenomanian), and Triactoma parva (upper Cenomanian); the Turonian contains four zones: Acanthocircus tympanum (lower Turonian (with no upper part)), Patellula selbukhraensis (upper part of the lower Turonian), Phaseliforma turovi (middle Turonian (with no upper part)), and Actinomma (?) belbekense (upper part of the middle Turonian–upper Turonian); the Coniacian contains two zones: Alievium praegallowayi (lower part of the Coniacian) and Cyprodictyomitra longa (upper part of the Coniacian); the Santonian contains three zones: Theocampe urna (lower Santonian), Crucella robusta (middle Santonian–lower part of the upper(?) Santonian), and Afens perapediensis (upper part of the upper Santonian). The biostratigraphic subdivisions are correlated with biostrata in the schemes proposed previously for the Tethys and Pacific. A new species Patellula selbukhraensis Bragina sp. nov. is described.  相似文献   

7.
The belemnite species Praeactinocamax primus (Arkhangelsky, 1912) and Belemnocamax boweri Crick, 1910 are described from the Cenomanian of the abandoned limestone quarry section of Hoppenstedt (Sachsen-Anhalt, northern Germany). They co-occur in the upper part of a prominent tripartite bioclastic limestone bed associated with the ammonite Acanthoceras rhotomagense, indicating the primus Event of the lower middle Cenomanian A. rhotomagense ammonite Zone. An integrated stratigraphical calibration including carbon stable isotope correlation to southern England suggests that the belemnite event horizon at Hoppenstedt occupies exactly the same chronostratigraphical position as elsewhere, highlighting the strictly isochronous character of the primus Event across northwestern Europe. Furthermore, stratigraphical gaps in the Hoppenstedt succession are evaluated.  相似文献   

8.
Recent work in the Tropic Shale by the Museum of Northern Arizona reveals a high biodiversity for plesiosaurs along the western margin of the Cretaceous Western Interior Seaway during the Cenomanian and the Turonian. This paper describes a new species of polycotylid plesiosaur from the Tropic Shale, Dolichorhynchops tropicensis, which adds to the known biodiversity from this time period. The identification is based on two specimens, a well-preserved, nearly complete skeleton including the skull and an additional specimen with only fragmentary skeletal elements. The material shares several synapomorphic characters with Dolichorhynchops, including the shape of the temporal fenestrae, the shape of the sagittal crest, the trend of the ectopterygoids, the morphology of the teeth, and the number of teeth within the mandibular symphysis. D. tropicensis differs from other species of Dolichorhynchops in a greater size range of the teeth, moderately constricted dorsal vertebrae, angled anterior processes on the coracoids, and the presence of well-defined facets on the propodials. The specimens are of Early Turonian age (based primarily on ammonite biostratigraphy and bentonite marker beds), and their discovery extends the known stratigraphic range for Dolichorhynchops back by approximately seven million years. This suggests that Dolichorhynchops tropicensis and Trinacromerum bentonianum, a closely related polycotylid, co-existed in the Western Interior Seaway.  相似文献   

9.
We studied upper Albian to Turonian shallow-marine shelf deposits (Ajlun Group) of west central Jordan along a NNE-SSW running transect. The carbonate-dominated succession includes few siliciclastic intercalations, claystones and shales, and can be subdivided into five formations. The Naur, Fuheis and Hummar Formations of upper Albian to upper Cenomanian age represent shallow subtidal to supratidal platform environments. The uppermost Cenomanian to middle Turonian Shueib Formation includes deeper water deposits of the inner/mid-shelf and locally TOC-rich black shales. Shallow-marine platform environments once again dominate the Wadi As Sir Formation (middle-upper Turonian). A new multibiostratigraphic framework is based on ammonites (mainly of the middle Cenomanian rhotomagense Zone to the middle Turonian woollgari Zone) and calcareous nannofossils (biozones CC 9–CC 11), supplemented by benthic and planktonic foraminifers and ostracods. It forms the base of a sequence stratigraphic subdivision, containing eight sedimentary sequences (S1–S8), which are separated by four Cenomanian sequence boundaries (CeJo1–CeJo4) and three Turonian sequence boundaries (TuJo1–TuJo3). This scheme allows the correlation of the platform succession from distal to proximal shelf areas in contrast to previous correlations using lithologic units. Furthermore, comparisons between the platform successions and sequence patterns of west central Jordan and those from neighbouring areas allow to differentiate local, regional, and global controlling factors of platform development within the study area.  相似文献   

10.
Early and early middle Cenomanian turrilitid ammonoids from the upper part of the Albian–Cenomanian Aitamir Formation of the Koppeh Dagh (northeast Iran) are described, illustrated and placed in an integrated stratigraphic context. The Aitamir Formation represents a graded siliciclastic shelf system and the turrilitid faunas comprise eight different species. Representatives of Mariella and Hypoturrilites have been recorded from a lower Cenomanian horizon in the Ghorghoreh section, corresponding to the Mantelliceras mantelli ammonite biozone. Mariella bicarinata (Kner, 1852) and H. wiedmanni Collignon, 1964 are recorded for the first time from Iran and the larger palaeobiogeographical area, respectively. The horizons with Turrilites costatus and T. scheuchzerianus at Taherabad can be dated as early middle Cenomanian Acanthoceras rhotomagense Zone, T. costatus Subzone. Concentrations of ammonoids commonly occur above regressive sandstone units, at the transition into overlying deeper marine shale units and in their lower parts, respectively. Such intervals represent the early transgressive systems tract of depositional sequences and may thus be regarded as early transgressive, slightly condensed shell accumulations. The uppermost lower to lower middle Cenomanian succession at Taherabad is of striking bio-, event- and sequence stratigraphic similarity to contemporaneous sections in northwest Europe. It reflects deposition during falling and low sea-level associated with the latest early Cenomanian unconformity SB Ce 3 as well as the pulsating transgressive development during the early middle Cenomanian, including levels correlative to the arlesiensis, primus and Mid-Cenomanian events in northwest Europe.  相似文献   

11.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

12.
Late Albian ammonite faunas from the Aitamir Formation of the Koppeh Dagh Basin in northeast Iran are described and illustrated. These comprise 14 taxa, several of which are recorded from Iran for the first time, namely Anahoplites planus (formerly recorded from central Iran in open nomenclature only), Semenoviceras solidus, Epihoplites (Metaclavites) iphitus, Hysteroceras orbignyi and Pseudhelicoceras robertianum. New records of Placenticeras grossouvrei extend the stratigraphic range of this species downwards into the Late Albian; previously it was known from the Early and Middle Cenomanian only. The record of the rare E. (M.) iphitus fills a palaeobiogeographic gap between Crimea and Tajikistan, and the holotype of Spath is re-illustrated here. Additionally, Epihoplites trapezoidalis, from the Late Albian of Tajikistan, is relegated into the synonymy of Spath's species. A large number of taxa typical of the Late Albian (upper part of the Gault Clay Formation) of northwest Europe indicate close palaeobiogeographic affinities with the Koppeh Dagh Basin and faunal exchange across the Russian Platform and Transcaspia. The stratigraphic succession of the ammonite faunas is used for a biostratigraphic subdivision of the upper Aitamir Formation.  相似文献   

13.
The present study aims to provide carbon-isotope curves for the Cenomanian to Turonian rudist-dominated successions in north Sinai. The high-resolution carbon-isotope curves obtained from north Sinai sections provide new insight for calibrating the age of rudists as well as for evaluating the effects of the oceanic anoxic event 2 (OAE2) on rudist communities. The primary goals are (1) to provide a high-resolution sequence stratigraphic framework for the Cenomanian-Turonian succession, (2) to use rudist and ammonite biostratigraphic data to distinguish the stratigraphic levels of the rudist species, and (3) to integrate the chemostratigraphic (δ13C) profile and the rudist levels to improve the biostratigraphy based on the rudist distributions and the carbon-isotope data. The recognition of three ammonite zones through the Cenomanian-Turonian succession was utilized to identify four temporally significant rudist levels indicative of the Lower Cenomanian, Middle Cenomanian, Upper Cenomanian, and Middle Turonian, respectively. Most of the rudists occur in the highstand deposits of medium-scale sequences. Carbon- and oxygen-isotopic analyses were carried out on both rudists and surrounding carbonate units. Based on the variations in the carbon-isotope signals, 12 chronostratigraphic segments were identified in the studied sections. The Cenomanian carbon-isotope segments (C23–C30) were obtained from the Halal Formation at Gabal Yelleg and Gabal Maaza sections, while the Turonian segments (C30–C34) were measured from the Wata Formation at Gabal Yelleg section. The carbon-isotope record from the studied sections is consistent with the trends documented in previous studies of the Tethyan realm. The Cenomanian-Turonian boundary is placed at the onset of falling carbon-isotope values (δ13C) from 2.61 to ?0.25‰ in the upper part of OAE2 with the carbon-isotope segment C30 at Gabal Yelleg. The negative shift in δ13C values (C33) occurred in the Middle Turonian lowstand deposits characterizing the global sea level fall during this interval.  相似文献   

14.
The Upper Cretaceous shallow-water carbonates of the Pyrenean Basin (NE Spain) host rich and diverse larger foraminiferal associations which witness the recovery of this group of protozoans after the dramatic extinction of the Cenomanian–Turonian boundary interval. In this paper a new, large discoidal porcelaneous foraminifer, Broeckina gassoensis sp. nov., is described from the middle Coniacian shallow-water deposits of the Collada Gassó Formation, in the Bóixols Thrust Sheet. This is the first complex porcelaneous larger foraminifer of the Late Cretaceous global community maturation cycle recorded in the Pyrenean bioprovince. It differs from the late Santonian–early Campanian B. dufrenoyi for its smaller size in A and B generations and the less developed endoskeleton, which shows short septula. Broeckina gassoensis sp. nov. has been widely employed as a stratigraphic marker in the regional geological literature, under the name of “Broeckina”, but its age was so far controversial. Its middle Coniacian age (lowermost part of the Peroniceras tridorsatum ammonite zone), established in this paper by strontium isotope stratigraphy, indicates that it took about 5 My after the Cenomanian–Turonian boundary crisis to re-evolve the complex test architecture of larger foraminifera, which is functional to their relation with photosymbiotic algae and K-strategy.  相似文献   

15.
The Middle Oxfordian to lowermost Upper Kimmeridgian ammonite faunas from northern Central Siberia (Nordvik, Chernokhrebetnaya, and Levaya Boyarka sections) are discussed, giving the basis for distinguishing the ammonite zones based on cardioceratid ammonites of the genus Amoeboceras (Boreal zonation), and, within the Kimmeridgian Stage, faunas–for distinguishing zones based on the aulacostephanid ammonites (Subboreal zonation). The succession of Boreal ammonites is essentially the same as in other areas of the Arctic and NW Europe, but the Subboreal ammonites differ somewhat from those known from NW Europe and Greenland. The Siberian aulacostephanid zones—the Involuta Zone and the Evoluta Zone—are correlated with the Baylei Zone (without its lowermost portion), and the Cymodoce Zone/lowermost part of the Mutabilis Zone (the Askepta Subzone) from NW Europe. The uniform character of the Boreal ammonite faunas in the Arctic makes possible a discussion on their phylogeny during the Late Oxfordian and Kimmeridgian: the succession of particular groups of Amoeboceras species referred to successive subgenera is revealed by the occurrence of well differentiated assemblages of typical normal-sized macro and microconchs, intermittently marked by the occurrence of assemblages of paedomorphic “small-sized microconchs” appearing at some levels preceeding marked evolutionary modifications. Some comments on the paleontology of separate groups of ammonites are also given. These include a discussion on the occurrence of Middle Oxfordian ammonites of the genus Cardioceras in the Nordvik section in relation to the critical review of the paper of Rogov and Wierzbowski (2009) by Nikitenko et al. (2011). The discussion shows that the oldest deposits in the section belong to the Middle Oxfordian, which results in the necessity for some changes in the foraminiferal zonal scheme of Nikitenko et al. (2011). The ammonites of the Pictonia involuta group are distinguished as the new subgenus Mesezhnikovia Wierzbowski and Rogov.  相似文献   

16.
The Cenomanian/Turonian Boundary Event (CTBE) at Wunstorf, north-west Germany, has been analysed palynologically by high resolution sampling to reconstruct changes in relative sea-level and water mass character within photic zone waters. Based on changes in the ratio of terrigenous sporomorphs to marine palynomorphs (t/m index), the distribution of the organic-walled algal taxa as well as of selected dinocyst taxa and groups the section can largely be subdivided into pre-“plenus-bed” and post-“plenus-bed” intervals, reflecting different stages of third-order relative sea-level cycles and/or changes in water mass influence in the photic zone. Accordingly, the pre-“plenus-bed” interval is placed in a transgressive systems tract starting at the “facies change” event (C. guerangeri/M. geslinianum ammonite Zone boundary) with the maximum flooding surface at the top of the “Chondrites II” bed (top of R. cushmani Biozone). A highstand systems tract is suggested from the base of the “plenus-bed” up the base of the “fish-shale” event. Within the “fish-shale” event interval, a transgressive systems tract is suggested to start at the base of the thin, grey-green marly interbed. The Cenomanian/Turonian boundary proper, as defined by the first occurrence of Mytiloides spp., as well as the lowermost Turonian are located within the initial phase of a transgressive systems tract. With respect to water mass characteristics within photic-zone waters, the pre-“plenus-bed” interval is predominantly characterized by warm water masses that changed gradually towards the deposition of the “Chondrites II” bed, where a strong influence of cool and/or salinity-reduced waters is indicated by various palynological proxies. Within the post-“plenus-bed” interval a mixture and/or alternation of warmer and cooler waters is indicated, with the warmer water influence increasing gradually towards and within the Lower Turonian stage. The increased proportions of prasinophytes within the “Chondrites II” bed and parts of the “fish-shale” interval may indicate availability of reduced nitrogen chemospecies, especially ammonium, within photic-zone waters as a function of a vertical expansion of the oceanic O2-minimum zone.  相似文献   

17.
A thin phosphate-granule conglomerate within the Upper Cretaceous (middle Campanian) Rattlesnake Mountain sandstone member of the Aguja Formation preserves a diverse chondrichthyan and osteichthyan fauna. This highly fossiliferous deposit (the ‘Ten Bits Microsite’) yielded about 5000 teeth, spines, and denticles in a small amount of matrix (c. 150 kg). About 30 identifiable species of sharks, rays, and bony fishes are recognized. Two of the three most abundant chondrichthyan species at Ten Bits (Scapanorhynchus texanus and Ischyrhiza mira) are also the most common species in other middle to late Campanian marine vertebrate faunas along the Gulf and Atlantic Coastal Plain. The myliobatiform rays Brachyrhizodus and Rhombodus that occur at Ten Bits also appear to be characteristic of the Gulf and Atlantic Coast, as are lamniform sharks such as Cretalamna and Serratolamna. These taxa are entirely absent or extremely rare in Western Interior Campanian faunas. In contrast, some small orectolobiform sharks (Cantioscyllium, Chiloscyllium, Columbusia) and small rays (Protoplatyrhina) found at Ten Bits are common in shallow water faunas of the Western Interior and Texas Coastal Plain, but rarely reported from the eastern Gulf or Atlantic Coast. The common Western Interior ray Myledaphus bipartitus does not occur at Ten Bits or in any Gulf or Atlantic Coast fauna. Ptychotrygon agujaensis is abundantly represented in the Ten Bits fauna, but unknown in correlative marine faunas. Although Ptychotrygon occurs in all Western Interior, Gulf and Atlantic Coastal Plain faunas, it is represented elsewhere by apparently endemic species at each collection site. The differences between Western Interior, Gulf, and Atlantic Coastal Plain faunas probably reflect latitudinal variation in water temperature or salinity, or different oceanic water circulation patterns between the Western Interior Seaway and the Gulf or Atlantic Coast that restricted the distributions of some marine fish species. The Ten Bits fauna shares typical species with both Western Interior and Gulf and Atlantic Coast faunas, reflecting its position at the border between these provinces; however, the dominant taxa found at Ten Bits are the same as those found on the Gulf and Atlantic Coast, and indicate that western Texas was more closely allied biogeographically with that province than with the Western Interior of North America. One species tentatively identified in the Ten Bits fauna on the basis of a single tooth, Igdabatis cf. I. indicus, is otherwise known only from southern Europe and Asia, although a similar large myliobatid ray also occurs rarely in Texas Coastal Plain faunas. These occurrences indicate that western Texas may have been near the northern limit of the range for some tropical Tethyan marine vertebrate species.  相似文献   

18.
Thin-bedded and millimetrically laminated platy marly limestone quarried near Vallecillo, north-eastern Mexico, contains abundant excellently preserved marine fossils. Planktic foraminifers, inoceramids, and ammonites occur throughout the 7.7-m-thick section of this plattenkalk and provide a precise and detailed biostratigraphic zonation from the uppermost Cenomanian to early Turonian, with a mixed assemblage of Tethyan and Western Interior Seaway faunal elements. Five species of inoceramids are present and described herein: Inoceramus pictus pictus, Mytiloides hattini, M. puebloensis, M. goppelnensis, and M. kossmati. The faunal characteristics of the Vallecillo fossil assemblage combined with the monotonous lithology are favourable attributes for correlation with the GSSP at Pueblo, Colorado, and the Eastbourne section in southern England. The first appearances (FAs) of Watinoceras and Mammites nodosoides are considered approximately isochronous and thus suited for long-distance correlation. In contrast, the FAs of Pseudaspidoceras flexuosum, Fagesia catinus, and Helvetoglobotruncana helvetica are clearly diachronous. The range of M. kossmati needs further evaluation.  相似文献   

19.
Sediments of Early Aptian age in Bulgaria can be assigned to four different facies: platform carbonates (Urgonian complex), shallow-water siliciclastics, hemipelagic and flyschoid siliciclastics. The taxonomic analysis of the ammonite faunas of 18 sections from these four different facies resulted in a revision of the existing ammonite zonation scheme so far applied in Bulgaria and adjoining areas. A new biostratigraphic scheme, which bridges the western and eastern Tethys, is thereby proposed for the Lower Aptian of Bulgaria.The Upper Barremian Martelites sarasini Zone is characterized in its upper part by the Pseudocrioceras waagenoides Subzone in the shallow-water sections and by a horizon with Turkmeniceras turkmenicum in the deep-water settings. The Upper Barremian/Lower Aptian boundary is fixed by the first appearance of Paradeshayesites oglanlensis. For the Lower Aptian the following ammonite zones were established (from bottom to top): The Paradeshayesites oglanlensis Zone, the Deshayesites forbesi Zone (= formerly Paradeshayesites weissi Zone) including the Roloboceras hambrovi Subzone in the upper part, the Deshayesites deshayesi Zone including the Paradeshayesites grandis Subzone in the upper part and the Dufrenoyia furcata Zone. The Lower–Middle Aptian boundary has been defined by the appearance of species belonging to the genera Epicheloniceras and Colombiceras.The Lower Aptian ammonite faunas of Bulgaria, allow an interregional correlation with other areas of the Tethyan Realm. The presence of Turkmeniceras in the Upper Barremian enables a correlation with the Transcaspian region, whereas Roloboceras, Koeneniceras and Volgoceratoides found in the middle part of the Lower Aptian are more typical representatives of the ammonite faunas in northern Europe (England, Germany, Volga region).The analysis of the ammonite successions in combination with sedimentological observations enable us to conclude that the marls and marly limestones of the Lower Aptian studied here also cover the interval of the Oceanic Anoxic Event 1a. An interval of thin-laminated clays, rich in organic matter, was identified in the upper part of the D. forbesi Zone (Roloboceras hambrovi Subzone). This interval is characterized by a total lack of benthic faunas.  相似文献   

20.
The middle Cenomanian–lower Turonian deposits of Ohaba-Ponor section (Southern Carpathians) were studied from biostratigraphic and isotopic points of view. Both the qualitative and semiquantitative nannofloral analyses, as well as the stable isotope (δ13C and δ18O) data support significant palaeoenvironmental changes in the investigated interval. Two δ13C positive excursions were recognized: (1) an excursion up to 1.8‰ (PDB) within the middle/late Cenomanian boundary; (2) an excursion up to 2.2‰ (PDB) in the Cenomanian/Turonian boundary interval. The oldest δ13C positive excursion recorded (placed within the Acanthoceras jukes-brownei/Eucalycoceras pentagonum Ammonite Zone boundary interval, and in the NC11 Calcareous Nannofossil Zone respectively) could be assigned to the middle Cenomanian Event II (MCEII). During the above-mentioned event, significant increase in abundance of Watznaueria barnesae, followed by successive blooms of Biscutum constans and Eprolithus floralis, were observed. The youngest δ13C positive excursion was identified in the Cenomanian/Turonian boundary interval (in the NC12 and lower part of the NC13 Calcareous Nannofossil Zones). Even the amplitude of this δ13C positive excursion is lower in the Ohaba-Ponor section, as generally reported, this may represent the regional record of the OAE2. The successive peaks of the nannofossils Biscutum constans, Zeugrhabdotus erectus and Eprolithus floralis indicate episodes of cooler surface water and high fertility, which preceded and lasted the Cenomanian/Turonian boundary event. Additionally, fluctuations of δ18O values between −2 and −6‰ suggest also cooler conditions within the Cenomanian/Turonian boundary interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号